How To Trap CO2 Molecules

Scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have taken the first images of carbon dioxide molecules within a molecular cage ­­– part of a highly porous nanoparticle known as a MOF, or metal-organic framework, with great potential for separating and storing gases and liquids.

The images, made at the Stanford-SLAC Cryo-EM Facilities, show two configurations of the COmolecule in its cage, in what scientists call a guest-host relationship; reveal that the cage expands slightly as the CO2 enters; and zoom in on jagged edges where MOF particles may grow by adding more cages.

This is a groundbreaking achievement that is sure to bring unprecedented insights into how these highly porous structures carry out their exceptional functions, and it demonstrates the power of cryo-EM for solving a particularly difficult problem in MOF chemistry,” said Omar Yaghi, a professor at the University of California, Berkeley and a pioneer in this area of chemistry, who was not involved in the study.

The team, led by SLAC/Stanford professors Yi Cui and Wah Chiu, described the study  in the journal Matter.

Source: https://www6.slac.stanford.edu/

Leave a Reply

Your email address will not be published. Required fields are marked *