Stamp Hard Disk For NanoComputer Contains All Books Ever Written

Every day, modern society creates more than a billion gigabytes of new data. To store all this data, it is increasingly important that each single bit occupies as little space as possible. A team of scientists at the Kavli Institute of Nanoscience at Delft University (Netherlands) managed to bring this reduction to the ultimate limit: they built a memory of 1 kilobyte (8,000 bits), where each bit is represented by the position of one single chlorine atom.
In 1959, physicist Richard Feynman challenged his colleagues to engineer the world at the smallest possible scale. In his famous lecture There’s Plenty of Room at the Bottom, he speculated that if we had a platform allowing us to arrange individual atoms in an exact orderly pattern, it would be possible to store one piece of information per atom. To honor the visionary Feynman, Otte and his team now coded a section of Feynman’s lecture on an area 100 nanometers wide
Hard disk for nanocomputer

In theory, this storage density would allow all books ever created by humans to be written on a single post stamp”, says lead-scientist Sander Otte. They reached a storage density of 500 Terabits per square inch (Tbpsi), 500 times better than the best commercial hard disk currently available. His team reports on this memory in Nature Nanotechnology on Monday July 18.

Source: http://www.tudelft.nl/

Fighting Cancer: Targeting A Molecule In The Blood Vessels

Even as researchers design more-potent new cancer therapies, they face a major challenge in making sure the drugs affect tumors specifically without also harming normal cells. This obstacle has thwarted many promising treatments.

Now, researchers from Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine have devised an innovative strategy for addressing this problem. Rather than aiming directly at cancer cells, they are focusing on targeting a molecule in the blood vessels that feed tumors and using nanotechnology to deliver tiny particles that will stick to the target and unleash their payload of cancer drugs.

coverThis image depicts the protein P-selectin (red) in the blood vessels (green) in a metastatic lung tumor

We know that cancer cells in the blood can come into contact with P-selectin on blood vessel walls to stop them from circulating and to begin the formation of metastatic tumors,” said Dr. Daniel Heller, a molecular pharmacologist at Memorial Sloan Kettering and an assistant professor of pharmacology a at the Weill Cornell Graduate School of Medical Sciences. “So in effect, we’re hacking into the metastatic process in order to intercept the cells and destroy the cancer.”

The target, a protein called P-selectin, serves as a kind of molecular Velcro for cancer treatments. It is especially prevalent in blood vessels that nourish cancer itself — including metastatic tumors, which cause roughly 90 percent of cancer deaths and are especially hard to treat.

The ability to target drugs to metastatic tumors would greatly improve their effectiveness and be a major advance for cancer treatments,” said lead author Dr. Yosi Shamay, a research fellow in Dr. Heller’s laboratory at Memorial Sloan Kettering.
Dr. Heller’s laboratory investigates the use of nanoparticles — tiny objects with diameters one thousandth that of a human hair — to carry drugs to tumors. The drugs are encapsulated within the nanoparticles, which must home in on a target within or near tumors to deliver the therapies effectively.
Dr. Shamay made the nanoparticles out of a very abundant and cheap substance called fucoidan, which is extracted from brown algae that grows in the ocean. Fucoidan has a natural affinity for P-selectin, so the nanoparticle is simple to make and adapt.

It’s difficult to develop a nanoparticle-based treatment that is effective and safe in lots of people,” Dr. Heller said. “You usually have to load both the drug and another component to the nanoparticle to enable the nanoparticle to bind to the correct spot — and any new element carries the potential to be toxic. But in this case, the nanoparticle itself is made of material that naturally attaches to the target”.

The researchers described this method in a study published June 29 and featured on the cover of Science Translational Medicine.

Source: http://weill.cornell.edu/

How To Save The Bees

It’s a global phenomenon that worries beekeepers and environmentalistshoney bee colonies dying at an alarming rate. Here in Poland, bee population has halved in the past 15 years. A disease called nosemosis is one cause.

beeCLICK ON THE IMAGE TO ENJOY THE VIDEO

Nosemosis is a very serious disease which shortens the bees’ lifespan. Infected worker bees live for a very short time in the summer, about 8 to 12 days, while they normally live 36 days. So the productivity of the whole bee family decreases and bees also have problems with passing the winter“, says Aneta Ptaszinska from the Maria-Curie Sklodowska University in Lublin (UMCS – Poland).

Nosema disease, or nosemosis is a honey bee gut disease caused by microscopic fungi that spread through food or water. When consumed it attacks the insects’ intestines, causing them to constantly search for food and eventually die in the process. Some studies blame pesticides for having a negative influence on the bees’ immune system, which then cannot fight off the fungi. But Ptaszynska says a new drug developed by her team strengthens the immune system to help beat the disease.

On one hand they decrease the level of Nosemosis, we can clearly observe a decrease in the number of spores in the intestines of bees given the extracts. On the other hand, they increase the level of enzymes responsible for the immunological reaction of the insects, enzymes which recognize pathogens, foreign bodies. We assume that in this way the extracts help the bees overcome this disease“, comments Dr. Ptaszinska.  She adds that the floral extract is safe for human consumption, and is effective in more than 90 percent of cases. Bees are vital for the world’s food supply, pollinating the vegetables and fruits we eat and those eaten by the animals we then consume. The drug is undergoing patenting procedures, and the team hopes that it creates enough buzz to find the right partners for production and distribution soon.

Source: http://www.reuters.com/

How To Turn CO2 Into Rock

An international team of scientists have found a potentially viable way to remove anthropogenic (caused or influenced by humans) carbon dioxide emissions from the atmosphereturn it into rock.

The study, published today in Science, has shown for the first time that the greenhouse gas carbon dioxide (CO2) can be permanently and rapidly locked away from the atmosphere, by injecting it into volcanic bedrock. The CO2 reacts with the surrounding rock, forming environmentally benign minerals.

turn co2 into rockCLICK ON THE IMAGE TO ENJOY THE VIDEO

Measures to tackle the problem of increasing greenhouse gas emissions and resultant climate change are numerous. One approach is Carbon Capture and Storage (CCS), where CO2 is physically removed from the atmosphere and trapped underground. Geoengineers have long explored the possibility of sealing CO2 gas in voids underground, such as in abandoned oil and gas reservoirs, but these are susceptible to leakage. So attention has now turned to the mineralisation of carbon to permanently dispose of CO2.

Until now it was thought that this process would take several hundreds to thousands of years and is therefore not a practical option. But the current study – led by Columbia University, University of Iceland, University of Toulouse and Reykjavik Energy – has demonstrated that it can take as little as two years.

Lead author Dr Juerg Matter, Associate Professor in Geoengineering at the University of Southampton, says: “Our results show that between 95 and 98 per cent of the injected CO2 was mineralised over the period of less than two years, which is amazingly fast.”

Carbonate minerals do not leak out of the ground, thus our newly developed method results in permanent and environmentally friendly storage of CO2 emissions,” adds Dr Matter, who is also a member of the University’s Southampton Marine and Maritime Institute and Adjunct Senior Scientist at Lamont-Doherty Earth Observatory Columbia University. “On the other hand, basalt is one of the most common rock type on Earth, potentially providing one of the largest CO2 storage capacity.

Storing CO2 as carbonate minerals significantly enhances storage security which should improve public acceptance of Carbon Capture and Storage as a climate change mitigation technology,” says Dr Matter. “The overall scale of our study was relatively small. So, the obvious next step for CarbFix is to upscale CO2 storage in basalt. This is currently happening at Reykjavik Energy’s Hellisheidi geothermal power plant, where up to 5,000 tonnes of CO2 per year are captured and stored in a basaltic reservoir.”

Source: http://www.southampton.ac.uk/

3D Nano-structured Porous Electrodes Boost Batteries

Battery-life is increasingly the sticking point of technological progress.The latest electric vehicles can practically drive themselve, but only for so long. Outback energy woes look like they could be solved by solar and home energy storage, if the available batteries can be improved. And what about the Pokemon GO players, cutting hunting trips short due to the battery-sapping requirements of the app?

The solution could come from Sunshine Coast nanotechnology company Nano Nouvelle, which is developing a three-dimensional, nano-structured, porous electrode that it says will help overcome the limitations of today’s batteries.The company announced today that its ‘Nanodenanomaterials were being tested and trialled by two unnamed US specialist battery manufacturers.

stephanie-moroz

CEO Stephanie Moroz said she hoped the profile of the trials would lead to wider adoption.“As Tesla proved with its Roadster EV sportscar, this sort of low-volume, high-margin starting point can provide a high visibility platform to demonstrate the benefits of innovative technology, which can accelerate its adoption by mass market manufacturers.”

Nano Nouvelle’s core technology, the Nanode uses tin as the electrode material, which has a much higher energy density than the current graphite technology. However, until now tin’s commercial use had been limited due to its tendency to swell during charging and subsequently lose energy.

This issue is overcome by the Nanode’s structure, made up of thin films of active material spread over a 3D and porous network of fibres, rather than stacked on a flat copper foil.

This enables the electrode structure to deal with the volume expansion of the tin while retaining dimensional stability at the electrode level. The result is batteries that can store the same amount of energy in a smaller volume, compared to commercial lithium ion batteries.

Moroz said she believed the nanotechnology could be easily incorporated into the existing battery manufacturing process. Moroz said she believed the nanotechnology could be easily incorporated into the existing battery manufacturing process.

We’re looking to make it plug and play for battery manufacturers,” she said.

Source: http://www.cio.com.au/

One Molecule Plays David Against The Goliath Of Aging

Are pomegranates really the superfood we’ve been led to believe will counteract the aging process? Up to now, scientific proof has been fairly weak. And some controversial marketing tactics have led to skepticism as well. A team of scientists from Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland and the company Amazentis wanted to explore the issue by taking a closer look at the secrets of this plump pink fruit. They discovered that a molecule in pomegranates, transformed by microbes in the gut, enables muscle cells to protect themselves against one of the major causes of aging. In nematodes and rodents, the effect is nothing short of amazing. Human clinical trials are currently underway, but these initial findings have already been published in the journal Nature Medicine. 

pomegranates

As we age, our cells increasingly struggle to recycle their powerhouses. Called mitochondria, these inner compartments are no longer able to carry out their vital function, thus accumulate in the cell. This degradation affects the health of many tissues, including muscles, which gradually weaken over the years. A buildup of dysfunctional mitochondria is also suspected of playing a role in other diseases of aging, such as Parkinson’s disease.
The scientists identified a molecule that, all by itself, managed to re-establish the cell’s ability to recycle the components of the defective mitochondria: urolithin A. “It’s the only known molecule that can relaunch the mitochondrial clean-up process, otherwise known as mitophagy,” says Patrick Aebischer, co-author on the study. “It’s a completely natural substance, and its effect is powerful and measurable.”

The team started out by testing their hypothesis on the usual suspect: the nematode C. elegans. It’s a favorite test subject among aging experts, because after just 8-10 days it’s already considered elderly. The lifespan of worms exposed to urolithin A increased by more than 45% compared with the control group.

These initial encouraging results led the team to test the molecule on animals that have more in common with humans. In the rodent studies, like with C. elegans, a significant reduction in the number of mitochondria was observed, indicating that a robust cellular recycling process was taking place. Older mice, around two years of age, showed 42% better endurance while running than equally old mice in the control group.

According to study co-author Johan Auwerx, it would be surprising if urolithin A weren’t effective in humans. “Species that are evolutionarily quite distant, such as C elegans and the rat, react to the same substance in the same way. That’s a good indication that we’re touching here on an essential mechanism in living organisms.”

Urolithin A’s function is the product of tens of millions of years of parallel evolution between plants, bacteria and animals. According to Chris Rinsch, co-author and CEO of Amazentis, this evolutionary process explains the molecule’s effectiveness: “Precursors to urolithin A are found not only in pomegranates, but also in smaller amounts in many nuts and berries. Yet for it to be produced in our intestines, the bacteria must be able to break down what we’re eating. When, via digestion, a substance is produced that is of benefit to us, natural selection favors both the bacteria involved and their host. Our objective is to follow strict clinical validations, so that everyone can benefit from the result of these millions of years of evolution.”

Source; http://actu.epfl.ch/

 

Nanocomputer: How To Grow Atomically Thin Transistors

In an advance that helps pave the way for next-generation electronics and computing technologies—and possibly paper-thin gadgets —scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) developed a way to chemically assemble transistors and circuits that are only a few atoms thick. What’s more, their method yields functional structures at a scale large enough to begin thinking about real-world applications and commercial scalability“This is a big step toward a scalable and repeatable way to build atomically thin electronics or pack more computing power in a smaller area,” says Xiang Zhang*, a senior scientist in Berkeley Lab’s Materials Sciences Division who led the study.

Their work is part of a new wave of research aimed at keeping pace with Moore’s Law, which holds that the number of transistors in an integrated circuit doubles approximately every two years. In order to keep this pace, scientists predict that integrated electronics will soon require transistors that measure less than ten nanometers in length (nanocomputer). Transistors are electronic switches, so they need to be able to turn on and off, which is a characteristic of semiconductors. However, at the nanometer scale, silicon transistors likely won’t be a good option. That’s because silicon is a bulk material, and as electronics made from silicon become smaller and smaller, their performance as switches dramatically decreases, which is a major roadblock for future electronics.

Researchers have looked to two-dimensional crystals that are only one molecule thick as alternative materials to keep up with Moore’s Law. These crystals aren’t subject to the constraints of silicon. In this vein, the Berkeley Lab scientists developed a way to seed a single-layered semiconductor, in this case the TMDC molybdenum disulfide (MoS2), into channels lithographically etched within a sheet of conducting graphene. The two atomic sheets meet to form nanometer-scale junctions that enable graphene to efficiently inject current into the MoS2. These junctions make atomically thin transistors.

assembly of 2D crystals
This schematic shows the chemical assembly of two-dimensional crystals. Graphene is first etched into channels and the TMDC molybdenum disulfide (MoS2) begins to nucleate around the edges and within the channel. On the edges, MoS2 slightly overlaps on top of the graphene. Finally, further growth results in MoS2 completely filling the channels.

This approach allows for the chemical assembly of electronic circuits, using two-dimensional materials, which show improved performance compared to using traditional metals to inject current into TMDCs,” says Mervin Zhao, a lead author and Ph.D. student in Zhang’s group at Berkeley Lab and UC Berkeley.

Optical and electron microscopy images, and spectroscopic mapping, confirmed various aspects related to the successful formation and functionality of the two-dimensional transistors. In addition, the scientists demonstrated the applicability of the structure by assembling it into the logic circuitry of an inverter. This further underscores the technology’s ability to lay the foundation for a chemically assembled atomic computer or nanocomputer, the scientists say. “Both of these two-dimensional crystals have been synthesized in the wafer scale in a way that is compatible with current semiconductor manufacturing. By integrating our technique with other growth systems, it’s possible that future computing can be done completely with atomically thin crystals,” says Zhao.

*Zhang also holds the Ernest S. Kuh Endowed Chair at the University of California (UC) Berkeley and is a member of the Kavli Energy NanoSciences Institute at Berkeley. Other scientists who contributed to the research include Mervin Zhao, Yu Ye, Yang Xia, Hanyu Zhu, Siqi Wang, and Yuan Wang from UC Berkeley as well as Yimo Han and David Muller from Cornell University.

Source: http://newscenter.lbl.gov/

Nano Solar Cells

A humming laboratory is birthing tiny solar cells – the first such devices created on campus – as Kennesaw State (KSU) in Georgia researchers strive to develop better photovoltaic technologies. Sandip Das, assistant professor of electrical engineering in the Southern Polytechnic College of Engineering and Engineering Technology, along with a team of three undergraduate research assistants, has recently fabricated the delicate solar cells, which are about 100 times thinner than a human hair. The future of solar power generation is in these flexible solar cells, Das said.  He and his research team are investigating various nano-materials to fabricate the third-generation solar cells. The researchers hope to develop a superior photovoltaic technology that produces cheaper and more efficient solar cells.

3rd generation Solar Cells

The most fascinating part of doing this research is the enormous potential that this new technology offers, such as integrating flexible solar cells on wearable electronics, backpacks and self-charging cell phones and electricity-generating layers on windows, especially on skyscrapers, and solar power’s ability to supply a large amount of clean, renewable and cheap energy for the future,” said David Danilchuk, an electrical engineering major who is an undergraduate research assistant on the project.

In the laboratory, the research team fabricated the solar cells’ multiple nano-structured layers using a unique manufacturing process. Specialty instruments, like electron microscopes, as well as X-ray spectroscopy techniques and precision electronic measurement systems, enable the research team to investigate and better understand the cells’ behavior.

Baker Nour, an electrical engineering student and member of the research team, explained that the fabrication process developed by the team can produce these solar cells on plastic substrates to create flexible solar cells — one of the most advanced ideas in solar technology today.

In practice, these flexible solar panels can be beneficial after catastrophic storms. Disaster relief personnel could transport rolled-up solar panels to produce portable power on site, Das explained. Commercial building developers also are eyeing smart building applications, like transparent solar panels for windows, so skyscrapers can generate solar power and be more energy efficient.  The most promising materials systems for future generation solar cells, according to Das, are the materials that his research team applies in their fabrication – an ultra-thin hybrid Perovskite noncrystalline film. Rather than using expensive silicon, they fabricate their solar cells on cheap glass substrates like those in windows and beverage bottles. The team plans to explore the fabrication process so they can develop solar cells on flexible plastics or metal foils, without requiring expensive materials, million-dollar equipment or scientific-grade clean rooms.

For the past 20 years, efficiency of silicon solar cells could not be improved much after substantial research efforts globally,” Das said.  He explained that silicon is not a good light absorber, and new technologies are needed to create high-efficiency cells at a lower cost. The new bandgap-engineered Perovskite crystals, which his team is investigating, can absorb a wider spectrum of sunlight compared to silicon, on a film that is 200 times thinner than silicon cells.

 

Source: http://web.kennesaw.edu/

Nanotech Tatoo Maps Emotions

A new temporary “electronic tattoo” developed by Tel Aviv University that can measure the activity of muscle and nerve cells researchers is poised to revolutionize medicine, rehabilitation, and even business and marketing research. The tattoo consists of a carbon electrode, an adhesive surface that attaches to the skin, and a nanotechnology-based conductive polymer coating that enhances the electrode‘s performance. It records a strong, steady signal for hours on end without irritating the skin.

The electrode, developed by Prof. Yael Hanein, head of TAU‘s Center for Nanoscience and Nanotechnology, may improve the therapeutic restoration of damaged nerves and tissue — and may even lead to new insights into our emotional life. Prof. Hanein’s research was published last month in Scientific Reports and presented at an international nanomedicine program held at TAU. One major application of the new electrode is the mapping of emotion by monitoring facial expressions through electric signals received from facial muscles.

tattoo

The ability to identify and map people’s emotions has many potential uses,” said Prof. Hanein. “Advertisers, pollsters, media professionals, and others — all want to test people’s reactions to various products and situations. Today, with no accurate scientific tools available, they rely mostly on inevitably subjective questionnaires.

Researchers worldwide are trying to develop methods for mapping emotions by analyzing facial expressions, mostly via photos and smart software,” Prof. Hanein continued. “But our skin electrode provides a more direct and convenient solution.”

Source: https://www.aftau.org/

How To Triple Perovskite Solar Cells Efficiency

A new type of two-dimensional-layered perovskite developed by Northwestern University, Los Alamos National Laboratory and Rice University researchers will open up new horizons for next-generation stable solar-cell devices and new opto-electronic devices such as light-emitting diodes, lasers and sensors.

The research team has tweaked its crystal production method and developed a 2-D perovskite with outstanding stability and more than triple the material’s previous power conversion efficiency. This could bring perovskite crystals closer to use in the burgeoning solar power industry.

flipping crystals

  • Crystal orientation has been a puzzle for more than two decades, and this is the first time we’ve been able to flip the crystal in the actual casting process,” said Hsinhan Tsai, a Rice graduate student at Los Alamos working with senior researcher and study lead co-author Aditya Mohite.

This is our breakthrough, using our spin-casting technique to create layered crystals whose electrons flow vertically down the material without being blocked, mid layer, by organic cations,” Tsai said.

Northwestern scientists created the two-dimensional material used by the researchers at Los Alamos in the new solar cells. Mercouri G. Kanatzidis, the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences, and Costas Stoumpos, a postdoctoral fellow in Kanatzidis’ group, had been exploring an interesting 2-D material that orients its layers perpendicular to the substrate.

This breakthrough resulted from a very strong synergy between our institutions — the materials design team at Northwestern that designed and prepared high-quality samples of the materials and showed they are promising and the Los Alamos team’s excellent skills in making solar cells and optimizing them to high performance,” Kanatzidis said.

Wanyi Nie, a Los Alamos co-author on the paper, noted, “The new 2-D perovskite is both more efficient and more stable, both under constant lighting and in exposure to the air, than the existing 3-D organic-inorganic crystals.

The study was published July 6 by the journal Nature.

Source: http://www.lanl.gov/

Nanotechnologies Crush the Road Construction Costs

The solution for affordable road infrastructure development could lie in the use of nanotechnology, according to a paper presented at the 35th annual Southern African Transport Conference in Pretoria. The cost of upgrading, maintaining and rehabilitating road infrastructure with limited funds makes it impossible for sub-Saharan Africa to become competitive in the world market, according to Professor Gerrit Jordaan of the University of Pretoria, a speaker at the conference. The affordability of road infrastructure depends on the materials used, the environment in which the road will be built and the traffic that will be using the road, explained Professor James Maina of the department of civil engineering at the University of Pretoria. Hauling materials to a construction site contributes hugely to costs, which planners try to minimise by getting materials closer to the site. But if there aren’t good quality materials near the site, another option is to modify poor quality materials for construction purposes. This is where nanotechnology comes in.

roads

Nanomaterial is really small; five nanometers are equivalent to 0.05mm,” explained Maina. The materials bind with the poor quality material which needs to be modified, and can then change the behaviour of the material.

For example, if the material is clay soil, it has a high affinity to water so when it absorbs water it expands, and when it dries out it contracts. Nanotechnology can make the soil water repellent. “Essentially, nanotechnology changes the properties to work for the construction process,” he said.

These nanotechnology-based products have been used successfully in many parts of the world, including India, the USA and in the West African region.
“We need to have roads to enable mass movement of people and goods,” said Maina. Well-maintained road infrastructure ensures optimal speed of movement, opening up economic opportunities for people. Moving goods safely is also important as damaged goods translate into economic cost, he explained. “For a country to be competitive globally, we need to reduce costs as much as possible. We need well maintained and well planned road infrastructure,” comments Maina.

Source: http://mybroadband.co.za/

How To Map RNA Molecules In The Brain

Cells contain thousands of messenger RNA molecules, which carry copies of DNA’s genetic instructions to the rest of the cell. MIT engineers have now developed a way to visualize these molecules in higher resolution than previously possible in intact tissues, allowing researchers to precisely map the location of RNA throughout cells. Key to the new technique is expanding the tissue before imaging it. By making the sample physically larger, it can be imaged with very high resolution using ordinary microscopes commonly found in research labs.

MIT RNA-Imaging

Now we can image RNA with great spatial precision, thanks to the expansion process, and we also can do it more easily in large intact tissues,” says Ed Boyden, an associate professor of biological engineering and brain and cognitive sciences at MIT, a member of MIT’s Media Lab and McGovern Institute for Brain Research, and the senior author of a paper describing the technique in the July 4 issue of Nature Methods.

Studying the distribution of RNA inside cells could help scientists learn more about how cells control their gene expression and could also allow them to investigate diseases thought to be caused by failure of RNA to move to the correct location.

Source: http://news.mit.edu/

Solar Cells: How To Boost Perovkite Efficiency Up To 31%

Scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a possible secret to dramatically boosting the efficiency of perovskite solar cells hidden in the nanoscale peaks and valleys of the crystalline material.

Solar cells made from compounds that have the crystal structure of the mineral perovskite have captured scientists’ imaginations. They’re inexpensive and easy to fabricate, like organic solar cells. Even more intriguing, the efficiency at which perovskite solar cells convert photons to electricity has increased more rapidly than any other material to date, starting at three percent in 2009—when researchers first began exploring the material’s photovoltaic capabilities—to 22 percent today. This is in the ballpark of the efficiency of silicon solar cells.

Now, as reported online July 4 in the journal Nature Energy, a team of scientists from the Molecular Foundry and the Joint Center for Artificial Photosynthesis, both at Berkeley Lab, found a surprising characteristic of a perovskite solar cell that could be exploited for even higher efficiencies, possibly up to 31 percent.

Using photoconductive atomic force microscopy, the scientists mapped two properties on the active layer of the solar cell that relate to its photovoltaic efficiency. The maps revealed a bumpy surface composed of grains about 200 nanometers in length, and each grain has multi-angled facets like the faces of a gemstone. Unexpectedly, the scientists discovered a huge difference in energy conversion efficiency between facets on individual grains. They found poorly performing facets adjacent to highly efficient facets, with some facets approaching the material’s theoretical energy conversion limit of 31 percent. The scientists say these top-performing facets could hold the secret to highly efficient solar cells, although more research is needed.

perovskite solar panel

“If the material can be synthesized so that only very efficient facets develop, then we could see a big jump in the efficiency of perovskite solar cells, possibly approaching 31 percent,” says Sibel Leblebici, a postdoctoral researcher at the Molecular Foundry.

Leblebici works in the lab of Alexander Weber-Bargioni, who is a corresponding author of the paper that describes this research. Ian Sharp, also a corresponding author, is a Berkeley Lab scientist at the Joint Center for Artificial Photosynthesis. Other Berkeley Lab scientists who contributed include Linn Leppert, Francesca Toma, and Jeff Neaton, the director of the Molecular Foundry.

Source: http://newscenter.lbl.gov/

Diabetes drug eliminates insulin injections

More than 400 million people around the world suffer from diabetes. Until recently it was thought that Type 2 diabetes was an adult onset condition. However, the WHO says it’s now occurring increasingly in children too. So news that Israeli drugmaker Oramed Pharmaceuticals Inc has developed an experimental oral insulin that safely reduces night-time blood glucose levels in type 2 patients is promising. Oramed‘s chief executive Nadav Kidron says the drug’s mid-stage trial shows there could be a healthier alternative to insulin injections.

pillsCLICK ON THE IMAGE TO ENJOY THE VIDEO
When you give it as an injection, it goes straight into the blood stream but when we give it orally, it goes first, it’s passed to the liver . . . and the liver is the organ that regulates the secretion of the insulin into the blood stream so that’s why it’s the healthier, more physiological way to treat diabetes through oral insulin“, Kidron says.

The study is surprising because until now many researchers thought insulin couldn’t survive the onslaught of digestive juices. Oramed says the new drug uses a protective coating and a high-enough dose of insulin so that most of it can be destroyed and still deliver a clinically beneficial amount of the hormone. The results must be replicated in a larger Phase III trial before the drug, known as ORMD-0801, can be submitted for approval.

Source: http://www.oramed.com/

Nanotechnology Against Watch Counterfeiters

Thanks to research currently being carried out at Switzerland’s Ecole Polytechnique Fédérale de Lausanne (EPFL) research institute, an ultraviolet lamp may soon be all that you need to tell the difference between luxury watches and knock-offs. The “DNAwatch” technology is actually being developed by EPFL spinoff company Nanoga, and involves what is being referred to as a nanoscopic watermark.

watch counterfeitersCLICK ON THE IMAGE TO ENJOY THE VIDEO

Using a machine ordinarily used for manufacturing LEDs, a proprietary blend of chemicals is applied to a glass surface as a vapor, forming into photonic crystals. These crystals are in turn made up of ultrathin layers of atoms, and they convert UV light into colorsdifferent colors can be produced by tweaking the geometry and alignment of the crystals on the glass.

Lithographic printing techniques are used to mask some areas of the surface, so that the watermark takes on a watch-specific pattern. When viewed under visible light, that pattern is invisible to the human eye, in no way altering the watch’s appearance. Under UV light, however, the watermark shows up.

According to EPFL, counterfeiting such a watermark would be as difficult as forging the Swiss 50-franc note. Not only would counterfeiters need to know which chemicals to use and in what proportions, but they would also need expensive equipment to apply them.

A variation on the process should reportedly also work on ceramic and metal surfaces. Nanoga is currently shopping the DNAwatch technology around to various luxury watchmakers.

Source: https://actu.epfl.ch/

Bionic Cardiac Patch

Scientists have built a “bioniccardiac patch that could act similarly to a pacemaker and monitor as well as respond to cardiac problems, a kind of nanocomputer. The researchers from Harvard University constructed nanoscale electronic scaffolds that can be seeded with cardiac cells to produce a bionic cardiac patch — the engineered heart tissue with ability to replace heart muscle damaged during a heart attack.

bionic cardiac patch

I think one of the biggest impacts would ultimately be in the area that involves replaced of damaged cardiac tissue with pre-formed tissue patches,” said Charles Lieber, who along with colleagues described the work in the journal Nature Nanotechnology. “Rather than simply implanting an engineered patch built on a passive scaffold, our works suggests it will be possible to surgically implant an innervated patch that would now be able to monitor and subtly adjust its performance,” he added.

Once implanted, the “bionic” patch could act similarly to a pacemakerdelivering electrical shocks to correct arrhythmia. Unlike traditional pacemakers, the “bionic” patch — because its electronic components are integrated throughout the tissue — can detect arrhythmia far sooner, and operate at far lower voltages. “Even before a person started to go into large-scale arrhythmia that frequently causes irreversible damage or other heart problems, this could detect the early-stage instabilities and intervene sooner,” Lieber said. “It can also continuously monitor the feedback from the tissue and actively respond,” he added.

The patch might also find use as a tool to monitor the responses under cardiac drugs, or to help pharmaceutical companies to screen the effectiveness of drugs under development.

Source: http://www.eurekalert.org/

Vertical Farming

Odds are this isn’t like other farms you’re used to. Located in a warehouse in an urban New Jersey neighborhood,  Aerofarms grows crops year-round without using soil or sunlight. The company has an ambitious goal: to grow high-yielding crops using economical methods that will provide locally sourced food to the community.

vertical farmsCLICK ON THE IMAGE TO ENJOY THE VIDEO
“We need a new way to feed our planet. Aerofarms presents one of the solutions to do so. Here we can grow in cities, in warehouses in cities, so we’re close to where the mouths are, reducing those transport miles and basically do more with less. That’s what we need to do. We use to grow our plants, about 95 percent less water to grow the plants, about 50 percent less fertilizer as nutrients and … zero pesticides, herbicides, fungicides“, says David rosenberg, CEO of Aerofarms.

Inside, the 30,000 square foot building (2,800 square meter) are crops of kale, arugula and watercress illuminated by rows of light emitting diodes, or LED lamps, and planted in white fabric made from recycled water bottles. The levels of light, temperature and nutrients reaching each plant in the tall columns are controlled using what AeroFarms describes as a patented growing algorithm.

We can take that exact same seed for leafy greens that out in the field can take 30-45 days to grow and grow it in 12-16 days. It’s always about optimizing. We’re giving it the right nutrients. So we’re looking at the macro nutrients, the micro nutrients, we are adjusting based on the plant variety, the stage of maturation, and we’re able to again, deliver a higher quality product more consistently all year round“, says co-founder and Chief marketing officer Marc Oshima.

The result according to Oshima – a farm that can be 75 times more productive. The company’s model also eliminates transportation of crops from grow states like California and Arizona to consumers in the Northeast. While they aren’t saying just how much food they produce, plans are in development for a larger Newark facility, and 25 more farms in the United States and abroad over the next five years. If growth continues at that rate we could one day see our cities rival the countryside as the home of agriculture.

Source:  http://www.aerofarms.com/

Nanotechnology Boosts Oil Recovery

As oil producers struggle to adapt to , getting as much oil as possible out of every well has become even more important, despite concerns from nearby residents that some chemicals used to boost production may pollute underground water resources.

Researchers from the University of Houston have reported the discovery of a nanotechnology-based solution that could address both issues – achieving 15 percent tertiary oil recovery at low cost, without the large volume of chemicals used in most commercial fluids. The solution – graphene-based Janus amphiphilic nanosheets – is effective at a concentration of just 0.01 percent, meeting or exceeding the performance of both conventional and other nanotechnology-based fluids, said Zhifeng Ren, MD Anderson Chair professor of physics. Janus nanoparticles have at least two physical properties, allowing different chemical reactions on the same particle.

The low concentration and the high efficiency in boosting tertiary oil recovery make the nanofluid both more environmentally friendly and less expensive than options now on the market, said Ren, who also is a principal investigator at the Texas Center for Superconductivity at UH. He is lead author on a paper describing the work, published June 27 in the Proceedings of the National Academy of Sciences.

oil well

Our results provide a novel nanofluid flooding method for tertiary oil recovery that is comparable to the sophisticated chemical methods,” they wrote. “We anticipate that this work will bring simple nanofluid flooding at low concentration to the stage of oilfield practice, which could result in oil being recovered in a more environmentally friendly and cost-effective manner.

The U.S. Department of Energy estimates as much as 75 percent of recoverable reserves may be left after producers capture hydrocarbons that naturally rise to the surface or are pumped out mechanically, followed by a secondary recovery process using water or gas injection.

Traditional “tertiaryrecovery involves injecting a chemical mix into the well and can recover between 10 percent and 20 percent, according to the authors. But the large volume of chemicals used in tertiary oil recovery has raised concerns about potential environmental damage.

Obviously simple nanofluid flooding (containing only nanoparticles) at low concentration (0.01 wt% or less) shows the greatest potential from the environmental and economic perspective,” the researchers wrote.

Previously developed simple nanofluids recover less than 5 percent of the oil when used at a 0.01 percent concentration, they reported. That forces oil producers to choose between a higher nanoparticle concentration – adding to the cost – or mixing with polymers or surfactants. In contrast, they describe recovering 15.2 percent of the oil using their new and simple nanofluid at that concentration – comparable to chemical methods and about three times more efficient than other nanofluids.

Source: http://www.uh.edu/

Nanoparticle Attacks Agressive Thyroid Cancer

Anaplastic thyroid cancer (ATC), the most aggressive form of thyroid cancer, has a mortality rate of nearly 100 percent and a median survival time of three to five months. One promising strategy for the treatment of these solid tumors and others is RNA interference (RNAi) nanotechnology, but delivering RNAi agents to the sites of tumors has proved challenging. Investigators at Brigham and Women’s Hospital, together with collaborators from Massachusetts General Hospital, have developed an innovative nanoplatform that allows them to effectively deliver RNAi agents to the sites of cancer and suppress tumor growth and reduce metastasis in preclinical models of ATC.

thyroid cancer

We call this a ‘theranostic’ platform because it brings a therapy and a diagnostic together in one functional nanoparticle,” said co-senior author Jinjun Shi, PhD, assistant professor of Anesthesia in the Anesthesia Department. “We expect this study to pave the way for the development of theranostic platforms for image-guided RNAi delivery to advanced cancers.”

RNAi, the discovery of which won the Nobel Prize in Physiology or Medicine 10 years ago, allows researchers to silence mutated genes, including those upon which cancers depend to grow and survive and metastasize. Many ATCs depend upon mutations in the commonly mutated cancer gene BRAF. By delivering RNAi agents that specifically target and silence this mutated gene, the investigators hoped to stop both the growth and the spread of ATC, which often metastasizes to the lungs and other organs.

When RNAi is delivered on its own, it is usually broken down by enzymes or filtered out by the kidneys before it reaches tumor cells. Even when RNAi agents make it as far as the tumor, they are often unable to penetrate or are rejected by the cancer cells. To overcome these barriers, the investigators used nanoparticles to deliver the RNAi molecules to ATC tumors. In addition, they coupled the nanoparticles with a near-infrared fluorescent polymer, which allowed them to see where the nanoparticles accumulated in a mouse model of ATC.

The results have appeared in the journal  Proceedings of the National Academy of Sciences.

Source: http://www.brighamandwomens.org/

Hydrogen Fuel Stations

A Stanford University research lab has developed new technologies to tackle two of the world’s biggest energy challenges – clean fuel for transportation and grid-scale energy storageHydrogen fuel has long been touted as a clean alternative to gasoline. Automakers began offering hydrogen-powered cars to American consumers last year, but only a handful have sold, mainly because hydrogen refueling stations are few and far between.

silicone nanoconesStanford engineers created arrays of silicon nanocones to trap sunlight and improve the performance of solar cells made of bismuth vanadate

Millions of cars could be powered by clean hydrogen fuel if it were cheap and widely available,” said Yi Cui, associate professor of materials science and engineering at Stanford.

Unlike gasoline-powered vehicles, which emit carbon dioxide, hydrogen cars themselves are emissions free. Making hydrogen fuel, however, is not emission free: Today, making most hydrogen fuel involves natural gas in a process that releases carbon dioxide into the atmosphere.

To address the problem, Cui and his colleagues have focused on photovoltaic water splitting. This emerging technology consists of a solar-powered electrode immersed in water. When sunlight hits the electrode, it generates an electric current that splits the water into its constituent parts, hydrogen and oxygen. Finding an affordable way to produce clean hydrogen from water has been a challenge. Conventional solar electrodes made of silicon quickly corrode when exposed to oxygen, a key byproduct of water splitting. Several research teams have reduced corrosion by coating the silicon with iridium and other precious metals.
The researchers described their findings in two studies published this month in the journals Science Advances and Nature Communications. 

Writing in the June 17 edition of Sciences Advances, Cui and his colleagues presented a new approach using bismuth vanadate, an inexpensive compound that absorbs sunlight and generates modest amounts of electricity.

Bismuth vanadate has been widely regarded as a promising material for photoelectrochemical water splitting, in part because of its low cost and high stability against corrosion,” said Cui, who is also an associate professor of photon science at SLAC National Accelerator Laboratory. “However, the performance of this material remains well below its theoretical solar-to-hydrogen conversion efficiency.”

Bismuth vanadate absorbs light but is a poor conductor of electricity. To carry a current, a solar cell made of bismuth vanadate must be sliced very thin, 200 nanometers or less, making it virtually transparent. As a result, visible light that could be used to generate electricity simply passes through the cell.

To capture sunlight before it escapes, Cui’s team turned to nanotechnology. The researchers created microscopic arrays containing thousands of silicon nanocones, each about 600 nanometers tall.

Nanocone structures have shown a promising light-trapping capability over a broad range of wavelengths,” Cui explained. “Each cone is optimally shaped to capture sunlight that would otherwise pass through the thin solar cell.”

In the experiment, Cui and his colleagues deposited the nanocone arrays on a thin film of bismuth vanadate. Both layers were then placed on a solar cell made of perovskite, another promising photovoltaic material.

When submerged, the three-layer tandem device immediately began splitting water at a solar-to-hydrogen conversion efficiency of 6.2 percent, already matching the theoretical maximum rate for a bismuth vanadate cell.

Source: http://news.stanford.edu/

Smart Threads For Clothing And Robots

Fabrics containing flexible electronics are appearing in many novel products, such as clothes with in-built screens and solar panels. More impressively, these fabrics can act as electronic skins that can sense their surroundings and could have applications in robotics and prosthetic medicine. King Abdullah University of Science and Technology (KAUST – Saudi Arabia) researchers have now developed smart threads that detect the strength and location of pressures exerted on them1. Most flexible sensors function by detecting changes in the electrical properties of materials in response to pressure, temperature, humidity or the presence of gases. Electronic skins are built up as arrays of several individual sensors. These arrays currently need complex wiring and data analysis, which makes them too heavy, large or expensive for large-scale production.

Yanlong Tai and Gilles Lubineau from the University’s Division of Physical Science and Engineering have found a different approach. They built their smart threads from cotton threads coated with layers of one of the miracle materials of nanotechnology: single-walled carbon nanotubes (SWCNTs).

smart threadsThe twisted smart threads developed by KAUST researchers can be woven into pressure-sensitive electronic skin fabrics for use in novel clothing, robots or medical prosthetics

Cotton threads are a classic material for fabrics, so they seemed a logical choice,” said Lubineau. “Networks of nanotubes are also known to have piezoresistive properties, meaning their electrical resistance depends on the applied pressure.”

The researchers showed their threads had decreased resistance when subjected to stronger mechanical strains, and crucially the amplitude of the resistance change also depended on the thickness of the SWCNT coating.

These findings led the researchers to their biggest breakthrough: they developed threads of graded thickness with a thick SWCNT layer at one end tapering to a thin layer at the other end. Then, by combining threads in pairs—one with graded thickness and one of uniform thickness—the researchers could not only detect the strength of an applied pressure load, but also the position of the load along the threads.

Our system is not the first technology to sense both the strength and position of applied pressures, but our graded structure avoids the need for complicated electrode wirings, heavy data recording and analysis,” said Tai.

The researchers have used their smart threads to build two- and three-dimensional arrays that accurately detect pressures similar to those that real people and robots might be exposed to.
We hope that electronic skins made from our smart threads could benefit any robot or medical prosthetic in which pressure sensing is important, such as artificial hands,” said Lubineau.

https://discovery.kaust.edu.sa/

Walking on The Street With Your Massaging Jacket

While it’s not visible to the naked eye, both of these people are getting a back massage, thanks to this jacket called the Airawear. Designed by TWare in Singapore, it uses air to create pressure on targeted parts of the upper and lower back with a massaging sensation. There are six inflatable pressure point relaxers that target muscles and pain points. They’re all controlled with a smart phone app, which means you’re free to continue working or going about your regular activities. CEO Lin Wei Liang says it’s the perfect solution, for people who spend their days hunched over computers.

aerawearCLICK ON THE IMAGE TO ENJOY THE VIDEO

We’re always in a tense, hunched-back position, in a bad posture, and that causes a lot of back pain and shoulder pain … So, in this context, it’s very hard for employees to maybe take out any kind of conventional massage device, or any hand-held massage device to start to provide some massage to themselves to get some form of relief. So what we have here is much more invisible, discreet, something that you can wear just like a normal hoodie or jacket, and yet you can get that massage without people noticing ,” says Lin Wei Liang, Tware CEO.

The device also has a posture correction feature that sends a signal when sensors detect the user needs an adjustment. Airawear does require a charge and has a built-in USB port so users can get three hours of continuous massage. At a recent trial potential buyers gave the $119 jacket a spin.

I thought it was great, I loved the pressure coming out of the jacket. You can basically feel your whole body just relaxing. The mode I was actually on was the “Relax” mode, so it’s not too much pressure, but it’s just enough that it makes you feel comfortable enough and at ease“, comments Cianta Seneviratne. As for the actual health benefits, not everyone agrees that the jacket should be used to treat back pain.

Physiotherapist Michelle Tong explains: “I would think that they’d wear it and forget about the time. You might be using it and working, and you might be massaged for five hours, for example. So you question whether the person would develop a tolerance to it, so each time they’re using it, they end up having to apply a high pressure each time, just to get the same effect, as you would if you were taking painkillers.

That doesn’t seem to be affecting Tware‘s plans. The company’s crowd funding campaign on Kickstarter, has already surpassed its goal by more than $50 thousand (USD). Deliveries of jackets are expected to begin in November of 2016.

Source: http://mytware.com/

Nanotechnology Key Driver for the Global Internet of Things Market

Analysts from Technavio,  a leading market research companyforecast the global internet of nano things (IoNT) market to grow at a annual growth rate of more than 24% during the 2016/2020  period, according to their latest report. The rise in the number of connected nanoscale devices in industries has led to generation of large data sets. These data can be used to optimize costs, deliver better services, and boost revenues. Also, the interconnection of nanoscale devices has enabled efficient data communication between disparate devices over the network. Thus, IoNT helps organizations to reduce the complexity in communication and increase the process efficiency using data collected from nanoscale devices.

internetofthings

Even governments have realized the importance of IoNT technology in the healthcare sector that can be used to treat cancer and other genetic diseases at the molecular level. This has further increased the demand and awareness of IoNT among multiple industries,” says Amit Sharma, a lead analyst at Technavio for research on IT professional services.

The report also highlights the US government’s National Nanotechnology Initiative (NNI) that supports the adoption of nanotechnology in industries, such as healthcare, defense, and textiles, due to its vast applications. This initiative has been awarded over USD 22 billion since 2001 to promote the adoption of nanoscience and nanotechnology by states, universities, and companies.

The rise in demand for miniaturization of electronics products coupled with increased consumer demand for smaller and more powerful devices at affordable prices has made nanotechnology more popular among industries. Both private and public sectors are investing heavily in R&D to tap the potential benefits of nanotechnology.

Also, the rise in commercialization of nanomaterials, such as nanocatalyst thin films for catalytic converters, nanotechnology-enhanced thin-film solar cells, and nanoscale electronic memory, is shaping the growth of the global nanotechnology market. Thus, there is an increase in the number of interconnected nanodevices. IoNT provides a communication infrastructure for interconnected nanodevices to share information and coordinate multiple activities over the Internet.

“The Internet revolution is fueling global connectivity by bringing unconnected devices, such as nanoscale devices, on the network. The nanonetwork technology is evolving to meet the needs of various applications. Such technologies provide an effective communication infrastructure for the rapid pace of communication among nanoscale devices,” comments Amit.

The scope of Internet has been extended due to increased interconnection of nanosensors with consumer devices and other physical assets. IoNT enables data collection, processing, and sharing with end-users. It finds application in industries such as healthcare, manufacturing, transportation and logistics, energy and utilities, and other services.

Source: http://www.businesswire.com/

Artificial Intelligence Mimicks Biological Hierarchy

New research from University of Wyoming and INRIA (France) explains why so many biological networks, including the human brain (a network of neurons), exhibit a hierarchical structure, and will improve attempts to create artificial intelligence.

biological hierarchyThe evolution of hierarchy – a simple system of ranking – in biological networks may arise because of the costs associated with network connections

Like large businesses, many biological networks are hierarchically organised, such as gene, protein, neural, and metabolic networks. This means they have separate units that can each be repeatedly divided into smaller and smaller subunits. For example, the human brain has separate areas for motor control and tactile processing, and each of these areas consist of sub-regions that govern different parts of the body.

But why do so many biological networks evolve to be hierarchical? The results of the study suggest that hierarchy evolves not because it produces more efficient networks, but instead because hierarchically wired networks have fewer connections. This is because connections in biological networks are expensive – they have to be built, housed, maintained, etc. – and there is therefore an evolutionary pressure to reduce the number of connections.
The findings not only explain why biological networks are hierarchical, they might also give an explanation for why many man-made systems such as the Internet and road systems are also hierarchical“, comments Jeff Clune, author of the paper.

The study has been published in PLOS Computational Biology.

Source: http://www.eurekalert.org/

Perovskite Solar Cells Surpass 20% Efficiency

Researchers from the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals.
Michael Graetzel and his team found that, by briefly reducing the pressure while fabricating perovskite crystals, they were able to achieve the highest performance ever measured for larger-size perovskite solar cells, reaching over 20% efficiency and matching the performance of conventional thin-film solar cells of similar sizes. This is promising news for perovskite technology that is already low cost and under industrial development. However, high performance in pervoskites does not necessarily herald the doom of silicon-based solar technology. Safety issues still need to be addressed regarding the lead content of current perovskite solar-cell prototypes in addition to determining the stability of actual devices.

peroskite solar cell

Layering perovskites on top of silicon to make hybrid solar panels may actually boost the silicon solar-cell industry. Efficiency could exceed 30%, with the theoretical limit being around 44%. The improved performance would come from harnessing more solar energy: the higher energy light would be absorbed by the perovskite top layer, while lower energy sunlight passing through the perovskite would be absorbed by the silicon layer. Graetzel is known for his transparent dye-sensitized solar cells. It turns out that the first perovskite solar cells were dye-sensitized cells where the dye was replaced by small perovskite particles. His lab’s latest perovskite prototype, roughly the size of an SD card, looks like a piece of glass that is darkened on one side by a thin film of perovskite. Unlike the transparent dye-sensitized cells, the perovskite solar cell is opaque.

The results are published in Science.

Source: http://actu.epfl.ch/

90 Minutes To Annihilate Early Stage Prostate Cancer

A prostate cancer patient undergoing a new photodynamic therapy that’s exciting specialists. Developed in Israel, treatment takes 90 minutes and involves no radiation or chemotherapy. It’s pain free and tests in Latin America showed an impressive clear-up rate and minimal side effects for early stage patients.

Prostate cancer

The patient may be cured, he may not be even cured of his disease but he may have a remedy for 20-30 years which is exactly what we need. Most of these patients are men the age of 60-70, not all of them healthy, and if you give them 10-20 years with good health and without side effects, which is the main thing, then we’ve done a great thing and we’ve done a revolution“, says Professor Jack Baniel, Chief Urologist at the Ramat Aviv Medical Center.

Israeli start-up Steba Research developed the therapy, in conjunction with Weizmann Insititute professors. It’s a focal therapy, which destroys tumours in the prostate while leaving the gland and most tissue intact. Using ultrasound, doctors insert conductors into the body, close to blood vessels feeding the tumour. Illuminating optic fibres are placed inside the conductors. A drug called Tookad that makes light toxic to living tissue is injected into the patient’s blood.

When doctors light up the optic fibres inside the patient, the cells touched by light die instantly. This patient is delighted with his treatment.  “So one day after the treatment I was back at home and three days later I was back at the office with regular life like before, and today after I got the new MRI I found out that my life is back again and everything is like before, no side affects, sexual life like before and I feel great“, comments Yaron Sfadia, patient.
The treatment has already been approved in Mexico. Phase III trials are currently taking place in New York and the developers are confident it won’t be long before the treatment becomes widespread. Future work to extend the same photodynamic principles to other types of cancers is possible.

Source: http://www.reuters.com/

Algae To Power Jets

Aviation giant Airbus hope algae could one day help power jets – and help airlines cut their C02 emissions. They’re working with the Munich Technical University (Germany) to cultivate the photosynthetic organisms in this lab. Algae here is cultivated in water with a salt content of 6-9 percent. A combination of light and carbon dioxide does the rest.

biofuel planesCLICK ON THE IMAGE TO ENJOY THE VIDEO

Primarily you need obviously algae cells that are able to generate fats and oils. In combination with CO2 and light these algae cells propagate and form algae biomass and under certain cultivation conditions, for example the lack of nitrogen in the cultivation media, these algae cells accumulate fats and oils in their cell mass and this can reach up to 50 to 70 percent of the total cell weight. That is quite a lot and once you formed that fat and oil you can actually extract it from the cell and convert it over a chemical process“, says  Thomas Brueck, Professor at Munich Technical University (TUM). In these open tanks algae grows 12 times faster than plants cultivated on soil, producing an oil yield 30 times that of rapeseed.

Algae fuel today is still in the state of research so today, we could probably not offer it at costs which are realistic to run an airline. But we are sure that over time, we will make it possible to offer kerosine made of algae for a competitive price“, comments Gregor von Kursell, Airbus Group Spokesman. The company says the project remains in its infancy. Researchers believe biofuel from algaculture could provide up to 5 percent of jetfuel needs by around 2050.

Source: http://www.reuters.com/

Biosensor Chip Detects DNA Mutations

Bioengineers at the University of California, San Diego have developed an electrical graphene chip capable of detecting mutations in DNA. Researchers say the technology could one day be used in various medical applications such as blood-based tests for early cancer screening, monitoring disease biomarkers and real-time detection of viral and microbial sequences.

biosensor chip SNP detection

We are at the forefront of developing a fast and inexpensive digital method to detect gene mutations at high resolution—on the scale of a single nucleotide change in a nucleic acid sequence,” said Ratnesh Lal, professor of bioengineering, mechanical engineering and materials science in the Jacobs School of Engineering at UC San Diego.

The technology, which is at a proof-of-concept stage, is a first step toward a biosensor chip that can be implanted in the body to detect a specific DNA mutation—in real time—and transmit the information wirelessly to a mobile device such as a smartphone or laptop.

The advance was published June 13 in the online early edition of Proceedings of the National Academy of Sciences.

Source: http://jacobsschool.ucsd.edu/

Super Capacitor for NanoComputer

VTT Technical Research Centre of Finland developed an extremely efficient small-size energy storage, a micro-supercapacitor, which can be integrated directly inside a silicon microcircuit chip. The high energy and power density of the miniaturized energy storage relies on the new hybrid nanomaterial developed recently at VTT. This technology opens new possibilities for integrated mobile devices and paves the way for zero-power autonomous devices required for the future Internet of Things (IoT).

Supercapacitors resemble electrochemical batteries. However, in contrast to for example mobile phone lithium ion batteries, which utilize chemical reactions to store energy, supercapacitors store mainly electrostatic energy that is bound at the interface between liquid and solid electrodes. Similarly to batteries supercapacitors are typically discrete devices with large variety of use cases from small electronic gadgets to the large energy storages of electrical vehicles.

The energy and power density of a supercapacitor depends on the surface area and conductivity of the solid electrodes. VTT‘s research group has developed a hybrid nanomaterial electrode, which consists of porous silicon coated with a few nanometre thick titanium nitride layer by atomic layer deposition (ALD). This approach leads to a record large conductive surface in a small volume. Inclusion of ionic liquid in a micro channel formed in between two hybrid electrodes results in extremely small and efficient energy storage.
nano capacitor 2

The new supercapacitor has excellent performance. For the first time, silicon based micro-supercapacitor competes with the leading carbon and graphene based devices in power, energy and durability.

Micro-supercapacitors can be integrated directly with active microelectronic devices to store electrical energy generated by different thermal, light and vibration energy harvesters and to supply the electrical energy when needed. This is important for autonomous sensor networks, wearable electronics and mobile electronics of the IoT.

VTT‘s research group takes the integration to the extreme by integrating the new nanomaterial micro-supercapacitor energy storage directly inside a silicon chip. The demonstrated in-chip supercapacitor technology enables storing energy of as much as 0.2 joule and impressive power generation of 2 watts on a one square centimetre silicon chip. At the same time it leaves the surface of the chip available for active integrated microcircuits and sensors.

VTT is currently seeking a party interested in commercializing the technique.

Source: http://www.vttresearch.com/

Solar Cells: How To Transform More Solar Energy Into Electricity

Sagrario Domínguez-Fernández, a Spanish telecommunications engineer at CEMITEC, has managed to increase light absorption in silicon by means of nanostructures etched onto photovoltaic cells. This increases the efficiency obtained in these electronic devices which are made of this element and which transform solar energy into electricity.
solar cells

Over 30 percent of the sunlight that strikes a silicon is reflected, which means it cannot be used in the photoelectric conversion,” explained Sagrario Domínguez. “Because the nanostructures on the surface of a material have dimensions in the light wavelength range, they interfere with the surface in a particular way and allow the amount of reflected light to be modified.”

Sagrario Domínguez designed and optimised structures on a nanometric scaleto try and find one that would minimise the reflectance [ability of a surface to reflect light] of the silicon in the wavelength range in which solar cells function.” In their manufacturing process, she resorted to what is known as laser interference lithography which consists of applying laser radiation to a photo-sensitive material to create structures on a nanometric scale. Specifically, she used polished silicon wafers to which she gave the shape of cylindrical pillar and obtained a 77 percent reduction in the reflectance of this element.

Sagrario Domínguez then went on to modify the manufacturing processes to produce the nanostructures on the silicon substrates used in commercial solar cells. “These substrates have dimensions and a surface roughness that makes them, ‘a priori’, unsuitable for processes,” pointed out the researcher. Having overcome the difficulties, she incorporated nanostructures onto following the standard processes of the photovoltaics industry. “According to the literature, this is the first time that it has been possible to manufacture periodic nanostructures; they are the ones that on the surface of a material are continuously repeated on substrates of this type, and therefore, the first standard solar cell with periodic nanostructures,” pointed out the new MIT PhD holder. The efficiency obtained is 15.56 percent, which is a very promising value when compared with others included in the literature.

Source: http://phys.org/

Personality prediction: ‘Person of Interest’ TV Show Becomes Real

Is Faception an ingenious way to increase public safety or an incursion into our civil liberties? The former, say its makers. The Israeli start-up says it can isolate human character traits in faces captured by photograph or video. It says it can distinguish about 20 different personality groups, ranging from champion poker players to crime suspects.

face recognitionCLICK ON THE IMAGE TO ENJOY THE VIDEO

What we do, we know, with high level of accuracy, your personality ingredients, behaviour, potential and so we can have a profile about someone, as an individual and the same we can do about a crowd…let’s say gate number eight there are too much people that potentially can be terrorists or violent audience so this is something that is very crucial for public safety“, says Shai Gilboa, CEO of Faception company.
Faception won’t say how the algorithm works, except that it somehow gleans genetic information that lies within facial expressions. The firm insists it has no interest in retaining collected data and that the system disregards racial profiling.

Security experts are not convinced that’s enough. “Certainly advancement in technologies that enable to monitor an individual and actually to assess certain traits or certain attributes about individuals in the open space opens surveillance and monitoring capabilities which kind of like put in risk private freedoms that we used to enjoy, like the freedom of privacy, like the freedom of communication that we used to enjoy and now the technoligy certainly changes the balance“, comments Dr. Nimrod Kozlovski, security expert. Counter-terror experts say the firm must improve its 86 percent successful detection rate for it to be useful in airports. Civil liberties campaigners might say it shouldn’t be used at all.

Source: http://www.faception.com/

Tiny Diamonds Revolutionize Nanotechnology

Nanomaterials have the potential to improve many next-generation technologies. They promise to speed up computer chips, increase the resolution of medical imaging devices and make electronics more energy efficient. But imbuing nanomaterials with the right properties can be time consuming and costly. A new, quick and inexpensive method for constructing diamond-based hybrid nanomaterials in bulk could launch the field from research to applications. University of Maryland (UMD) researchers developed a method to build diamond-based hybrid nanoparticles in large quantities from the ground up, thereby circumventing many of the problems with current methods.

The process begins with tiny, nanoscale diamonds that contain a specific type of impurity: a single nitrogen atom where a carbon atom should be, with an empty space right next to it, resulting from a second missing carbon atom. This “nitrogen vacancyimpurity gives each diamond special optical and electromagnetic properties. By attaching other materials to the diamond grains, such as metal particles or semiconducting materials known as “quantum dots,” the researchers can create a variety of customizable hybrid nanoparticles, including nanoscale semiconductors and magnets with precisely tailored properties.

nanodiamonds

If you pair one of these diamonds with silver or gold nanoparticles, the metal can enhance the nanodiamond’s optical properties. If you couple the nanodiamond to a semiconducting quantum dot, the hybrid particle can transfer energy more efficiently,” said Min Ouyang, an associate professor of physics at UMD and senior author on the study.

The technique is described in the June 8 issue of the journal Nature Communications.

Source: http://umdrightnow.umd.edu/

Smart Glass

Most smartphones have a slick, sizable piece of glass on their face. But the glass itself is notsmart” — the intelligent components lie beneath. That could soon change, thanks to researchers at the University of Adelaide in Australia who have lent “smart potential” to glass. They’ve done so by embedding light-emitting nanoparticles within the glass without affecting the glass’s physical properties — its transparency and malleability, for example.

This method for embedding light-emitting nanoparticles into glass without losing any of their unique properties – a major step towards ‘smart glass’ applications such as 3D display screens or remote radiation sensors.

The new “hybrid glass” successfully combines the properties of these special luminescent (or light-emitting) nanoparticles with the well-known aspects of glass, such as transparency and the ability to be processed into various shapes including very fine optical fibres.

smart glass2An illustration shows light-emitting nanoparticles embedded in glass

These novel luminescent nanoparticles, called upconversion nanoparticles, have become promising candidates for a whole variety of ultra-high tech applications such as biological sensing, biomedical imaging and 3D volumetric displays,” says lead author Dr Tim Zhao, from the University of Adelaide’s School of Physical Sciences and Institute for Photonics and Advanced Sensing (IPAS).

Integrating these nanoparticles into glass, which is usually inert, opens up exciting possibilities for new hybrid materials and devices that can take advantage of the properties of nanoparticles in ways we haven’t been able to do before. For example, neuroscientists currently use dye injected into the brain and lasers to be able to guide a glass pipette to the site they are interested in. If fluorescent nanoparticles were embedded in the glass pipettes, the unique luminescence of the hybrid glass could act like a torch to guide the pipette directly to the individual neurons of interest”, adds Dr Zhao.

The research, in collaboration with Macquarie University and University of Melbourne, has been published online in the journal Advanced Optical Materials.

Source: https://www.adelaide.edu.au/

Dancing At A Club, Feel The Bass Through All Your Body, Immersed

Nothing compares to the sensation of music reverberating through your body while dancing at a club. Well – that’s about to change. The full body music experience can now be enjoyed anywhere, according to the makers of a wearable device called SubPac.

subpac dancingCLICK ON THE IMAGE TO ENJOY THE VIDEO

“It’s a combination of proprietary tactile speaker components, membranes that spread the experience throughout your body and electronics that make sure the stuff and sound that goes through it is optimal”, says John Alexiou , President of the Canadian company SubPac.  “It’s really meant to be a solution where any time you’re hearing sound, whether you’re in a music environment, a film environment, an auto environment, you’re going to be physically immersed in that as well,“, he adds.

The company has raised more than $6 million (USD) in funding with heavy hitting backers from the both tech and music scene. Star hip hop producer Timbaland has partnered in the company – he sees a market in people still wanting to ‘feel‘ the music, but not necessarily up for the loud club scene.

It sounds great, but you’re coming home with these headaches from these shows. And you notice the headache gets more intense or something starts to impair, you don’t even know, you think it’s something else. So this is going to save everybody’s eardrums and still get the feeling of explosion“, comments the music producer Timbaland.
With two models priced at less than $350, the company is hoping the technology will be as popular as the music that inspired it.

Source: http://thesubpac.com/

3D Printed Airplane: Lighter, Faster, Cheaper

Dwarfed by huge jets all around, the mini-plane Thor was nonetheless an eye-catcher at the Berlin air show this week—the small Airbus marvel is the world’s first 3D-printed aircraft. Windowless, weighing in at just 21 kilos (46 pounds) and less than four metres (13 feet) long, the drone Thor—short for “Test of High-tech Objectives in Reality“—resembles a large, white model airplane. Yet to the European aerospace giant Airbus, the small pilotless propeller aircraft is a pioneer that offers a taste of things to come—an aviation future when 3D printing technology promises to save time, fuel and money.

3D airplane

This is a test of what’s possible with 3D printing technology,” said Detlev Konigorski, who was in charge of developing Thor for Airbus, speaking at the International Aerospace Exhibition and Air Show at Berlin’s southern Schoenefeld airport. “We want to see if we can speed up the development process by using 3D printing not just for individual parts but for an entire system.”

In Thor, the only parts that are not printed from a substance called polyamide are the electrical elements. The little plane “flies beautifully, it is very stable,” said its chief engineer Gunnar Haase, who conducted Thor‘s inaugural flight last November near the northern German city of Hamburg.

Source: http://phys.org/

Engineered Nanoparticles Replace Rare-earth Materials

Technologies from wind turbines to electric vehicles rely on critical materials called rare-earth elements. These elements, though often abundant, can be difficult and increasingly costly to come by. Now, scientists from the Laboratory of Molecular Magnetism (LAMM) of the University of Florence in Italy,  looking for alternatives have reported in ACS’ journal Chemistry of Materials a new way to make nanoparticles that could replace some rare-earth materials and help ensure the continued supply of products people have come to depend on.

rare-earth element

Rare-earth elements have unique characteristics that make them very useful. For example, the world’s strongest magnets are made with neodymium. A little too powerful for your refrigerator, these magnets are incorporated into computer disk drives, or nanocoputers, power windows and wind turbines. But rare earths are challenging to mine and process, and prices can rise quickly in a short period of time. Given the increasing demand for rare earths, Alberto López-Ortega, Claudio Sangregorio and colleagues (LAMM) set out to find substitutes for use in strong magnets.

The researchers used a mixed iron-cobalt oleate complex in a one-step synthetic approach to produce magnetic core-shell nanoparticles. The resulting materials showed strong magnetic properties and energy-storing capabilities. Their approach could signal an efficient new strategy toward replacing rare earths in permanent magnets and keeping costs stable, the researchers say.

Source: http://www.eurekalert.org/

Graphene Enhances Strength And Elasticity Of Condoms

Dr Aravind Vijayaraghavan and Dr Maria Iliut from Manchester University (UK)  have shown that adding a very small amount of graphene, the world’s thinnest and strongest material, to rubber films can increase both their strength and the elasticity by up to 50%. Thin rubber films are ubiquitous in daily life, used in everything from gloves to condoms.

graphene-rubber

In their experiments, the scientists tested two kinds of rubbery materials natural rubber, comprised of a material called polyisoprene, and a man-made rubber called polyurethane. To these, they added graphene of different kinds, amounts and size.

In most cases, it they observed that the resulting composite material could be stretched to a greater degree and with greater force before it broke. Indeed, adding just one tenth of one percent of graphene was all it took to make the rubber 50% stronger.

Dr Vijayaraghavan, who leads the Nano-functional Materials Group, explains “A composite is a material which contains two parts, a matrix which is soft and light and a filler which is strong. Taken together, you get something which is both light and strong. This is the principle behind carbon fibre composites used in sports cars, or Kevlar composites used in body armour. In this case, we have made a composite of rubber, which is soft and stretchy but fragile, with graphene and the resulting material is both stronger and stretchier.”

The research has been published in the journal  Carbon,

Source: http://www.manchester.ac.uk/

3D-printed Cast To The Exact Measurements Of Fractured Parts Of The Body

Move over plaster cast. There’s a new 3-D printed cast on the block, which means your days may be numbered. The NovaCast was created by Mexican start-up Mediprint and uses an open, 3D-printed, plastic framework. Each 3D-printed cast is custom-made to the exact measurements of the fractured part of the body, which developers say improves recovery time.

mediprint_3d_printed_castCLICK ON THE IMAGE TO ENJOY THE VIDEO

“It’s lighter than the traditional cast. You can have a bath with it, you can scratch yourself, it allows for a better medical inspection“, says Zaid Musa Badwan Peralta, co-founder of the  Mediprint company.

The cast is printed after the patient’s body part is scanned. From there, the total time until a tailor made cast is ready – three hours. Developers say they’re working on an improved way to measure patients that will increase comfort by eliminating the need to scan the traumatized body part.

“It’s a specialised software, which through anthropometry measurements gives the medic exact details about the shape and size needs. And using information on 3-D models of the patient, the geometry of the cast is automatically calucalated for the printers. This generates a product that can reach more people“, adds Peralta.

Nova cast creators also expect to improve the production process and decrease printing time. No details on price and release of the casts onto the market yet, but creators hope that it isn’t long before the plaster cast is a thing of the past.

Source: http://mediprint3d.com

Nanotechnologies Boost Electric Car Batteries

On a drizzly, gray morning in April, Yi Cui weaves his scarlet red Tesla in and out of Silicon Valley traffic. Cui, a materials scientist at Stanford University here, is headed to visit Amprius, a battery company he founded 6 years ago. It’s no coincidence that he is driving a battery-powered car, and that he has leased rather than bought it. In a few years, he says, he plans to upgrade to a new model, with a crucial improvement: “Hopefully our batteries will be in it.” Cui and Amprius are trying to take lithium–ion batteries—today’s best commercial technology—to the next level. They have plenty of company. Massive corporations such as Panasonic, Samsung, LG Chem, Apple, and Tesla are vying to make batteries smaller, lighter, and more powerful. But among these power players, Cui remains a pioneering force.
Unlike others who focus on tweaking the chemical composition of a battery’s electrodes or its charge-conducting electrolyte, Cui is marrying battery chemistry with nanotechnology. He is building intricately structured battery electrodes that can soak up and release charge-carrying ions in greater quantities, and faster, than standard electrodes can, without producing troublesome side reactions.

Tesla Model 3

“He’s taking the innovation of nanotechnology and using it to control chemistry,” says Wei Luo, a materials scientist and battery expert at the University of Maryland, College Park.
In a series of lab demonstrations, Cui has shown how his architectural approach to electrodes can domesticate a host of battery chemistries that have long tantalized researchers but remained problematic. Among them: lithium-ion batteries with electrodes of silicon instead of the standard graphite, batteries with an electrode made of bare lithium metal, and batteries relying on lithium-sulfur chemistry, which are potentially more powerful than any lithium-ion battery. The nanoscale architectures he is exploring include silicon nanowires that expand and contract as they absorb and shed lithium ions, and tiny egglike structures with carbon shells protecting lithium-rich silicon yolks.

Source: http://www.sciencemag.org/

Bones and Shells, Inspiration For New Materials

Researchers at MIT are seeking to redesign concrete — the most widely used human-made material in the world — by following nature’s blueprints. In a paper published online in the journal Construction and Building Materials, the team contrasts cement pasteconcrete’s binding ingredient — with the structure and properties of natural materials such as bones, shells, and deep-sea sponges. As the researchers observed, these biological materials are exceptionally strong and durable, thanks in part to their precise assembly of structures at multiple length scales, from the molecular to the macro, or visible, level.

From their observations, the team, led by Oral Buyukozturk, a professor in MIT’s Department of Civil and Environmental Engineering (CEE), proposed a new bioinspired, “bottom-upapproach for designing cement paste.

bones molecular structure

These materials are assembled in a fascinating fashion, with simple constituents arranging in complex geometric configurations that are beautiful to observe,” Buyukozturk says. “We want to see what kinds of micromechanisms exist within them that provide such superior properties, and how we can adopt a similar building-block-based approach for concrete.”

Ultimately, the team hopes to identify materials in nature that may be used as sustainable and longer-lasting alternatives to Portland cement, which requires a huge amount of energy to manufacture. “If we can replace cement, partially or totally, with some other materials that may be readily and amply available in nature, we can meet our objectives for sustainability,” Buyukozturk says.

Source: http://news.mit.edu/2016/

How To Scavenge Simultaneously Solar And Wind Energy

To realize the sustainable energy supply in a smart city, it is essential to maximize energy scavenging from the city environments for achieving the self-powered functions of some intelligent devices and sensors.

solar and wind powered houseAlthough the solar energy can be well harvested by using existing technologies, the large amounts of wasted wind energy in the city cannot be eectively utilized since conventional wind turbine generators can only be installed in remote areas due to their large volumes and safety issues.
Here, the researchers from the Chinese Academy of Sciences rationally design a hybridized nanogenerator, including a solar cell (SC) and a triboelectric nanogenerator (TENG), that can individually/simultaneously scavenge solar and wind energies, which can be extensively installed on the roofs of the city buildings. Under the same device area of about 120 mm × 22 mm, the SC can deliver a largest outputpower of about 8 mW, while the output power of the TENG can be up to 26 mW. Impedance matching between the SC and TENG has been achieved by using a transformer to decrease the impedance of the TENG. The hybridized nanogenerator has a larger output current and a better charging performance than that of the individual SC or TENG.
This research presents a feasible approach to maximize solar and wind energies scavenging from the city environments with the aim to realize some self-powered functions in smart city.

Source: https://www.researchgate.net/

Trojan Horse Nanoparticles Attack Inflammation

Nanosized Trojan horses created from a patient’s own immune cells have successfully treated inflammation by overcoming the body’s complex defense mechanisms, perhaps leading to broader applications for treating diseases characterized by inflammation, such as cancer and cardiovascular diseases. An international team, led by researchers at Houston Methodist Research Institute, described the creation of nanoparticles called leukosomes and evaluated their ability to treat localized inflammation in the May 23 issue of Nature Materials (early online). Recent approaches to treating inflammatory diseases have been unsuccessful because an already overactive immune system treats simple nanoparticles as foreign invaders and clears them from the body, preventing them from reaching their target.
tissue inflammation2A better approach for building effective drug delivery platforms is to find inspiration for their design in the composition of the immune cells of our body,” said Ennio Tasciotti, Ph.D., director of the Center for Biomimetic Medicine at Houston Methodist Research Institute and the paper’s senior author.
Immune cells such as leukocytes freely circulate in blood vessels, recognize inflammation, and accumulate in inflamed tissues. They do so by using special receptors and ligands on their surface. We purified leukocytes from a patient, then integrated their special ligands and receptors into the leukosome surface. Using the body’s own materials, we built a drug delivery system camouflaged as our own body’s defense system—thus the Trojan horse.

Source: http://www.houstonmethodist.org/

3D Printed Office

In Dubai the first fully 3D-printed and completely functional building has not only been built but has celebrated its grand opening, marking an architectural and engineering breakthrough. The prototype 3D-printed office building, with floorspace is about 2,700 square feet (250 m2).

UAE-Dubai-Office-of-the-Future-

The office has all the amenities of traditionally constructed structures, such as electricity, water, telecommunications, and air conditioning. The office is also outfitted with a number of energy saving features, including window shades to protect from Dubai’s blazing sun. In order to create all the pieces needed for the office, builders used a 3D printer measuring 20 feet high, 120 feet long, and 40 feet wide. Aside from the equipment, it took a very small team of workers to put the office together. Seven installers and 10 electricians and specialists worked together to assemble the fully functional office in just 17 days. Dubai’s media office estimates this represents a 50 percent cost savings in labor alone compared to buildings of similar size built with conventional methods. In Dubai 25% of the buildings should be 3D printed by 2030, says ruler.

Source: http://inhabitat.com/

Breath Test To Detect Early Signs Of Lung Cancer

A simple breath test could soon help doctors detect the early signs of lung cancer. The sensor inside this breathalyser measures minute chemical traces in a patients’ exhaled breath which could be a biomarker for cancer.

breathalyzer2CLICK ON THE IMAGE TO ENJOY THE VIDEO

The challenge is most people present when it’s very late stage, and it’s about managing symptoms as opposed to curing them. So the key thing that you can do is detect the disease early; and that’s what we think the breathalyser technology allows for, picking it up at that earliest stage when it’s treatable“, says Billy Boyle, CEO of the Brtish company Owlstone Medical.

Breath testing is already a recognised method for linking specfiic chemicals present in exhaled breath to existing medical conditions, but current technology is often expensive, slow and complex to use. Owlstone Medical believe they have the answer.

Historically chemical analysers take up half the size of a room and cost half a million dollars. So what we’ve been able to do is use microchip technology to shrink it down from these massive devices to something about the size of a button. And once it’s in that form factor, you can build it directly into these disease breathalyser technologies“, adds Billy Boyle.

Known as volatile organic compounds, the chemical markers of lung cancer are present even in the earliest stage of the disease.

And this device can collect those samples, those tiny amounts of volatile organic compounds, which we can then analyse in the laboratory. And in effect, it’s a bit like a fingerprint. If you have a lung cancer we believe that we can detect these samples and that fingerprint will tell us whether the person has lung cancer or not“, comments Dr. Robert Rintoul, consultant ‘Respratory Physician’ at Papworth Hospital.

Clinical trials involving up to 3,000 volunteer patients are underway at 17 British hospitals, with the aim of having the non-invasive technology in GP’s surgeries in 2017. In Britain alone there are about 45,000 new cases of lung cancer each year. Owlstone believes it’s technology could potentially save 10,000 lives a year by helping to spot the disease before it takes hold.

Source: http://www.owlstonenanotech.com/

Paper Filter Removes Harmful Viruses From Water

A simple paper sheet made by scientists at Uppsala University can improve the quality of life for millions of people by removing resistant viruses from water. The sheet, made of cellulose nanofibers, is called the mille-feuille filter as it has a unique layered internal architecture resembling that of the French puff pastry mille-feuille (Eng. thousand leaves).

cellulosa-nanofiber6230

 ‘With a filter material directly from nature, and by using simple production methods, we believe that our filter paper can become the affordable global water filtration solution and help save lives. Our goal is to develop a filter paper that can remove even the toughest viruses from water as easily as brewing coffee‘, says Albert Mihranyan, Professor of Nanotechnology at Uppsala University (Sweden), who heads the study. Access to safe drinking water is among the UN’s Sustainable Development Goals. More than 748 million people lack access to safe drinking water and basic sanitation. Water-borne infections are among the global causes for mortality, especially in children under age of five, and viruses are among the most notorious water-borne infectious microorganisms. They can be both extremely resistant to disinfection and difficult to remove by filtration due to their small size.

Today we heavily rely on chemical disinfectants, such as chlorine, which may produce toxic by-products depending on water quality. Filtration is a very effective, robust, energy-efficient, and inert method of producing drinking water as it physically removes the microorganisms from water rather than inactivates them. But the high price of efficient filters is limiting their use today.

Safe drinking water is a problem not only in the low-income countries. Massive viral outbreaks have also occurred in Europe in the past, including Sweden’, continues Mihranyan referring to the massive viral outbreak in Lilla Edet municipality in Sweden in 2008, when more than 2400 people or almost 20% of the local population got infected with Norovirus due to poor water.  Small size viruses have been much harder to get rid of, as they are extremely resistant to physical and chemical inactivation.

Source: http://www.uu.se/

Cheap Biosensor Detects Alzheimer’s, Cancer, Parkinson’s

A biosensor developed by researchers at the National Nanotechnology Laboratory (LNNano) in Campinas, São Paulo State, Brazil, has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.

biosensor LNNano

The device is basically a single-layer organic nanometer-scale transistor on a glass slide. It contains the reduced form of the peptide glutathione (GSH), which reacts in a specific way when it comes into contact with the enzyme glutathione S-transferase (GST), linked to Parkinson’s, Alzheimer’s and breast cancer, among other diseases. The GSH-GST reaction is detected by the transistor, which can be used for diagnostic purposes.

The project focuses on the development of point-of-care devices by researchers in a range of knowledge areas, using functional materials to produce simple sensors and microfluidic systems for rapid diagnosis.

Platforms like this one can be deployed to diagnose complex diseases quickly, safely and relatively cheaply, using nanometer-scale systems to identify molecules of interest in the material analyzed,” explained Carlos Cesar Bof Bufon, Head of LNNano’s Functional Devices & Systems Lab (DSF) and a member of the research team for the project, whose principal investigator is Lauro Kubota, a professor at the University of Campinas’s Chemistry Institute (IQ-UNICAMP).

In addition to portability and low cost, the advantages of the nanometric biosensor include its sensitivity in detecting molecules, according to Bufon.

This is the first time organic transistor technology has been used in detecting the pair GSH-GST, which is important in diagnosing degenerative diseases, for example,” he explained. “The device can detect such molecules even when they’re present at very low levels in the examined material, thanks to its nanometric sensitivity.” A nanometer (nm) is one billionth of a meter (10-9 meter), or one millionth of a millimeter.

The system can be adapted to detect other substances, such as molecules linked to different diseases and elements present in contaminated material, among other applications. This requires replacing the molecules in the sensor with others that react with the chemicals targeted by the test, which are known as analytes.

Source: http://www.eurekalert.org/

Solar Cell Converts 34,5% Of The Sunlight To Electricity

A new solar cell configuration developed by engineers at the University of New South Wales (UNSW) in Australia, has pushed sunlight-to-electricity conversion efficiency to 34.5% – establishing a new world record for unfocused sunlight and nudging closer to the theoretical limits for such a device. The record was set by Dr Mark Keevers and Professor Martin Green, Senior Research Fellow and Director, respectively, of UNSW’s Australian Centre for Advanced Photovoltaics, using a 28-cm2 four-junction mini-module – embedded in a prism – that extracts the maximum energy from sunlight. It does this by splitting the incoming rays into four bands, using a hybrid four-junction receiver to squeeze even more electricity from each beam of sunlight. The new UNSW result, confirmed by the US National Renewable Energy Laboratory, is almost 44% better than the previous record – made by Alta Devices of the USA, which reached 24% efficiency, but over a larger surface area of 800-cm2.

solar_panels_panelled_house_roof_array

This encouraging result shows that there are still advances to come in photovoltaics research to make solar cells even more efficient,” said Keevers. “Extracting more energy from every beam of sunlight is critical to reducing the cost of electricity generated by solar cells as it lowers the investment needed, and delivering payback faster.”

The result was obtained by the same UNSW team that set a world record in 2014, achieving an electricity conversion rate of over 40% by using mirrors to concentrate the light – a technique known as CPV (concentrator photovoltaics) – and then similarly splitting out various wavelengths. The new result, however, was achieved using normal sunlight with no concentrators.

Source: http://newsroom.unsw.edu.au/

Nanotechnology Boosts Solar Panel Efficiency

Solar power, which is power drawn from the sun, is a familiar concept for most Americans. You set out some thick, flat arrays the color of blueberries in your lawn or on your roof, and they use the photovoltaic effect to generate a current. For many people, this means they can expect to spend less on energy from nonrenewable sources like oil and gas, with the added benefit of reducing carbon emissions in the long run. The benefits for developing nations are even greater. Take Africa, for example. As a continent, it is extremely sunny and flat so it seems like a natural place to deploy solar panels. The main barriers preventing this rollout are the cost of cell production and limitations on cell efficiency.

solar farm

Fortunately, research costs for solar energy are comparatively lower than other fields. This has led to scientists coming up with a number of inventive ways to improve solar cells through the use of nanotechnology.
Nanotechnology refers to manmade matter measuring between 1 and 100 nanometers (nm). For reference, a sheet of paper is 100,000 nm, while a strand of hair is 80,000 nm. Due to their size and extreme variety, nanotechnology allows scientists to create microscopic components and enhance the performance of existing technologies. For example, electroplating solar panels with nanometers-thin layers of silver helps the system absorb heat and makes it resistant to corrosion. Hinging on the size and versatility of nanotechnology, scientists have discovered several different ways to leverage it to improve solar cells.

The amount of energy solar cell panels can produce is limited in part by the sunlight it collects. If the array can collect more sunlight while still taking up the same amount of space, the energy produced per panel will increase. This would have a profound effect on arrays in places like Africa, where it is extremely sunny. The increase in surface area would mean a greater amount of energy collected and output over the lifetime of the cell. Using nanotechnology, scientists have developed a way to do just this.

The actual product is called a dye-sensitive solar cell. It uses a layer of porous nanoparticles coated in dye to increase the surface area on the solar cell on a microscopic level. This has the added benefit of making the cell more flexible, and increasing its ability to work in extreme conditions. If that seems difficult to imagine, think about it this way: Picture a long strip of candy dots. The paper is the solar array while the candy is the layer of nanoparticles. The candy increases the surface area of the paper without adding much bulk. Thus, the paper remains supple. Some of the greatest advances in flexible solar cells have been made by Alberta scientist Jillian Buriak. Using a spray gun and laminators, Buriak and her team developed a way to spray nanoparticles onto the plastic. This sheet is then run through the laminator, which spreads out the layer even further. The result is an extremely thin solar cell with innumerable practical applications.

Using nanotechnology, scientists have discovered that they can create cells that absorb 90 percent of the sunlight that hits it. This allows for more efficient concentrating solar power (CSP) plants. Unlike traditional solar arrays, CSP plants generate power by focusing the sun, generally through mirrors, on molten salt. The heated salt is used to create steam to turn a turbine and generate electricity. One limitation of these plants is that the materials used to collect the sunlight degrade after about a year, causing a dip in production while they are repaired.

This new technology can withstand extreme heat and last for many years outdoors, despite exposure to the elements.

Source: http://africanbrains.net/

Electric Car: New Hydrogen Filling Station

A new hydrogen filling station is open to the public in London It creates the gas on site from tap water and renewable energy — a first for the British capital. The station uses electricity generated from renewable sources such as wind power to split water into hydrogen and oxygen. The whole facility can also be switched on and off by the power company to help them balance demand on the grid. Green power company ITM says it helps the problem of what to do with the UK’s excess renewable energy.

Tucson fuel cellCLICK ON THE IMAGE TO ENJOY THE VIDEO

You can re-fuel it in 3 minutes and it will go over three hundred miles (483 km). They are the limitations of a plug-in electric vehicle. You also export the energy from the power grid in a much more effective way,” says Dr Graham Cooley,  ITM Chief Executive.

Refuelling at the site fills the tank with 5kg of pressurised hydrogen which costs around of £10 per kilogram (12,7 euros or 14,5 Dollars), giving a range of around 300 miles. Three different models of hydrogen-powered cars are available in the UK at present, including the Hyundai ix35, though only a handful of people actually drive them.

The issue is dispensing it and delivering it to vehicles which is what we see here today in terms of the new infrastructure being developed. It’s the delivery of the fuel and it’s a relatively straightforward process to do it,”  comments Jon Hunt from the company Toyota.

The technology is still nascent — and, like the cars, hydrogen filling stations remain relatively scarce across Europe. But there are set to be 12 open across the UK by the end of next year.

Source:  https://en.wikipedia.org/

Free Smart Glasses Help The Blind

Fund-raising has begun for what developers say will be the world’s first free smart glasses to help the blind and visually impaired. A vision of the future — these could become the world’s first free smart glasses, says the Polish non-profit organisation behind them. Parsee has developed this prototype of battery-powered glasses with a 3D printed frame, camera and earphone.

Parsee smart glasses

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Parsee is an innovative 3D printed glasses for blind and visually impaired people. It helps them in their everyday living like reading newspapers, drinking juice,” says Bartosz Trzcinski, Parsee Project Manager.
Pushing a button on the frame, users take pictures of an object in front of them, which the camera sends to a phone app. The app identifies shapes, colours, text and even faces — and sends the detail via audio to the earphone“When I take something from the fridge what I see is blurred – this helps me to recognize the product and read what is written on it. It also helps me to recognize my friends’ faces, because I have a problem with that“, comments Teresa Lapa, prototype user of Parsee smart glasses.
Parsee has begun fund-raising with a $25,000 goal to research and develop a sleeker model of the glasses. It’s still in the early stages of its longer-term goal to mass produce and distribute the spectacles for free. The current cost of producing one pair is $300 — a figure they aim to reduce over time.

Source: http://www.reuters.com/

How To Detect Blood Clots With Simple in-Home Test

For millions of Americans at risk for blood clots, strokes and hypertension, routine lab tests to monitor blood-thinning medications can be frequent, costly and painful.
But researchers at the University of Cincinnati (UC) are developing materials and technology for a simple in-home screening that could be a game changer for patients with several life-threatening conditions.
Patients with cardiovascular disease, hypertension, atrial fibrillation, congestive heart failure, kidney disease and others who are at risk for blood clotting are especially vulnerable when blood-thinning medication levels get too weak or too strong. This imbalance can quickly lead to ischemic (clotting) or hemorrhagic (bleeding) strokes if not detected in time.

blood clotsWe have developed a blood screening device for patients on medications like Coumadin, warfarin or other blood thinners who need to monitor their blood-clotting levels on a regular basis,” says Andrew Steckl, UC professor of electrical engineering in the College of Engineering and Applied Science.  Patients can soon monitor their blood coagulation characteristics from home quickly and painlessly before making needless trips to the lab or hospital.

Source: http://www.uc.edu/

How To Follow Nanoparticles In The Body

Treating a disease without causing side effects is one of the big promises of nanoparticle technology. But fulfilling it remains a challenge. One of the obstacles is that researchers have a hard time seeing where nanoparticles go once they’re inside various parts of the body. But now one team has developed a way to help overcome this problem — by making tissues and organs clearer in the lab. Their study on mice appears in the journal ACS Nano.

3D mapping of nanoparticle

Scientists are trying to design nanoparticles that deliver a therapeutic cargo directly to a disease site. This specific targeting could help avoid the nasty side effects that patients feel when a drug goes to heathy areas in the body. But barriers, such as blood vessel walls, can divert particles from reaching their intended destination. To get around such obstacles, scientists need a better understanding of how nanoparticles interact with structures inside the body. Current techniques, however, are limited. Warren C. W. Chan and colleagues from the University of Toronto  (Canada) wanted to develop a method to better track where nanoparticles go within tissues.

The researchers injected an acrylamide hydrogel into organs and tissues removed from mice. The gel linked all of the molecules together, except for the lipids, which are responsible for making tissues appear opaque. The lipids easily washed away, leaving the tissues clear but otherwise intact. Using this technique, the researchers could image nanoparticles at a depth of more than 1 millimeter, which is 25 times deeper than existing methods. In addition to helping scientists understand how nanoparticles interact with tumors and organs, the new approach could also contribute to tissue engineering, implant and biosensor applications, say the researchers.

Source: http://inbs.med.utoronto.ca/

3D-printed Leg To Win At The Rio Olympics

German paralympic cyclist Denise Schindler is training hard for Rio But these Olympics will be different for her — she plans to use a 3D-printed leg prosthesis instead of a conventional one.

paralympics cyclistCLICK ON THE IMAGE TO ENJOY THE VIDEO

It feels different when I cycle due to its quality. But we are on the right path to reach the right stiffness and aerodynamic. The new prosthesis is also lighter and that is also an advantage when competing“, says Schindler.
The manufacturing process starts with the scanning of the stump followed by the design of the prosthesis through a special computer program called Fusion 360. The software is designed by American company Autodesk which says the 3D prosthesis is a revolutionary step forward

The advantage of having data is that we can send this digital information to another prosthesis maker who can correct things without the presence of the person. When it is ready it can be printed relatively easy everywhere in the world with a 3D printer“, explains Mickey Wakefield, an Autodesk applications engineer.
Schindler, who lost the lower part of her leg in an accident when she was two, recently presented the new prosthesis to US President Barack Obama and German Chancellor Angela Merkel : “I was surprised to see how informed the president was about the issue. He was very positive about it“, she comments.
Those behind it say the idea of the new method of production is to make sports-prostheses cheaper and more accessible for everyone. And Denise Schindler’s new 3D-printed prosthesis is set to get the ultimate test when she hits the velodrome in Rio.

Source: http://www.reuters.com/

Nano-Robots Enter Living Cells

Researchers have developed the world’s tiniest engine – just a few billionths of a metre in size – which uses light to power itself. The nanoscale engine, developed by researchers at the University of Cambridge, could form the basis of future nano-machines that can navigate in water, sense the environment around them, or even enter living cells to fight disease. The prototype device is made of tiny charged particles of gold, bound together with temperature-responsive polymers in the form of a gel. When the ‘nano-engine’ is heated to a certain temperature with a laser, it stores large amounts of elastic energy in a fraction of a second, as the polymer coatings expel all the water from the gel and collapse. This has the effect of forcing the gold nanoparticles to bind together into tight clusters. But when the device is cooled, the polymers take on water and expand, and the gold nanoparticles are strongly and quickly pushed apart, like a spring.

nano-motor

It’s like an explosion,” said Dr Tao Ding from Cambridge’s Cavendish Laboratory, and the paper’s first author. “We have hundreds of gold balls flying apart in a millionth of a second when water molecules inflate the polymers around them.
We know that light can heat up water to power steam engines,” said study co-author Dr Ventsislav Valev, now based at the University of Bath. “But now we can use light to power a piston engine at the nanoscale.”

The results are reported in the journal PNAS.

Source: http://www.cam.ac.uk/

Obesity: How To Burn Fat

Researchers at MIT and Brigham and Women’s Hospital have developed nanoparticles that can deliver antiobesity drugs directly to fat tissue. Overweight mice treated with these nanoparticles lost 10 percent of their body weight over 25 days, without showing any negative side effects. The drugs work by transforming white adipose tissue, which is made of fat-storing cells, into brown adipose tissue, which burns fat. The drugs also stimulate the growth of new blood vessels in fat tissue, which positively reinforces the nanoparticle targeting and aids in the white-to-brown transformation. These drugs, which are not FDA-approved to treat obesity, are not new, but the research team developed a new way to deliver them so that they accumulate in fatty tissues, helping to avoid unwanted side effects in other parts of the body.

adiposetissue

The advantage here is now you have a way of targeting it to a particular area and not giving the body systemic effects. You can get the positive effects that you’d want in terms of antiobesity but not the negative ones that sometimes occur,” says Robert Langer, the David H. Koch Institute Professor at MIT and a member of MIT’s Koch Institute for Integrative Cancer Research.

More than one-third of Americans are considered to be obese, and last year obesity overtook smoking as the top preventable cause of cancer death in the United States, with 20 percent of the 600,000 cancer deaths attributed to obesity.

Langer and Omid Farokhzad, director of the Laboratory of Nanomedicine and Biomaterials at Brigham and Women’s Hospital, are the senior authors of the study, which appears in theProceedings of the National Academy of Sciences the week of May 2. The paper’s lead authors are former MIT postdoc Yuan Xue and former BWH postdoc Xiaoyang Xu.

Source: http://news.mit.edu/

Smartphone Coated With Water-Repellent NanoMaterial

The Chinese company Huawei went into great detail about its much-anticipated P9 flagship when it was announced earlier this month, but it seems there was one little thing they left out. Like the P8 and Mate S before it, the P9 is launching with P2i’s liquid repellent nanotechnology

Huawei P9Obviously, the point of coating the device with this nanotechnology is to prevent the phone from being damaged by everyday liquid hazards. While most phones are offering better and better protection from water (even if they aren’t IP certified), this nanotechnology should make sure at the very least that a quick drop in a puddle is going to do minimal damage (if any at all). Officially, the coating is said to protect from “accidental splashes and spills”.

 

We are excited to work with Huawei on yet another device, providing our world class nano coating to protect their smartphones from liquid exposure, increasing the P9’s reliability and durability. We have coated Huawei’s flagship devices, the P8 and Mate S with our innovative liquid repellent technology and we look forward to continuing this partnership in the future”,  said Gary Huang, Chief Commercial Officer at P2i.

The P9 has a 5.2-inch full HD LCD display, an 8MP selfie camera, and the main event on the back — a dual camera system built in partnership with Leica. There’s also an octa-core Kirin 955 processor, either 3GB or 4GB RAM (depending on whether you go for the exapandable 32GB or 64GB storage option). The P9 also has a 3000mAh battery with “Rapid Charging” support through USB Type-C. For a full rundown, see our P9 vs. P9 Plus specs comparison.

Source: http://9to5google.com/

How To Break The Brain Barrier To Kill Cancer

Using a laser probe, neurosurgeons at Washington University School of Medicine in St. Louis have opened the brain’s protective cover, enabling them to deliver chemotherapy drugs to patients with a form of deadly brain cancer. In a pilot study, 14 patients with glioblastoma – the most common and aggressive type of brain cancer – underwent minimally invasive laser surgery to treat a recurrence of their tumors. Heat from the laser is known to kill brain tumor cells but, unexpectedly, the researchers found that the technology can penetrate the blood-brain barrier.

laser breaks brain barrierCLICK ON THE IMAGE TO ENJOY THE VIDEO

The laser treatment kept the blood-brain barrier open for four to six weeks, providing us with a therapeutic window of opportunity to deliver chemotherapy drugs to the patients,” said co-corresponding author Eric C. Leuthardt, MD, a Washington University professor of neurosurgery who treats patients at Barnes-Jewish Hospital. “This is crucial because most chemotherapy drugs can’t get past the protective barrier, greatly limiting treatment options for patients with brain tumors. We are closely following patients in the trial,” said Leuthardt, who also is a Siteman Cancer Center member. “Our early results indicate that the patients are doing much better on average, in terms of survival and clinical outcomes, than what we would expect. We are encouraged but very cautious because additional patients need to be evaluated before we can draw firm conclusions.

The study is published online Feb. 24 in the journal PLOS ONE.

Source: https://medicine.wustl.edu/

Sensor Detects Harmful Air Pollution In The Home

Scientists from the University of Southampton (UK) in partnership with the Japan Advanced Institute of Science and Technology (JAIST) have developed a graphene-based sensor and switch that can detect harmful air pollution in the home with very low power consumptionThe sensor detects individual CO2 molecules and volatile organic compounds (VOC) gas molecules found in building and interior materials, furniture and even household goods, which adversely affect our living in modern houses with good insulation. These harmful chemical gases have low concentrations of ppb (parts per billion) levels and are extremely difficult to detect with current environmental sensor technology, which can only detect concentrations of parts per million (ppm).

Graphene sensor.jpg_SIA_JPG_fit_to_width_INLINE

In recent years, there has been an increase in health problems due to air pollution in personal living spaces, known as sick building syndrome (SBS), along with other conditions such as sick car and sick school syndromes.

The research group, led by Professor Hiroshi Mizuta, who holds a joint appointment at the University of Southampton and JAIST, and Dr Jian Sun and Assistant Professor Manoharan Muruganathan of JAIST, developed the sensor to detect individual CO2 molecules adsorbed (the bond of molecules from a gas to a surface) onto the suspended graphene (single atomic sheet of carbon atoms arranged in a honeycomb-like hexagonal crystal lattice structure) one by one by applying an electric field across the structure.

By monitoring the electrical resistance of the graphene beam, the adsorption and desorption (whereby a substance is released from or through a surface) processes of individual CO2 molecules onto the graphene were detected as ‘quantisedchanges in resistance (step-wise increase or decrease in resistance). In the study, published today in Science Advances, the journal of the American Association for the Advancement of Science (AAAS), a small volume of  CO2 gas (equivalent to a concentration of approximately 30 ppb) was released and the detection time was only a few minutes.

Professor Mizuta said: “In contrast to the commercially available environmental monitoring tools, this extreme sensing technology enables us to realise significant miniaturisation, resulting in weight and cost reduction in addition to the remarkable improvement in the detection limit from the ppm levels to the ppb levels“.

Source: http://www.southampton.ac.uk/

How To Destroy SuperBugs

A new discovery could control the spread of deadly antibiotic-resistant superbugs which experts fear are on course to kill 10 million people every year by 2050 – more than will die from cancer. A team of scientists, led by Professor Suresh C. Pillai from IT Sligo (Ireland), have made the significant breakthrough which will allow everyday items – from smartphones to door handles — to be protected against deadly bacteria, including MRSA and E. coli. News of the discovery comes just days after UK Chancellor of the Exchequer George Osborne warned that superbugs could become deadlier than cancer and are on course to kill 10 million people globally by 2050.

superbug bacteria

Speaking at the International Monetary Fund (IMF) in Washington, Mr Osborne warned that the problem would slash global GDP by around €100 trillion if it was not tackled. Using nanotechnology, the discovery is an effective and practical antimicrobial solution — an agent that kills microorganisms or inhibits their growth — that can be used to protect a range of everyday items. Items include anything made from glass, metallics and ceramics including computer or tablet screens, smartphones, ATMs, door handles, TVs, handrails, lifts, urinals, toilet seats, fridges, microwaves and ceramic floor or wall tiles. It will be of particular use in hospitals and medical facilities which are losing the battle against the spread of killer superbugs. Other common uses would include in swimming pools and public buildings, on glass in public buses and trains, sneeze guards protecting food in delis and restaurants as well as in clean rooms in the medical sector.

The discovery is the culmination of almost 12 years of research by a team of scientists, led by Prof. Suresh C. Pillai initially at CREST (Centre for Research in Engineering Surface Technology) in Dublin Institute of Technology (DIT) and then at IT Sligo’s Nanotechnology Research Group (PEM Centre).

It’s absolutely wonderful to finally be at this stage. This breakthrough will change the whole fight against superbugs. It can effectvely control the spread of bacteria,” said Prof. Pillai. He continued: “Every single person has a sea of bacteria on their hands. The mobile phone is the most contaminated personal item that we can have. Bacteria grows on the phone and can live there for up to five months. As it is contaminated with proteins from saliva and from the hand, It’s fertile land for bacteria and has been shown to carry 30 times more bacteria than a toilet seat.”

The research started at Dublin Institute of Technology (DIT)’s CREST and involves scientists now based at IT Sligo, Dublin City University (DCU) and the University of Surrey. Major researchers included Dr Joanna Carroll and Dr Nigel S. Leyland.

The research was published today in the journal, Scientific Reports, published by the Nature publishing group.

Source: https://itsligo.ie/

Vaccine Against Herpes, Potentially HIV

An effective vaccine against the virus that causes genital herpes has evaded researchers for decades. But now, researchers from the University of Illinois at Chicago (UIC) working with scientists from the Kiel University (Germany) have shown that zinc-oxide nanoparticles shaped like jacks can prevent the virus from entering cells, and help natural immunity to develop.

zinc oxyde tetrapod

We call the virus-trapping nanoparticle a microbivac, because it possesses both microbicidal and vaccine-like properties,” says corresponding author Deepak Shukla, professor of ophthalmology and microbiology & immunology in the UIC College of Medicine. “It is a totally novel approach to developing a vaccine against herpes, and it could potentially also work for HIV and other viruses,” he said. The particles could serve as a powerful active ingredient in a topically-applied vaginal cream that provides immediate protection against herpes virus infection while simultaneously helping stimulate immunity to the virus for long-term protection, explained Shukla. Herpes simplex virus-2, which causes serious eye infections in newborns and immunocompromised patients as well as genital herpes, is one of the most common human viruses.

According to the Centers for Disease Control and Prevention, about 15 percent of people from ages 14-49 carry HSV-2, which can hide out for long periods of time in the nervous system. The genital lesions caused by the virus increase the risk for acquiring human immunodeficiency virus, or HIV. “Your chances of getting HIV are three to four times higher if you already have genital herpes, which is a very strong motivation for developing new ways of preventing herpes infection,” Shukla said. Treatments for HSV-2 include daily topical medications to suppress the virus and shorten the duration of outbreaks, when the virus is active and genital lesions are present. However, drug resistance is common, and little protection is provided against further infections. Efforts to develop a vaccine have been unsuccessful because the virus does not spend much time in the bloodstream, where most traditional vaccines do their work.
The tetrapod-shaped zinc-oxide nanoparticles, called ZOTEN, have negatively charged surfaces that attract the HSV-2 virus, which has positively charged proteins on its outer envelope. ZOTEN nanoparticles were synthesized using technology developed by material scientists at Germany’s Kiel University and protected under a joint patent with UIC. When bound to the nanoparticles, HSV-2 cannot infect cells.

Results of the study are published in The Journal of Immunology.

Source: https://news.uic.edu/

Hydrogen Electric Car Powered By Fuel Cells 4 Times More Efficient

Inspired by the humble cactus, a new type of membrane has the potential to significantly boost the performance of fuel cells and transform the electric vehicle industry. The membrane, developed by scientists from CSIRO (Australia) and Hanyang University in Korea, was described today in the journal Nature . The paper shows that in hot conditions the membrane, which features a water repellent skin, can improve the efficiency of fuel cells by a factor of four.

According to CSIRO researcher and co-author Dr Aaron Thornton, the skin works in a similar way to a cactus plant, which thrives by retaining water in harsh and arid environments.

cactus

Fuel cells, like the ones used in electric vehicles, generate energy by mixing together simple gases, like hydrogen and oxygen. However, in order to maintain performance, proton exchange membrane fuel cells – or PEMFCs – need to stay constantly hydrated,” Dr Thornton said.

At the moment this is achieved by placing the cells alongside a radiator, water reservoir and a humidifier. The downside is that when used in a vehicle, these occupy a large amount of space and consume significant power,” he added.

According to CSIRO researcher and co-author Dr Cara Doherty, the team’s new cactus-inspired solution offers an alternative. A cactus plant has tiny cracks, called stomatal pores, which open at night when it is cool and humid, and close during the day when the conditions are hot and arid. This helps it retain water,” Dr Doherty said. “This membrane works in a similar way. Water is generated by an electrochemical reaction, which is then regulated through nano-cracks within the skin. The cracks widen when exposed to humidifying conditions, and close up when it is drier. This means that fuel cells can remain hydrated without the need for bulky external humidifier equipment. We also found that the skin made the fuel cells up to four times as efficient in hot and dry conditions,” she added.

Professor Young Moo Lee from Hanyang University, who led the research, said that this could have major implications for many industries, including the development of electric vehicles.

Source: http://www.csiro.au/

Polymer Solar Cells, Low-Cost Alternative To Silicon

Polymer solar cells could be even cheaper and more reliable thanks to a breakthrough by researchers at Linköping University (Sweden) and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes. In recent years, polymer solar cells have emerged as a low cost alternative to silicon solar cells. In order to obtain high efficiency, fullerenes are usually required in polymer solar cells to separate charge carriers. However, fullerenes are unstable under illumination, and form large crystals at high temperatures.

Now, a team of chemists led by Professor Jianhui Hou at the CAS has set a new world record for fullerene-free polymer solar cells by developing a unique combination of a polymer called PBDB-T and a small molecule called ITIC. With this combination, the sun’s energy is converted with an efficiency of 11%, a value that strikes most solar cells with fullerenes, and all without fullerenes. Feng Gao, together with his colleagues Olle Inganäs and Deping Qian at Linköping University, have characterized the loss spectroscopy of photovoltage (Voc), a key figure for solar cells, and proposed approaches to further improving the device performance.

fulleren160

We have demonstrated that it is possible to achieve high efficiency without using fullerene, and that such solar cells are also highly stable to heat. Because solar cells are working under constant solar radiation, good thermal stability is very important,” says Feng Gao, a physicist at the Department of Physics, Chemistry and Biology, Linköping University.

The combination of high efficiency and good thermal stability suggests that polymer solar cells, which can be easily manufactured using low-cost roll-to-roll printing technology, now come a step closer to commercialization,” says Feng Gao.
The results have been published in the journal Advanced Materials.

Source: http://liu.se/

Friendly Alternative To Li-Ion Battery

An unexpected discovery has led to a rechargeable battery that’s as inexpensive as conventional car batteries, but has a much higher energy density. The new battery could become a cost-effective, environmentally friendly alternative for storing renewable energy and supporting the power grid.

A team based at the Department of Energy’s Pacific Northwest National Laboratory (PNNL) identified this energy storage gem after realizing the new battery works in a different way than they had assumed. The journal Nature Energy published a paper today that describes the battery.

PNNL batteryPNNL’s improved aqueous zinc-manganese oxide battery offers a cost-effective, environmentally friendly alternative for storing renewable energy and supporting the power grid.

“The idea of a rechargeable zinc-manganese battery isn’t new; researchers have been studying them as an inexpensive, safe alternative to lithium-ion batteries since the late 1990s,” said PNNL Laboratory Fellow Jun Liu, the paper’s corresponding author. “But these batteries usually stop working after just a few charges. Our research suggests these failures could have occurred because we failed to control chemical equilibrium in rechargeable zinc-manganese energy storage systems.”

After years of focusing on rechargeable lithium-ion batteries, researchers are used to thinking about the back-and-forth shuttle of lithium ions. Lithium-ion batteries store and release energy through a process called intercalation, which involves lithium ions entering and exiting microscopic spaces in between the atoms of a battery’s two electrodes.

This concept is so engrained in energy storage research that when PNNL scientists, collaborating with the University of Washington, started considering a low-cost, safe alternative to lithium-ion batteries − a rechargeable zinc-manganese oxide battery − they assumed zinc would similarly move in and out of that battery’s electrodes. After a battery of tests, the team was surprised to realize their device was undergoing an entirely different process. Instead of simply moving the zinc ions around, their zinc-manganese oxide battery was undergoing a reversible chemical reaction that converted its active materials into entirely new ones.

Source: http://www.pnnl.gov/

How To Harvest Heat In The Dark To Produce Electricity

Physicists have discovered radical new properties in a nanomaterial, opening new possibilities for highly efficient thermophotovoltaic cells that could one day harvest heat in the dark and turn it into electricity. The research team from the Australian National University (ANU/ARC Centre of Excellence CUDOS) and the University of California Berkeley demonstrated a new artificial material, or metamaterial, that glows in an unusual way when heated.

The findings could drive a revolution in the development of cells which convert radiated heat into electricity, known as thermophotovoltaic cells. “Thermophotovoltaic cells have the potential to be much more efficient than solar cells,” said Dr Sergey Kruk from the ANU Research School of Physics and Engineering.

thermophotovoltaic

Our metamaterial overcomes several obstacles and could help to unlock the potential of thermophotovoltaic cells.”

Thermophotovoltaic cells have been predicted to be more than twice as efficient as conventional solar cells. They do not need direct sunlight to generate electricity, and instead can harvest heat from their surroundings in the form of infrared radiation. They can also be combined with a burner to produce on-demand power or can recycle heat radiated by hot engines. The team’s metamaterial, made of tiny nanoscopic structures of gold and magnesium fluoride, radiates heat in specific directions. The geometry of the metamaterial can also be tweaked to give off radiation in specific spectral range, in contrast to standard materials that emit their heat in all directions as a broad range of infrared wavelengths. This makes the new material ideal for use as an emitter paired with a thermophotovoltaic cell.

The project started when Dr Kruk predicted the new metamaterial would have these surprising properties. The ANU team then worked with scientists at the University of California Berkeley, who have unique expertise in manufacturing such materials.

To fabricate this material the Berkeley team were operating at the cutting edge of technological possibilities,” Dr Kruk said. “The size of an individual building block of the metamaterial is so small that we could fit more than 12,000 of them on the cross-section of a human hair.

The research is published in Nature Communications.

Source: http://www.anu.edu.au/

Battery That Could Be Recharged 200,000 Times

Scientists have long sought to use nanowires in batteries. Thousands of times thinner than a human hair, they’re highly conductive and feature a large surface area for the storage and transfer of electrons. However, these filaments are extremely fragile and don’t hold up well to repeated discharging and recharging, or cycling. In a typical lithium-ion battery, they expand and grow brittle, which leads to cracking.

Researchers fron the University of California Irvine (UCI) have solved this problem by coating a gold nanowire in a manganese dioxide shell and encasing the assembly in an electrolyte made of a Plexiglas-like gel. The combination is reliable and resistant to failure.

Mya Le Thai

The study leader, UCI doctoral candidate Mya Le Thai, cycled the testing electrode up to 200,000 times over three months without detecting any loss of capacity or power and without fracturing any nanowires. The findings were published today in the American Chemical Society’s Energy Letters. Hard work combined with serendipity paid off in this case, according to senior author Reginald Penner.

Mya was playing around, and she coated this whole thing with a very thin gel layer and started to cycle it,” said Penner, chair of UCI’s chemistry department. “She discovered that just by using this gel, she could cycle it hundreds of thousands of times without losing any capacity”.

That was crazy,” he added, “because these things typically die in dramatic fashion after 5,000 or 6,000 or 7,000 cycles at most.

Source: https://news.uci.edu/

In 2029 Immortality May Be Possible

Scientist Ray Kurzweil (Google‘s Director of Engineering) reckons man could become immortal in just a few years’ time. The 61-year-old American – dubbed the smartest futurist on Earth by Microsoft founder Bill Gates – has consistently predicted new technologies many years before they arrived. Here, Ray explains why he believes today’s 60-year-olds could go on to live forever. We are living through the most exciting period of human historyComputer technology and our understanding of genes — our body’s software programs — are accelerating at an incredible rate. He and many other scientists now believe that in around 20 years we will have the means to reprogramme our bodies’ stone-age software so we can halt, then reverse, ageing. Then nano-technology will let us live for ever.

Already, blood cell-sized submarines cnanorobotsalled nanobots are being tested in animals. These will soon be used to destroy tumours, unblock clots and perform operations without scars.

Ultimately, nanobots will replace blood cells and do their work thousands of times more effectively. Within 25 years we will be able to do an Olympic sprint for 15 minutes without taking a breath, or go scuba-diving for four hours without oxygen. Heart-attack victims — who haven’t taken advantage of widely available bionic hearts — will calmly drive to the doctors for a minor operation as their blood bots keep them alive. Nanotechnology will extend our mental capacities to such an extent we will be able to write books within minutes. If we want to go into virtual-reality mode, nanobots will shut down brain signals and take us wherever we want to go. Virtual sex will become commonplace. And in our daily lives, hologram-like figures will pop up in our brain to explain what is happening.

These technologies should not seem at all fanciful. Our phones now perform tasks we wouldn’t have dreamed possible 20 years ago. In 1965, an university’s only computer cost £7million and was huge. Today your mobile phone is a million times less expensive and a thousand times more powerful. That’s a billion times more capable for the same price.

According to Kurrzweil’s theory — the Law of Accelerating Returns — we will experience another billion-fold increase in technological capability for the same cost in the next 25 years. So we can look forward to a world where humans become cyborgs, with artificial limbs and organs. This might sound far-fetched, but remember, diabetics already have artificial pancreases and Parkinson’s patients have neural implants. As we approach the 21st Century’s second decade, stunning medical breakthroughs are a regular occurrence.

In 2008 we discovered skin cells can be transformed into the equivalent of embryonic cells. So organs will soon be repaired and eventually grown. In a few years most people will have their entire genetic sequences mapped. Before long, we will all know the diseases we are susceptible to and gene therapies will mean virtually no genetic problems that can’t be erased. It’s important to ensure we get to take advantage of the upcoming technologies by living well and not getting hit by a bus.

By the middle of this century we will have back-up copies of the information in our bodies and brains that make us who we are. Then we really will be immortal.

Source: https://www.theguardian.com
AND
http://www.thesun.co.uk/

Diabetes: How To Avoid Amputation

Scientists from Tomsk Polytechnic University (TPU) in Russia along with National Autonomous Mexico University develop techniques to treat diabetic foot syndrome with silver nano-particles which special insoles are treated with. The techniques help to fight ulcers appearing on feet in diabetic patients, facilitates their healing and disinfection, reducing the risk of amputation.

Diabetic foot syndrome is one of the latest and most serious complications of diabetes. Due to the large amount of sugar in the body there are changes in peripheral nerves, blood vessels, skin and soft tissues, bones and joints of the patient. Infections, ulcers, suppurations and so on are emerging. Up to 15% of people with diabetes have the risk of developing ulcers on feet. In the advanced form diabetic foot syndrome can lead to amputation. Silver preparations being developed by Tomsk Polytechnic University jointly with Novosibirsk and Mexican counterparts are able to reduce such risks.

diabetes

 

The research has shown silver’s antibacterial properties facilitate rapid healing of ulcers and suppurations in patients with diabetic foot syndrome. Together with colleagues from Mexico, where the problem is particularly acute, we are working to create special insoles for diabetic patients. The development has passed clinical tests. In patients who had used the insoles impregnated with silver nanoparticles, leg ulcers healed up, the risk of amputations significantly reduced“, says TPU Professor Alexey Pestryakov, Head of the Department of Physical and Analytical Chemistry.

 Source: http://tpu.ru/

Solar Hubs Provide Clean Water, Electricity & Internet to 3000 people

The Italian company Watly aims to deliver a hat trick of very needful things to the developing world, in the form of both a standalone unit and as a network of units. The team of this ambitious company describes their creation as the “biggest solar-powered computer in the world,” which combines solar photovoltaics (PV) and battery storage for powering the unit (and for charging external devices), with a water filtration system and an internet connectivity and telecommunications hub. The Watly system, which has been in the works for the last few years, and has now attracted the attention of The Discovery Channel, was run as a pilot program at a village in Ghana, where the 2.0 version of the device was successfully deployed to deliver clean drinking water to residents.

watly solar hub

The next step, however, is to build out the Watly 3.0 system, which is the full-sized version of the device, measuring some 40 meters long, and which is expected to be able to provide as much as 5000 liters of water per day, every day, for at least 15 years, along with producing solar electricity and charging services to as many as 3000 people. According to the company, one unit could offset the emissions equivalent of 2500 barrels of oil over the course of those 15 years, along with providing clean water and an off-grid power source. To get to that next step, Watly has turned to – wait for it – crowdfunding with an Indiegogo campaign that seeks to raise money for the installation of the 3.0 version as a pilot program in Africa (location TBD).

Along with the solar power and drinking water, Watly aims to provide an internet/telecom hub for local residents, with an onboard system for connecting to 3G/4G, radio link data systems, and/or satellites, as well as to communicate with other Watly units to act as a node in an “EnergyNet.”

Watly is a powerful communication device that can collect and send any kind of data (videos, images, audios, texts, ratios, etc.) to the Internet as well as to any other compatible communication device. A single Watly is a standing alone machine, but two or more Watlys become a network where each node is auto-powered, self-sustained and multi-functional.

Source: https://watly.co/

Root, the Code-Teaching Robot

In the digital age, computing fuels some of the fastest-growing segments of the economy, making programming an increasingly important part of an American education. But the words “computer literacy” do not exactly excite the imaginations of most grade schoolers. So how to engage young minds with coding? One answer, say researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering, is a robot named Root.

Root teaches kids codingCLICK ON THE IMAGE TO ENJOY THE VIDEO

“Right now, coding is taught at a computer keyboard. It’s an abstract process that doesn’t have a relationship to the real world,” said Raphael Cherney, a research associate at the institute. “What Root does is bring coding to life in an extremely fun and approachable way. Kids with no experience in coding can be programming robots in a matter of minutes.

Fitting somewhere between old-time remote-controlled toy trains and today’s video games, Root is a robot that is programmed using a tablet interface called Square. Root has light and color sensors, bumpers, and a touch surface that enable it to respond to the physical world. In a classroom setting, Root would “drive” along a magnetic dry-erase whiteboard at the front of the class, giving the young programmers an “instant, physical manifestation” of the code, according to Zivthan Dubrovsky, who leads the robotics platform at Wyss.
Source: http://news.harvard.edu/

Brain Implant Moves Paralyzed Arm

This is Ian Burkhart of Ohio. His hands and legs were permanently paralyzed in a diving accident when he was 19 years old. But now with the help of a new, breakthrough computer chip implanted in his brain – the, now, 24-year-old is playing guitar hero.

brain implant helps paralized limbsCLICK ON THE IMAGE TO ENJOY THE VIDEO
When we first hooked everything up, you know for the first time being able to move my hand, it was a big shock because you know it was something that I have not moved in three and half years at that point, now it’s more of something where I expect it to move“,  says  Ian Burkhat, the quadriplegic patient at Ohio State University Wexner Medical Center.  The small pea-sized computer chip relays signals from Burkhart’s brain through 130 electrodes to his forearm, allowing his mind guide his hands and fingers, bypassing his damaged spinal cord. On Wednesday, scientists and neurosurgeons describing this quadriplegic’s accomplishments as a milestone in the evolution of brain-computer interface technology.

This really provides hope, we believe, for many patients in the future as this technology evolves and matures“, comments Doctor Ali Rezai, from the Ohio State’s Center for NeuroModulation. Burkhart says the progress is moving along faster than he imagined: “The biggest dream would be to get full function of my hand back, both my hands, because that would allow you to be much more independent, not to have to rely on people for simple day to day tasks that you take for granted.”

Scientists are working to improve the technology, which for now can only be used in the laboratory, and move toward a wireless system bringing Burkhart another step closer to his dream.

Source: http://wexnermedical.osu.edu/

Robots That Feel And Touch Like Humans

Smart synthetic skins have the potential to allow robots to touch and sense what’s around them, but keeping them powered up and highly sensitive at low cost has been a challenge. Now scientists report in the journal ACS Nano a self-powered, transparent smart skin that is simpler and less costly than many other versions that have been developed.

mother robot

Endowing robots and prosthetics with a human-like sense of touch could dramatically advance these technologies. Toward this goal, scientists have come up with various smart skins to layer onto devices. But boosting their sensitivity has involved increasing the numbers of electrodes, depending on the size of the skin. This leads to a rise in costs. Other systems require external batteries and wires to operate, which adds to their bulk. Haixia Zhang and colleagues wanted to find a more practical solution.

The researchers created a smart skin out of ultra-thin plastic films and just four electrodes made from silver nanowires. Other prototypes contain up to 36 electrodes. Additionally, one component harvests mechanical energy — for example, from the movement of a prosthetic hand’s fingers — and turns it into an electric current.

Source: http://www.acs.org/

Electronic Circuits Applied To Paper From A Pen

The electronics of the future will be printed. Flexible circuits can be produced inexpensively on foil or paper using printing processes and permit futuristic designs with curved diodes or input elements. This requires printable electronic materials that can be printed and retain a high level of conductivity during usage in spite of their curved surfaces. Some tried and tested materials include organic, conductive polymers and nanoparticles made of conductive oxides (TCOs). Research scientists at INMLeibniz-Institute for New Materials (Germany) have now combined the benefits of organic and inorganic electronic materials in a new type of hybrid inks. This allows electronic circuits to be applied to paper directly from a pen, for example. To create their hybrid inks, the research scientists coated nanoparticles made of metals with organic, conductive polymers and suspended them in mixtures of water and alcohol. These suspensions can be applied directly on paper or foil using a pen and they dry without any further processing to form electrical circuits.

ink to print electronics

Electrically conductive polymers are used in OLEDs, for example, which can also be manufactured on flexible substrates,” explains Tobias Kraus, Head of the research group Structure Formation at INM. “The combination of metal and nano-particles that we introduce here combines mechanical flexibility with the robustness of a metal and increases the electrical conductivity.”

The developers will be demonstrating their results and the possibilities they offer at stand B46 in hall 2 at this year’s Hanover Trade Fair as part of the leading trade show Research & Technology which takes place from 25th to 29th April.

Source: http://www.leibniz-inm.de/

Nanotechnology Improves Next Generation Of Batteries

In the global race to create more efficient and long-lasting batteries, some are betting on nanotechnology — the use of minuscule parts — as the most likely to yield a breakthrough. Improving batteries’ performance is key to the development and success of many much-hyped technologies, from solar and wind energy to electric cars. They need to hold more energy, last longer, be cheaper and safer. Research into how to achieve that has followed several avenues, from using different materials than the existing lithium-ion batteries to changing the internal structure of batteries using nanoparticles — parts so small they are invisible to the naked eye. Nanotechnology can increase the size and surface of batteries electrodes, the rods inside the batteries that absorb the energy. It does so by effectively making the electrodes sponge-like, so that they can absorb more energy during charging and ultimately increasing the energy storage capacity. Prague-based company HE3DA in Czech Republic has developed such a technology by using the nanotechnology to move from the current flat electrodes to make them three dimensional. With prototypes undergoing successful testing, it hopes to have the battery on the market at the end of this year.

Tesla Model 3

In the future, this will be the mainstream,” said Jan Prochazka, the president. He said it would be targeted at high-intensity industries like automobiles and the energy sector, rather than mobile phones, because that is where it can make the biggest difference through its use of his bigger electrodes.

In combination with an internal cooling system the batteries, which are being tested now, should be safe from overheating or exploding, a major concern with existing technologies. Researchers at the University of Michigan and MIT have likewise focused on nanotechnology to improve the existing lithium-ion technology. Others have sought to use different materials. One of the most promising is lithium oxygen, which theoretically could store five to 10 times the energy of a lithium ion battery, but there have been a number of technical problems that made it inefficient. Batteries based on sodium-ion, aluminium-air and aluminium-graphite are also being explored. There’s even research on a battery powered by urine.

Source: http://www.he3da.cz/
AND
http://bigstory.ap.org/

Artificial Molecules Revolutionize 3D Printing

Scientists at ETH Zurich and IBM Research Zurich have developed a new technique that enables for the first time the manufacture of complexly structured tiny objects joining together microspheres. The objects have a size of just a few micrometres and are produced in a modular fashion, making it possible to program their design in such a way that each component exhibits different physical properties. After fabrication, it is also very simple to bring the micro-objects into solution. This makes the new technique substantially different from micro 3D printing technology. With most of today’s micro 3D printing technologies, objects can only be manufactured if they consist of a single material, have a uniform structure and are attached to a surface during production.

3D printing process ETHArtificial molecules. The individual components are marked with different fluorescent dyes (molecule size: 2-7 micrometres; compilation of microscopic images)

To prepare the micro-objects, the ETH and IBM researchers use tiny spheres made from a polymer or silica as their building blocks, each with a diameter of approximately one micrometre and different physical properties. The scientists are able to control the particles and arrange them in the geometry and sequence they like.

The structures that are formed occupy an interesting niche in the size scale: they are much larger than your typical chemical or biochemical molecules, but much smaller than typical objects in the macroscopic world. “Depending on the perspective, it’s possible to speak of giant molecules or micro-objects,” says Lucio Isa, Professor for Interfaces, Soft matter and Assembly at ETH Zurich. He headed the research project together with Heiko Wolf, a scientist at IBM Research. “So far, no scientist has succeeded in fully controlling the sequence of individual components when producing artificial molecules on the micro scale,” says Isa.

Source: https://www.ethz.ch/

Impenetrable Body-Armor To Protect Soldiers

A team of engineers from the University of California San Diego (UC San Diego) has developed and tested a type of steel with a record-breaking ability to withstand an impact without deforming permanently. The new steel alloy could be used in a wide range of applications, from drill bits, to body armor for soldiers, to meteor-resistant casings for satellites. The material is an amorphous steel alloy, a promising subclass of steel alloys made of arrangements of atoms that deviate from steel’s classical crystal-like structure, where iron atoms occupy specific locations.

Researchers are increasingly looking to amorphous steel as a source of new materials that are affordable to manufacture, incredibly hard, but at the same time, not brittle. The researchers believe their work on the steel alloy, named SAM2X5-630, is the first to investigate how amorphous steels respond to shock. SAM2X5-630 has the highest recorded elastic limit for any steel alloy, according to the researchers—essentially the highest threshold at which the material can withstand an impact without deforming permanently. The alloy can withstand pressure and stress of up to 12.5 giga-Pascals or about 125,000 atmospheres without undergoing permanent deformations.

record breaking steelTransmission electron microscopy image showing different levels of crystallinity embedded in the amorphous matrix of the alloy. Watch a video of the alloy being tested, click the image.
Because these materials are designed to withstand extreme conditions, you can process them under extreme conditions successfully,” said Olivia Graeve, a professor of mechanical engineering at the Jacobs School of Engineering at UC San Diego, who led the design and fabrication effort. Veronica Eliasson, an assistant professor at USC, led the testing efforts.

The researchers, from the University of California, San Diego, the University of Southern California and the California Institute of Technology, describe the material’s fabrication and testing in a recent issue of Nature Scientific Reports.

Source: http://jacobsschool.ucsd.edu/

Possible Soft Cure For Inflammatory Bowel Disease

Nanoparticles designed to block a cell-surface molecule that plays a key role in inflammation could be a safe treatment for inflammatory bowel disease (IBD), according to researchers in the Institute for Biomedical Sciences at Georgia State University and Southwest University in China. The scientists developed nanoparticles, or microscopic particles, to reduce the expression of  CD98, a glycoprotein that promotes inflammation.

IBD

Our results suggest this nanoparticle could potentially be used as an efficient therapeutic treatment for inflammation,” said Didier Merlin, professor in the Institute for Biomedical Sciences at Georgia State and researcher at the Atlanta Veterans Affairs Medical Center.

We targeted CD98 because we determined in a previous study that CD98 is highly over-expressed in activated immune cells involved in IBD.”

In the United States, as many as 1.3 million people suffer from IBD, which includes ulcerative colitis and Crohn’s disease, conditions with chronic or recurring abnormal response to the body’s immune system and inflammation of the gastrointestinal tract. IBD gets worse over time and causes severe gastrointestinal symptoms, such as persistent diarrhea, cramping abdominal pain, fever, rectal bleeding, loss of appetite and weight loss. Surgery is required when medication can no longer control the symptoms, and patients also have an increased risk of colon cancer, according to the Centers for Disease Control and Prevention.

This study suggests the development of nanotherapeutic strategies could be an alternative to currently available drugs, which are limited by serious side effects, in treating inflammatory conditions such as IBD.

The findings are published in the journal Colloids and Surfaces B: Biointerfaces.

Source: http://news.gsu.edu/

Electric Car: Safer, Cheaper Rechargeable Batteries

By chemically modifying and pulverizing a promising group of compounds, scientists at the National Institute of Standards and Technology (NIST) have potentially brought safer, solid-state rechargeable batteries two steps closer to reality.

sodiumChunks of this sodium-based compound (Na2B12H12) (left) would function well in a battery only at elevated temperatures, but when they are milled into far smaller pieces (right), they can potentially perform even in extreme cold, making them even more promising as the basis for safer, cheaper rechargeables.

These compounds are stable solid materials that would not pose the risks of leaking or catching fire typical of traditional liquid battery ingredients and are made from commonly available substances. Since discovering their properties in 2014, a team led by NIST scientists has sought to enhance the compounds’ performance further in two key ways: Increasing their current-carrying capacity and ensuring that they can operate in a sufficiently wide temperature range to be useful in real-world environments.

Considerable advances have now been made on both fronts, according to Terrence Udovic of the NIST Center for Neutron Research, whose team has published a pair of scientific papers that detail each improvement.  The first advance came when the team found that the original compounds — made primarily of hydrogen, boron and either lithium or sodium — were even better at carrying current with a slight change to their chemical makeup. Replacing one of the boron atoms with carbon improved their ability to conduct charged particles, or ions, which are what carry electricity inside a battery. As the team reported in February in their first paper, the switch made the compounds about 10 times better at conducting.

But perhaps more important was clearing the temperature hurdle. The compounds conducted ions well enough to operate in a battery — as long as it was in an environment typically hotter than boiling water. Unfortunately, there’s not much of a market for such high-temperature batteries, and by the time they cooled to room temperature, the materials’ favorable chemical structure often changed to a less conductive form, decreasing their performance substantially. One solution turned out to be crushing the compounds’ particles into a fine powder.

This approach can remove worries about whether batteries incorporating these types of materials will perform as expected even on the coldest winter day,” said Udovic, whose collaborators on the most recent paper include scientists from Japan’s Tohoku University, the University of Maryland and Sandia National Laboratories. “We are currently exploring their use in next-generation batteries, and in the process we hope to convince people of their great potential.”

Source: http://nist.gov

How To Monitor and Combat Diabetes With A Simple Patch

In the future, diabetics may be able to replace finger prick tests and injections with this non-invasive smart patch to keep their glucose levels in check.

patch against diabetesCLICK ON THE IMAGE TO ENJOY THE VIDEO

The device is a type of patch which enables diabetic patients to monitor blood sugar levels via sweat without taking blood samples and control glucose levels by injecting medication“, says Kim Dae-Hyeong, researcher at the Institute for Basic Science (IBS), Seoul National University, South Korea.

After analyzing the patient’s sweat to sense glucose, the patch’s embedded sensors constantly test pH, humidity, and temperature – important factors for accurate blood sugar readings. The graphene-based patch is studded with micro-needles coated with medication that pierce the skin painlessly. When the patch senses above normal glucose levels a tiny heating element switches on which dissolves the medication coating the microneedles and releases it into the body. The prototype worked well in mice trials.

Diabetic patients can easily use our device because it does not cause any pain or stress them out. So they can monitor and manage blood glucose levels more often to prevent increasing it. Therefore, our device can greatly contribute to helping patients avoid complications of the disease“, comments Professor Kim Dae-Hyeong. Researchers want to lower the cost of production, while figuring out how to delivery enough medication to effectively treat humans, both major hurdles towards commercialization. The research was published in the journal Nature Nanotechnology in March.

Source: http://www.ibs.re.kr/

The Gene That Causes Grey Hair Is Now Identified

No matter who you are; for most of us grey hair is an inevitable part of getting older. But what if you could switch off the gene that causes it? For the first time, scientists have identified a gene called IRF4 as the culprit behind grey hair. DNA samples from over 6,000 volunteers were collected in Latin America; chosen for the diverse ancestry of its inhabitants. And it turns out if you have your roots in Europe, grey hair is much more likely.

Grey-HairCLICK ON THE IMAGE TO ENJOY THE VIDEO

This genetic variant of IRF4 has two forms; one form is present world-wide and the other form is present only in Europeans. And we saw that this particular European specific form gives you almost double the chance of hair greying,” says Dr Kaustubh Adhikari from University College London (UCL), department of cell and developmental biology.

The gene IRF4 helps regulate melanin in the body, which determines – among other things – hair colour. Age and environmental factors will, of course, influence how quickly IRF4 triggers hair greying. But the researchers say their discovery could lead to a treatment that could stop it in its tracks.

Switching off a gene is of course feasible, the issue is whether it will have the desired effect and whether it’s the right thing to do… But in terms of trying to develop a therapy to delay or prevent hair greying, that is something that is potentially feasible; yes“, comments Professor Andres Ruiz-Linares, UCL (department of BioSciences).

Scientists think that a simple cosmetic treatment for switching off the grey gene would take many more years of research. But for those keen to banish the grey forever, your prayers might one day be answered.

The study has been published in the journal  Nature Communications.

Source: https://www.ucl.ac.uk/

Transparent Wood Brightens Homes

When it comes to indoor lighting, nothing beats the sun’s rays streaming in through windows. Soon, that natural light could be shining through walls, too. Scientists from the KTH Royal Institute of Technology (Sweden) have developed transparent wood that could be used in building materials and could help home and building owners save money on their artificial lighting costs. Their material, reported in ACS’ journal Biomacromolecules, also could find application in solar cell windows.

transparent wood

Homeowners often search for ways to brighten up their living space. They opt for light-colored paints, mirrors and lots of lamps and ceiling lights. But if the walls themselves were transparent, this would reduce the need for artificial lighting — and the associated energy costs. Recent work on making transparent paper from wood has led to the potential for making similar but stronger materials. Lars Berglund and colleagues from KTH the wanted to pursue this possibility.

The researchers removed lignin from samples of commercial balsa wood. Lignin is a structural polymer in plants that blocks 80 to 95 percent of light from passing through. But the resulting material was still not transparent due to light scattering within it. To allow light to pass through the wood more directly, the researchers incorporated acrylic, often known as Plexiglass. The researchers could see through the resulting material, which was twice as strong as Plexiglass. Although the wood isn’t as crystal clear as glass, its haziness provides a possible advantage for solar cells. Specifically, because the material still traps some light, it could be used to boost the efficiency of these cells, the scientists note.

Source: http://www.acs.org/
AND
https://www.kth.se/

Bionic Patch Could Replace Heart Transplantation

In this Lab at the University of Tel Aviv, the future of heart medicine is taking shape. Researchers have developed a bionic patch that can monitor and treat heart conditions in real time.

heartCLICK ON THE IMAGE TO ENJOY THE VIDEO

Well, this is the first time that engineered tissue, thick engineered tissue, functional tissues, are integrated with electronics to become cyborg tissues, meaning that there is integration of machine and living tissues“, says Professor Tal Dvir of Tel Aviv University (Department of Bio Technology and Center for Nano Technology).

That integration could potentially give doctors new options when treating a myriad of heart problems. The patch is comprised of live, lab-grown heart tissue and nano electronics embedded on a 3D printed scaffold. The team says the patch could offer an alternative to heart transplantation in the future by releasing medications as well as repopulating the defected area with cells that are capable of contraction. In the short term, the device could monitor and activate the entire organ as needed as well as alert a doctor to a potentially fatal problem in real time.

The patient is sitting in his house and not feeling well and the physician immediately sees the condition of the heart on his computer and can remotely activate the heart: can provide electrical stimulation, can release drugs. And if you really think about this technology, we don’t even need a physician because the cardiac patch can regulate its own function“, adds Tal Dvir.
As exciting as it may be, the bionic heart patch is still years from commercial viability. The next step is a series of animals trials that if successful could lead to clinical trials in humans.

The findings were published this month in the Journal ‘Nature Materials‘.

Source: https://english.tau.ac.il

Nanoparticle-Based Cancer Therapies Shown to Work in Humans

A team of researchers led by Caltech scientists has shown that nanoparticles can function to target tumors while avoiding adjacent healthy tissue in human cancer patients.

nanoparticle against brain cancer

Our work shows that this specificity, as previously demonstrated in preclinical animal studies, can in fact occur in humans“, says study leader Mark E. Davis, the Warren and Katharine Schlinger Professor of Chemical Engineering at Caltech. “The ability to target tumors is one of the primary reasons for using nanoparticles as therapeutics to treat solid tumors.
The scientists demonstrate that nanoparticle-based therapies can act as a “precision medicine” for targeting tumors while leaving healthy tissue intact. In the study, Davis and his colleagues examined gastric tumors from nine human patients both before and after infusion with a drug—camptothecin—that was chemically bound to nanoparticles about 30 nanometers in size.

Our nanoparticles are so small that if one were to increase the size to that of a soccer ball, the increase in size would be on the same order as going from a soccer ball to the planet Earth,” says Davis, who is also a member of the City of Hope Comprehensive Cancer Center in Duarte, California, where the clinical trial was conducted.

The team found that 24 to 48 hours after the nanoparticles were administered, they had localized in the tumor tissues and released their drug cargo, and the drug had had the intended biological effects of inhibiting two proteins that are involved in the progression of the cancer. Equally important, both the nanoparticles and the drug were absent from healthy tissue adjacent to the tumors.

The findings, have been published online in the journal Proceedings of the National Academy of Sciences.

Source: https://www.caltech.edu/

Cost-effective Hydrogen Production From Water

Groundbreaking research at Griffith University (Australia) is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen. Professor Xiangdong Yao and his team from Griffith’s Queensland Micro- and Nanotechnology Centre have successfully managed to use the element to produce hydrogen from water as a replacement for the much more costly platinum.

Tucson fuel cellTucson fom Hyundai: A Hydrogen Fuel Cell Car

Hydrogen production through an electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells,” says Professor Yao. “Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains a great challenge. “Platinum is the most active and stable electrocatalyst for this purpose, however its low abundance and consequent high cost severely limits its large-scale commercial applications. “We have now developed this carbon-based catalyst, which only contains a very small amount of nickel and can completely replace the platinum for efficient and cost-effective hydrogen production from water.

In our research, we synthesize a nickel–carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution“, he adds. “This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance and impressive durability.”

Proponents of a hydrogen economy advocate hydrogen as a potential fuel for motive power including cars and boats and on-board auxiliary power, stationary power generation (e.g., for the energy needs of buildings), and as an energy storage medium (e.g., for interconversion from excess electric power generated off-peak).

Source: https://app.secure.griffith.edu.au/

Sensor One Million Times More Sensitive Detects Cancer Far Earlier

Physicists and engineers at Case Western Reserve University (CWRU) have developed an optical sensor, based on nanostructured metamaterials, that’s 1 million times more sensitive than the current best available–one capable of identifying a single lightweight molecule in a highly dilute solution. Their goal: to provide oncologists a way to detect a single molecule of an enzyme produced by circulating cancer cells. Such detection could allow doctors to diagnose patients with certain cancers far earlier than possible today, monitor treatment and resistance and more.

cwru sensor

The prognosis of many cancers depends on the stage of the cancer at diagnosis” said Giuseppe “Pino” Strangi, professor of physics at Case Western Reserve and leader of the research.

Very early, most circulating tumor cells express proteins of a very low molecular weight, less than 500 Daltons,” Strangi explained. “These proteins are usually too small and in too low a concentration to detect with current test methods, yielding false negative results.

“With this platform, we’ve detected proteins of 244 Daltons, which should enable doctors to detect cancers earlier–we don’t know how much earlier yet,” he said. “This biosensing platform may help to unlock the next era of initial cancer detection.”

The researchers believe the sensing technology will also be useful in diagnosing and monitoring other diseases as well.

Their research is published online in the journal Nature Materials.

Source: http://www.eurekalert.org

Inhibited On/Off Switch Protein Could Prevent Prostate Cancer

Researchers at the University of Georgia (UGA) have created a new therapeutic for prostate cancer that has shown great efficacy in mouse models of the disease. The treatment is designed to inhibit the activity of a protein called PAK-1, which contributes to the development of highly invasive prostate cancer cells. Aside from non-melanoma skin cancer, prostate cancer is the most common cancer among men in the U.S., according to the Centers for Disease Control and Prevention. It is also one of the leading causes of cancer death among men of all races.

prostateCANCERcells

PAK-1 is kind of like an on/off switch,” said study co-author Somanath Shenoy, an associate professor in UGA‘s College of Pharmacy. “When it turns on, it makes cancerous cells turn into metastatic cells that spread throughout the body.

With the help of Brian Cummings, an associate professor in UGA‘s College of Pharmacy, the researchers developed a way to package and administer a small molecule called IPA-3, which limits the activity of PAK-1 proteins.

Researchers have published their findings recently in the journal Nanomedicine: Nanotechnology, Biology and Medicine.

Source: http://news.uga.edu/

The Genome Editor

French biochemist Emmanuelle Charpentier, from the Max Planck Institute in Berlin, was recently awarded the L’oreal-Unesco Prize For Women in Science. The scientist is listed as one of the 100 Most Influential People by Time Magazine. Her discovery, the CRISPR-Cas9, is a gene-editing technology that could revolutionize medical treatments in ways we can only begin to imagine. Marking an incredible leap forward in the long history of genome studies, Emmanuelle Charpentier and her lab partner, scientist Jennifer Doudna, jointly discovered CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats). Behind this name, which sounds like something from a sci-fi novel, is a technology that works like a pair of molecular scissors, allowing to precisely snip the genetic code, letter by letter, along with the programmable enzyme Cas9 able to perform a cut on a double DNA strand. This is a never-before-reached level of precision in genome studies. And one Emmanuelle Charpentier claims could change everyone’s life :

emmanuelle charpentier2

I am excited about the potential of our findings to make a real difference in people’s lives. The discovery demonstrates the relevance of basic research and how it can transform application in bioengineering and biomedicine, said Emmanuelle Charpentier.

While the scientific community agrees that CRISPR-Cas9 is a revolution, the stakes are so high that the question of what’s next seems a difficult one to answer. The technology could be the key to eradicate certain viruses like HIV, haemophilia or Huntington, to screen for cancer genes or to undertake genome engineering. The latter obviously raises moral and ideological issues.

The recent scientific article « CRISPR/Cas9-mediated Gene Editing In Human Tripronuclear Zygotes » published by Protein Cell reports the first experiment on a foetus by a team of scientists in China, and illustrates the potential dangerous consequences (eugenics)  of CRISPR-Cas9 on future generations. Nature & Science refused to publish this experiment, mainly for ethical reasons. This question of ethics reminds us that science and society cannot be isolated from one another.

Source: https://www.mpg.de/
AND
http://discov-her.com/

Dye Solar Cells Make Your Mouse Battery Obsolete

These little glass squares could just be the answer to charging all your electronics. The glass-printed photovoltaic cells are a form of Dye Solar Cell technology created by Israeli company 3G Solar Photovoltaics. They’re so sensitive they can generate power from indirect, indoor lighting. Check it out. The company’s head of R&D Nir Stein is taking the batteries out of this mouse, which has the company’s dye solar cell module installed on top.


solar cells powered mouseCLICK ON THE IMAGE TO ENJOY THE VIDEO

What you see here is a computer mouse that has a bluetooth connectivity inside it and is powered by 3G solar photovoltaic cells. So when you have thousands of sensors, for instance in a building, which is going to happen in the next few years, you’ll never have to change a battery again,” says Nir Stein.
Dye-sensitized solar cells, or Graetzel cells, were discovered about 20 years ago. When they’re exposed to sunlight the dye becomes excited and creates an electronic charge without the need for pricey semiconductors. Kind of like the way plants use chlorophyll to turn sunlight into energy through photosynthesis. While the technology is the same, 3G Solar Voltaics‘ CEO Barry Breen says that being able to embed the cells on small surfaces has the potential to change the way we charge everyday devices. ) BARRY N. BREEN, CEO OF 3GSOLAR PHOTOVOLTAICS, SAYING: “What we offer in our cells, in our light power devices, is a solution that gives three times the power of anything else that exists, and we’re talking indoors, where most the electronics are used. So three times the power to run these new electronics, the new sensors, the smart watches and other wearables. So it’s a way to keep those powered that couldn’t be done before,” comments Barry Breen, CEO of 3G Solar Photovoltaics.

The small modules are durable and last for about 10 years. They can be colored and fitted to the shape of a device so they don’t stand out. Although still a prototype, the makers say the technology could make batteries a thing of the past.

Source: http://www.3gsolar.com/

 

Nano-enhanced Textiles Clean Themselves Of Stains

Researchers at RMIT University in Melbourne, Australia, have developed a cheap and efficient new way to grow special —which can degrade organic matter when exposed to lightdirectly onto . The work paves the way towards nano-enhanced textiles that can spontaneously clean themselves of stains and grime simply by being put under a light bulb or worn out in the sun. Dr Rajesh Ramanathan said the process developed  by the team had a variety of applications for catalysis-based industries such as agrochemicals, pharmaceuticals and natural products, and could be easily scaled up to industrial levels.

no more washing textileClose-up of the nanostructures grown on cotton textiles by RMIT University researchers. Image magnified 150,000 times

The advantage of textiles is they already have a 3D structure so they are great at absorbing light, which in turn speeds up the process of degrading organic matter,”said Dr Ramanathan. “There’s more work to do to before we can start throwing out our washing machines, but this advance lays a strong foundation for the future development of fully self-cleaning textile, he adds.”

The researchers from the Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Lab at RMIT worked with copper and silver-based nanostructures, which are known for their ability to absorb visible light.

Source: http://phys.org/

Low Cost Solar Power Charger For Smartphones

Could this be the future for low-cost solar power? Unlike the silicon-based solar cells that currently make up most of the market, perovskites are flexible, easily made in the lab and form thin films. Various research centres are competing to make the technology stable enough for mass production. A Polish team has developed a working prototype of a cell phone charger using the material.

dual junctio solar cellCLICK ON THE IMAGE TO ENJOY THE VIDEO

“It’s very cost effective so producing films of this material is extremely cheap and it’s flexible so it can be used in portable electronics. This is an example of prototype device. It’s basically a battery and it can be used for charging our mobile phones, laptops or tablets“, says Konrad Wojtkowski, from the Polish company Saule Technologies .

The team plans further work on the prototype, to make it more durable and withstand everyday use. If they succeed, the potential uses could be expanded to a wide range of devices, including tablets and laptops. The next step in producing perovskite solar cells is expanding their surface to allow application on any large area — such as home windows and roofs. This would be possible thanks to the flexibility of perovskite layers. However it’s used, these researchers say it is the best hope for harnessing the sun’s power without costing the earth.

Source: http://sauletech.com

Nano Biosensor Detects Rapidly Flu Virus At Low Cost

The Department of Applied Physics (AP) and Interdisciplinary Division of Biomedical Engineering (BME) of The Hong Kong Polytechnic University (PolyU) have jointly developed a novel nano biosensor for rapid detection of flu and other viruses. PolyU‘s new invention utilizes an optical method called upconversion luminescence resonance energy transfer (LRET) process for ultrasensitive virus detection. It involves simple operational procedures, significantly reducing its testing duration from around 1-3 days to 2-3 hours, making it more than 10 times quicker than traditional clinical methods. Its cost is around HK$20 per sample, which is 80% lower than traditional testing methods. The technology can be widely used for the detection of different types of viruses, shedding new light on the development of low-cost, rapid and ultrasensitive detection of different viruses.

flu virusTraditional biological methods for flu virus detection include genetic analysis — reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) used in immunology. However, RT-PCR is expensive and time-consuming while the sensitivity for ELISA is relatively low. Such limitations make them difficult for clinical use as a front-line and on-site diagnostic tool for virus detection, paving the way for PolyU‘s development of the new upconversion nanoparticle biosensor which utilizes luminescent technique in virus detection.

PolyU‘s researchers have developed a biosensor based on luminescent technique which operates like two matching pieces of magnet with attraction force. It involves the development of upconversion nanoparticles (UCNPs) conjugated with a probe oligo whose DNA base pairs are complementary with that of the gold nanoparticles (AuNPs) flu virus oligo.

The related results have been recently published in ACS Nano and Small, specialized journals in nano material research.

Source: http://www.polyu.edu.hk/

How To Kill Bacteria Using Gold Nanoparticles And Light

Researchers have developed a new technique for killing bacteria in seconds using highly porous gold nanodisks and light. The method could one day help hospitals treat some common infections without using antibiotics, which could help reduce the risk of spreading antibiotics resistance.

killing bacteriaWe showed that all of the bacteria were killed pretty quickly . . . within 5 to 25 seconds. That’s a very fast process,” said corresponding author Wei-Chuan Shih, a professor in the electrical and computer engineering department, University of Houston, Texas.

Scientists create gold nanoparticles in the lab by dissolving gold, reducing the metal into smaller and smaller disconnected pieces until the size must be measured in nanometers. One nanometer equals a billionth of a meter. A human hair is between 50,000 to 100,000 nanometers in diameter. Once miniaturized, the particles can be crafted into various shapes including rods, triangles or disks.

Previous research shows that gold nanoparticles absorb light strongly, converting the photons quickly into heat and reaching temperatures hot enough to destroy various types of nearby cells – including cancer and bacterial cells.

The research has been published in Optical Materials Express, a journal published by The Optical Society
Source: http://www.osa.org/

Biological NanoComputer Is Living

The substance that provides energy to all the cells in our bodies, Adenosine triphosphate (ATP), may also be able to power the next generation of supercomputers. That is what an international team of researchers led by Prof. Nicolau, the Chair of the Department of Bioengineering at McGill (Université McGill – Canada), believe. They’ve published an article on the subject earlier this week in the Proceedings of the National Academy of Sciences (PNAS), in which they describe a model of a biological computer that they have created that is able to process information very quickly and accurately using parallel networks in the same way that massive electronic super computers do. Except that the model bio supercomputer they have created is a whole lot smaller than current supercomputers, uses much less energy, and uses proteins present in all living cells to function. 

biocomputer“We’ve managed to create a very complex network in a very small area,” says Dan Nicolau, Sr. with a laugh. He began working on the idea with his son, Dan Jr., more than a decade ago and was then joined by colleagues from Germany, Sweden and The Netherlands, some 7 years ago. “This started as a back of an envelope idea, after too much rum I think, with drawings of what looked like small worms exploring mazes.”

The model bio-supercomputer that the Nicolaus (father and son) and their colleagues have created came about thanks to a combination of geometrical modelling and engineering knowhow (on the nano scale). It is a first step, in showing that this kind of biological supercomputer can actually work.

Source: https://www.mcgill.ca/

6.3 nanometre lens to revolutionise cameras

Scientists have created the world’s thinnest lens, one two-thousandth the thickness of a human hair, opening the door to flexible computer displays and a revolution in miniature cameras. Lead researcher Dr Yuerui (Larry) Lu from ANU Research School of Engineering  (Australia) said the discovery hinged on the remarkable potential of the molybdenum disulphide crystal.

nanometre lens

This type of material is the perfect candidate for future flexible displays,” said Dr Lu, leader of Nano-Electro-Mechanical System (NEMS) Laboratory in the ANU Research School of Engineering. “We will also be able to use arrays of micro lenses to mimic the compound eyes of insects.”

The 6.3-nanometre lens outshines previous ultra-thin flat lenses, made from 50-nanometre thick gold nano-bar arrays, known as a metamaterial. “Molybdenum disulphide is an amazing crystal,” said Dr Lu. “It survives at high temperatures, is a lubricant, a good semiconductor and can emit photons too. “The capability of manipulating the flow of light in atomic scale opens an exciting avenue towards unprecedented miniaturisation of optical components and the integration of advanced optical functionalities.”

Molybdenum disulphide is in a class of materials known as chalcogenide glasses that have flexible electronic characteristics that have made them popular for high-technology components.

Source: https://cecs.anu.edu.au/

New Cancer Treatment Could Eliminate Lung Metastases

A team of investigators from Houston Methodist Research Institute may have transformed the treatment of metastatic triple negative breast cancer by creating the first drug to successfully eliminate lung metastases in mice.
The majority of cancer deaths are due to metastases to the lung and liver, yet there is no cure. Existing cancer drugs provide limited benefit due to their inability to overcome biological barriers in the body and reach the cancer cells in sufficient concentrations. Houston Methodist nanotechnology and cancer researchers have solved this problem by developing a drug that generates nanoparticles inside the lung metastases in mice.
In this study, 50 percent of the mice treated with the drug had no trace of metastatic disease after eight months. That’s equivalent to about 24 years of long-term survival following metastatic disease for humans.

Due to the body’s own defense mechanisms, most cancer drugs are absorbed into healthy tissue causing negative side effects, and only a fraction of the administered drug actually reaches the tumor, making it less effective, said Mauro Ferrari, Ph.D, president and CEO of the Houston Methodist Research Institute. This new treatment strategy enables sequential passage of the biological barriers to transport the killing agent into the heart of the cancer. The active drug is only released inside the nucleus of the metastatic disease cell, avoiding the multidrug resistance mechanism of the cancer cells. This strategy effectively kills the tumor and provides significant therapeutic benefit in all mice, including long-term survival in half of the animals.

cancer treatment by injection

This may sound like science fiction, like we’ve penetrated and destroyed the Death Star, but what we discovered is transformational. We invented a method that actually makes the nanoparticles inside the cancer and releases the drug particles at the site of the cellular nucleus. With this injectable nanoparticle generator, we were able to do what standard chemotherapy drugs, vaccines, radiation, and other nanoparticles have all failed to do,” said Ferrari.

The research has been published in Nature Biotechnology .

Source: http://houstonmethodist.org/

Flexible Skin Cloaks Objects, Avoids Radar

Iowa State University engineers have developed a new flexible, stretchable and  tunablemetaskin” that uses rows of small, liquid-metal devices to cloak an object from the sharp eyes of radar. The meta-skin takes its name from metamaterials, which are composites that have properties not found in nature and that can manipulate electromagnetic waves. By stretching and flexing the polymer meta-skin, it can be tuned to reduce the reflection of a wide range of radar frequencies.

The journal Scientific Reports recently reported the discovery online. Lead authors from Iowa State’s department of electrical and computer engineering are Liang Dong, associate professor; and Jiming Song, professor. Co-authors are Iowa State graduate students Siming Yang, Peng Liu and Qiugu Wang; and former Iowa State undergraduate Mingda Yang. The National Science Foundation and the China Scholarship Council have partially supported the project.

flexible skin

It is believed that the present meta-skin technology will find many applications in electromagnetic frequency tuning, shielding and scattering suppression,” the engineers wrote in their paper.

Source: http://www.news.iastate.edu/

Nuclear Hazard: Major Step To Cure Radiation Sickness

At the labs of the biotech firm Pluristem Therapeutics in Haifa (Israel), researchers have developed an injection of cells from the placenta that can treat radiation exposure. Cells from the donated placentas are harvested to create a cocktail of therapeutic proteins.

nuclear radiationCLICK ON THE IMAGE TO ENJOY THE VIDEO

With these cells, we are injecting these cells to the bodies’ muscles and over there they capture stress signal from the body and they start secreting factors like… that will help the bone marrow to recover after radiation“, says Esther Lukasiewicz, Vice President (Medical Affairs)  at Pluristem Therapeutics.
The treatment is currently undergoing trials in Jerusalem and the United States. Animals exposed to radiation during testing have shown nearly a 100 percent recovery rate. The company says it’s most effective if injected within 48 hours of exposure to radiation, which could make it a vital tool in emergencies.

Yaky Yanay, President at Pluristem Therapeutics and  comments: “So it will be very easy to use, off-the-shelf and readily available. We designed it to be simple to treat it in the combat field or in case of the catastrophe itself, you just have to take the vial, take the cells out and inject it into the patients muscle so we will be able to treat or the agencies will be able to treat a lot of people in a short time.” The meltdown at Japan’s Fukushima Daiichi nuclear plant following an earthquake and tsunami in March 2011 is one such scenario. Pluristem Therapeutics is now working with Fukushima Medical University to treat people in case they are exposed to radiation.

When the Fukushima disaster happened it inspired our feeling that we have to do it stronger and quicker and we developed an aggressive plan in order to bring the product into awareness and today with NIH (National Institute of Allergy and Infectious Diseases) support and the cooperation of the Fukushima center we strongly believe that we can bring the product to cure many patients“, says Zami Aberman, Chairman and CEO at Pluristem Therapeutics.
Further trials are currently underway, and the company says the U.S. is keen to stockpile the treatment in case of emergency. They’re now developing similar treatments for disorders like Crohn’s Disease and other disorders of the central nervous system.

Source: http://www.pluristem.com/
And
http://www.reuters.com/

Bionic Finger Feels Texture

An amputee was able to feel smoothness and roughness in real-time with an artificial fingertip that was surgically connected to nerves in his upper arm. Moreover, the nerves of non-amputees can also be stimulated to feel roughness, without the need of surgery, meaning that prosthetic touch for amputees can now be developed and safely tested on intact individuals.

The technology to deliver this sophisticated tactile information was developed by Silvestro Micera and his team at EPFL (Ecole polytechnique fédérale de Lausanne) and SSSA (Scuola Superiore Sant’Anna) together with Calogero Oddo and his team at SSSA. The results, published today in eLife, provide new and accelerated avenues for developing bionic prostheses, enhanced with sensory feedback.

BionicFingerCLICK ON THE IMAGE TO ENJOY THE VIDEO

“The stimulation felt almost like what I would feel with my hand,” says amputee Dennis Aabo Sørensen about the artificial fingertip connected to his stump. He continues, “I still feel my missing hand, it is always clenched in a fist. I felt the texture sensations at the tip of the index finger of my phantom hand.

Sørensen is the first person in the world to recognize texture using a bionic fingertip connected to electrodes that were surgically implanted above his stump.

Nerves in Sørensen’s arm were wired to an artificial fingertip equipped with sensors. A machine controlled the movement of the fingertip over different pieces of plastic engraved with different patterns, smooth or rough. As the fingertip moved across the textured plastic, the sensors generated an electrical signal. This signal was translated into a series of electrical spikes, imitating the language of the nervous system, then delivered to the nerves.

Sørensen could distinguish between rough and smooth surfaces 96% of the time.

Source: https://actu.epfl.ch/

Artificial Intelligence: The Rise Of The Machines

In a milestone for artificial intelligence, a computer has beaten a human champion at a strategy game that requires “intuition” rather than brute processing power to prevail, its makers said Wednesday. Dubbed AlphaGo, the system honed its own skills through a process of trial and error, playing millions of games against itself until it was battle-ready, and surprised even its creators with its prowess.

go game

AlphaGo won five-nil, and it was stronger than perhaps we were expecting,” said Demis Hassabis, the chief executive of Google DeepMind, a British artificial intelligence (AI) company.

A computer defeating a professional human player at the 3,000-year-old Chinese board game known as Go, was thought to be about a decade off. The clean-sweep victory over three-time European Go champion Fan Huisignifies a major step forward in one of the great challenges in the development of artificial intelligence—that of game-playing,” the British Go Association said in a statement. The two-player game is described as perhaps the most complex ever designed, with more configurations possible than there are atoms in the Universe, Hassabis says. Players take turns placing stones on a board, trying to surround and capture the opponent’s stones, with the aim of controlling more than 50 percent of the board. There are hundreds of places where a player can place the first stone, black or white, with hundreds of ways in which the opponent can respond to each of these moves and hundreds of possible responses to each of those in turn.

Source: http://phys.org/

New 2D Material Upstages Graphene

A new one atom-thick flat material that could upstage the wonder material graphene and advance digital technology has been discovered by a physicist at the University of Kentucky working in collaboration with scientists from Daimler in Germany and the Institute for Electronic Structure and Laser (IESL) in Greece. The new material is made up of silicon, boron and nitrogen — all light, inexpensive and earth abundant elements — and is extremely stable, a property many other graphene alternatives lack.

2D material University of Kentucky

We used simulations to see if the bonds would break or disintegrate — it didn’t happen,” said Madhu Menon, a physicist in the UK Center for Computational Sciences. “We heated the material up to 1,000-degree Celsius and it still didn’t break.

Using state-of-the-art theoretical computations, Menon and his collaborators Ernst Richter from Daimler and a former UK Department of Physics and Astronomy post-doctoral research associate, and Antonis Andriotis from IESL, have demonstrated that by combining the three elements, it is possible to obtain a one atom-thick, truly 2D material with properties that can be fine-tuned to suit various applications beyond what is possible with graphene.

The findings are reported in the journal Physical Review B, Rapid Communications,

Source: http://uknow.uky.edu/

Nanotechnology Fights Skin Disease

Researchers at The Hebrew University of Jerusalem have developed a nanotechnology-based delivery system containing a protective cellular pathway inducer that activates the body’s natural defense against free radicals efficiently, a development that could control a variety of skin pathologies and disorders. The human skin is constantly exposed to various pollutants, UV rays, radiation and other stressors that exist in our day-to-day environment. When they filter into the body they can create Reactive Oxygen Species (ROS) – oxygen molecules known as Free Radicals, which are able to damage and destroy cells, including lipids, proteins and DNA. In the skin – the largest organ of the body – an excess of ROS can lead to various skin conditions, including inflammatory diseases, pigmenting disorders, wrinkles and some types of skin cancer, and can also affect internal organs. This damage is known as Oxidative Stress. The body is naturally equipped with defense mechanisms to counter oxidative stress. It has anti-oxidants and, more importantly, anti-oxidant enzymes that attack the ROS before they cause damage.

In a review article published in the journal Cosmetics, a PhD student from The Hebrew University of Jerusalem, working in collaboration with researchers at the Technion – Israel Institute of Technology, suggested an innovative way to invigorate the body to produce antioxidant enzymes, while maintaining skin cell redox balance – a gentle equilibrium between Reactive Oxygen Species and their detoxification.

skin nano

The approach of using the body’s own defense system is very effective. We showed that activation of the body’s defense system with the aid of a unique delivery system is feasible, and may leverage dermal cure,” said Hebrew University researcher Maya Ben-Yehuda Greenwald.

She showed that applying nano-size droplets of microemulsion liquids containing a cellular protective pathway inducer into the skin activates the natural skin defense systems.

Currently, there are many scientific studies supporting the activation of the body’s defense mechanisms. However, none of these studies has demonstrated the use of a nanotechnology-based delivery system to do so,” adds Ben-Yehuda Greenwald.

Source: http://new.huji.ac.il/

How To Turn Off Cancer Cells

Researchers offer proof of concept for new nanomedicine designed to inhibit tumor growth by keeping cancer dormant. A new Tel Aviv University (TAU) in Israel study offers tangible hope of a therapeutic pathway to keep osteosarcoma* lesions dormant. It also provides the fundamental basic-science for novel nanomedicines tailored to maintain cancer cells in an asymptomatic state. The proof of concept was pioneered by Prof. Ronit Satchi-Fainaro,  Head of TAU‘s Cancer Angiogenesis and Nanomedicine Laboratory.

onoffswitch

We want to keep the cancer ‘switchturned off,” said Prof. Satchi-Fainaro. “Once osteosarcoma metastasizes away from the primary tumor site, there is no effective treatment, just different ways of prolonging life“.
A 1993 article in the New England Journal of Medicine by William C. Black and H. Gilbert Welch about dormant tumor lesions discovered in the autopsies of people who were considered healthy until their accident-related deaths provided the basis for our research. We decided to investigate osteosarcoma recurrence, with an eye toward the potentially therapeutic value of dormancy.”

Osteosarcoma* tumors may return with a vengeance, even if they’re caught early and excised from a primary site. In the case of “minimal residual disease,” cancerous cells left after surgery in a localized spot suddenlyturn on,” and the disease reappears. In the other case of “dormant micrometastatic lesions,” mini-tumors undetected by current imaging technologies suddenly reemerge as large macro-metastases, primarily in the lungs.

We wanted to understand what causes the cancer cells to ‘switch on’ in these cases,” said Prof. Satchi-Fainaro. “As long as cancer cells remain asymptomatic and dormant, cancer is a manageable disease. Many people live with thyroid lesions without their knowledge, for example. Ours is a very optimistic approach, and we believe it could apply to other cancers as well.”

The study is the fruit of a five-year collaboration between Prof. Satchi-Fainaro’s team, led by TAU PhD student Galia Tiram, and the laboratories of Rainer Haag and Marcelo Calderón of Freie Universität Berlin (Germany). It was recently published in the journal ACS Nano.

Osteosarcoma is a cancer that develops in the bones of children and adolescents. It is one of the most aggressive cancers, with only a 15 per cent, five-year survival rate when diagnosed in an advanced metastatic stage. There are approximately 800 new cases diagnosed each year in the US, and no viable treatments.

Source: https://www.aftau.org/

Electric Cars That Eat CO2

An interdisciplinary team of scientists has worked out a way to make electric vehicles that only are not only carbon neutral but carbon negative, capable of actually reducing the amount of atmospheric carbon dioxide as they operate.

They have done so by demonstrating how the graphite electrodes used in the lithium-ion batteries that power electric automobiles can be replaced with carbon material recovered from the atmosphere. The unusual pairing of carbon dioxide conversion and advanced battery technology is the result of a collaboration between the laboratory of Assistant Professor of Mechanical Engineering Cary Pint at Vanderbilt University and Professor of Chemistry Stuart Licht at George Washington University. The team adapted a solar-powered process that converts carbon dioxide into carbon so that it produces carbon nanotubes and demonstrated that the nanotubes can be incorporated into both lithium-ion batteries like those used in electric vehicles and electronic devices and low-cost sodium-ion batteries under development for large-scale applications, such as the electric grid.

Tesla Model 3

This approach not only produces better batteries but it also establishes a value for carbon dioxide recovered from the atmosphere that is associated with the end-user battery cost unlike most efforts to reuse CO2 that are aimed at low-valued fuels, like methanol, that cannot justify the cost required to produce them,” said Pint. “Our climate-change solution is two fold: (1) to transform the greenhouse gas carbon dioxide into valuable products and (2) to provide greenhouse gas emission-free alternatives to today’s industrial and transportation fossil fuel processes,” adds Licht. “In addition to better batteries other applications for the carbon nanotubes include carbon composites for strong, lightweight construction materials, sports equipment and car, truck and airplane bodies.

The project builds upon a solar thermal electrochemical process (STEP) that can create carbon nanofibers from ambient carbon dioxide developed by the Licht group and described in the journal Nano Letters last August. STEP uses solar energy to provide both the electrical and thermal energy necessary to break down carbon dioxide into carbon and oxygen and to produce carbon nanotubes that are stable, flexible, conductive and stronger than steel.

The recipe for converting carbon dioxide gas into batteries is described in the paper titled “Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes” published online on Mar. 2 by the journal ACS Central Science.

Source: http://news.vanderbilt.edu/

How To Cheaply Convert Natural Gas To Liquid Form

Within six months, scientists believe they may be close to completing a nanotechnology catalyst to allow affordable, marketable petroleum product using nanotechnology to convert natural gas to liquid formJupiter Fuels LLC, located at Camp Minden, in partnership with Louisiana Tech University, has been working for the last three years to develop a more affordable way to convert natural gas, thereby making it more affordable to consumers. David Madden, president of the company, says the ultimate goal is a cheaper way to convert natural gas to liquid.

natural gas car2

It would be a new catalyst to make Fischer-Tropsch more efficient,” he said. “There’s lots of natural gas. We have natural gas everywhere. If you convert natural gas and turn it into a stable liquid that will not evaporate at room temperature, then you can transport it anywhere you want to.”

Currently, some energy companies are using cryogenic technology that compresses natural gas into a frozen liquefied natural gas, around -120 Fahrenheit. They put it on a ship, transport it to Europe or Asia and then thaw it out for use.

The new process would eliminate all that, he said.

Officials with Jupiter Fuels say converting it to liquid fuels allows the use of existing fuel production infrastructure and existing transportation technologies.

It is the goal of this project to continue the process of developing catalysts used in the Fischer-Tropsch Synthesis that can be utilized on a commercial scale,” according to a description of the project from Louisiana Tech University’s Research Center. “Operational analysis will examine variables including temperature, pressure, conversion on catalyst performance, and space velocity pertaining to product distribution and catalyst lifetime. In order to increase production, efforts will focus on ultimate catalyst deposition and catalyst substrate preparation.”

Source: http://press-herald.com/

Vaccine For Type 1 Diabetes?

New findings suggesting that children diagnosed with type 1 diabetes before the age of seven have a very different form of the disease could lead to new ways of treating it, potentially including a vaccine. Nine year old Bethan has Type 1 diabetes. She uses an omnipod pump to deliver insulin when required, while Mum Lizzie watches her diet. Before her diagnosis, life was tough.


type1 diabetes
I felt very weak and tired all the time“complains BethanWestcott-Storer, the nine-year old Diabetes type 1 patient.

Her mother comments: “We noticed that she’d become quite thin, she’d lost a lot of weight, but she didn’t have all of the signs that other children normally have with type 1 – she didn’t have the excess thirst and urinating. Just lost a lot of weight, so she’s been diagnosed for 15 months now.”
Now Bethan’s the picture of health…and the news could get better. The University of Exeter Medical School (UK)  has made a major discovery that could lead to better treatment and even prevention of the disease.

It’s always been thought that when people get type 1 diabetes they’ve lost as many as 90 percent of their insulin producing cells from their pancreas. What we’ve found is that while that might be the case for the younger children it certainly doesn’t appear to be true for those that are older. They have quite a considerable reserve of cells left. That’s a new insight and it might mean that if we could reactivate those cells we could help them to cope better with their illness.“, says Prof. Noel Morgan, of the University of Exeter Medical School.

Researchers examined around 100 pancreas samples in Exeter‘s biobank. They found that those diagnosed before the age of seven develop a more aggressive form of the disease than teenagers.

Those samples are extremely important because we do not understand the underlying disease process that goes on in these individuals and it’s that recent diagnosis that’s critical for us to actually look inside the pancreas and see what is going wrong, and the pancreas itself is an extremely inaccessible organ“, says Dr. Sarah Richardson, from the University of Exeter Medical School. “We’re trying to understand what the trigger is and it may be possible to use a vaccine to stop the triggering process, but it might also be able to use a different kind of vaccine to target the specific immune cells that are causing the illness, and that’s where the excitement lies“, adds Prof.  Morgan. Although well adjusted to her daily routine, Bethan also has high hopes for the ongoing research: “If one day in the future they find a cure or something lots and lots of people are going to be really happy“!

Source: http://www.reuters.com/

Nanostructure of Humboldt Penguins Feather Makes Them Ice-Proof

Humboldt penguins live in places that dip below freezing in the winter, and despite getting wet, their feathers stay sleek and free of ice. Researchers from Beihang University in Beijing (China)  have now figured out what could make that possible. The key is in the microstructure of penguins’ feathers. Based on their findings, the scientists replicated the architecture in a nanofiber membrane that could be developed into an ice-proof material.

penguins ChinaThe range of Humboldt penguins extends from coastal Peru to the tip of southern Chile. Some of these areas can get frigid, and the water the birds swim in is part of a cold ocean current that sweeps up the coast from the Antarctic. Their feathers keep them both warm and ice-free. Scientists had suspected that penguin feathers’ ability to easily repel water explained why ice doesn’t accumulate on them: Water would slide off before freezing. But research has found that under high humidity or ultra-low temperatures, ice can stick to even superhydrophobic surfaces. So Jingming Wang and colleagues sought another explanation.

The researchers closely examined Humboldt penguin feathers using a scanning electron microscope. They found that the feathers were comprised of a network of barbs, wrinkled barbules and tiny interlocking hooks. In addition to being hydrophobic, this hierarchical architecture with grooved structures is anti-adhesive. Testing showed ice wouldn’t stick to it. Mimicking the feathers’ microstructure, the researchers developed an icephobic polyimide fiber membrane. They say it could potentially be used in applications such as electrical insulation.

Source: http://www.acs.org/
A
ND
http://mysteriousuniverse.org/

World’s First Thermal Imaging Phone Camera

It’s billed as the world’s first thermal imaging phone. Until now users wanting to access thermal imaging on their smartphone required an accessory to clip onto it. Developed by UK firm Bullitt, it’s branded by construction equipment maker Caterpillar.

thermal imaging phone cameraCLICK ON THE IMAGE TO ENJOY THE VIDEO

You can capture the temperature of a point. We can do that at multiple points as well, so we can capture multiple points on the screen at the same time. The temperature range at the side of the screen gives you the minimum and maximum temperature in that scene at the time,” says Pete Cunningham. senior projet manager, Bullit company.

The Cat S60 has a fully integrated sensor developed in a microcamera by tech firm FLIR. The phone is primarily aimed at tradespeople.

They want builders and electricians and mechanics and they can use that device and you can do simple diagnostics with it, so you can hold it up to a wall, you can see if a pipe’s leaking, you can hold it up looking at an engine and you can see where gas is leaking. You can look at a wall and see where the cavities are“, comments Ben Wood, chief of research, CCS Insight.
If I want to buy a new house then I can go around and I can check to see whether there is damp patches around or whether the current owners have painted over and tried to hide any issues with leaks or damp patches, so that’s another great example,” adds Pete Cunningham.

Its makers say the phone could also be used by dog owners to locate their pet during night walks or fussy consumers wanting to find the freshest loaf at the baker’s. The Cat S60 goes on sale in June for 599 dollars.

Source:  http://www.reuters.com/

New Efficient Materials For Solar Fuel Cells

University of Texas at Arlington (UTA) chemists have developed new high-performing materials for cells that harness sunlight to split carbon dioxide and water into useable fuels like methanol and hydrogen gas. These “green fuels” can be used to power cars, home appliances or even to store energy in batteries.

solar fuel cells

Technologies that simultaneously permit us to remove greenhouse gases like carbon dioxide while harnessing and storing the energy of sunlight as fuel are at the forefront of current research,” said Krishnan Rajeshwar, UTA distinguished professor of chemistry and biochemistry and co-founder of the University’s Center of Renewable Energy, Science and Technology. “Our new material could improve the safety, efficiency and cost-effectiveness of solar fuel generation, which is not yet economically viable,” he added.

The new hybrid platform uses ultra-long carbon nanotube networks with a homogeneous coating of copper oxide nanocrystals. It demonstrates both the high electrical conductivity of carbon nanotubes and the photocathode qualities of copper oxide, efficiently converting light into the photocurrents needed for the photoelectrochemical reduction process. Morteza Khaledi, dean of the UTA College of Science, said Rajeshwar’s work is representative of the University’s commitment to addressing critical issues with global environmental impact under the Strategic Plan 2020.

Source: https://www.uta.edu/

How To Kill Ocular Cancer