Posts belonging to Category clothing



3D Printing Art And Design in Paris

Do you plan  to travel to Paris? In this case do not miss to visit the Centre Pompidou,  this huge museum, located in the center of Paris and dedicated to modern Art.  You can assist to  “Mutations/Créations“: a new event decidedly turned towards the future and the interaction between digital technology and creation; a territory shared by art, innovation and science.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Drawing on all the disciplines in a mix of research, art and engineering, the first edition of this annual event calls upon music, design and architecture. It consists of two exhibitions (“Imprimer le monde“ and “Ross Lovegrove“), an Art/Innovation Forum entitled “Vertigo“, and various study days and get-togethers. Each year, thematic and monographic exhibitions will be staged around meetings and workshops that turn the Centre Pompidou into an “incubator“: a place for demonstrating prototypes, carrying out artistic experiments in vivo, and talking with designers. This platform will also be a critical observatory and a tool for analysing the impact of creation on society. How have the various forms of creation begun using digital technologies to open up new industrial perspectives? How do they question the social, economic and political effects of these industrial developments, and their ethical limits? What formal transformations have come about in music, art, design and architecture with regard to technical and scientific progress?


In the same space,  you can see a  new retrospective devoted to British designer Ross Lovegrove, which shows how the artist has introduced a fresh dialogue between nature and technology, where art and science converge. He employs a “holistic“ idea of design through a visionary practice that began incorporating digital changes during the 1990s, rejecting the productivism of mass industry and replacing it with a more economical approach to materials and forms. This exhibition emphasises the role of design in the postindustrial era, now that we are seeing a significant shift from mechanics to organics: a changeover symptomatic of our times, which these “digital forms“ endeavour to highlight.

Source: https://www.centrepompidou.fr/

Ultrafast Flexible Electronic Memory

Engineering experts from the University of Exeter (UK) have developed innovative new memory using a hybrid of graphene oxide and titanium oxide. Their devices are low cost and eco-friendly to produce, are also perfectly suited for use in flexible electronic devices such as ‘bendablemobile phone, computer and television screens, and even ‘intelligentclothing.
. Crucially, these devices may also have the potential to offer a cheaper and more adaptable alternative to ‘flash memory’, which is currently used in many common devices such as memory cards, graphics cards and USB computer drives. The research team insist that these innovative new devices have the potential to revolutionise not only how data is stored, but also take flexible electronics to a new age in terms of speed, efficiency and power.

bendable mobile phone

Using graphene oxide to produce memory devices has been reported before, but they were typically very large, slow, and aimed at the ‘cheap and cheerful’ end of the electronics goods market”, said Professor David Wright, an Electronic Engineering expert from the University of Exeter.

Our hybrid graphene oxide-titanium oxide memory is, in contrast, just 50 nanometres long and 8 nanometres thick and can be written to and read from in less than five nanoseconds – with one nanometre being one billionth of a metre and one nanosecond a billionth of a second.”

The research is published in the scientific journal ACS Nano.

Source: http://www.exeter.ac.uk/

‘Spray-On’ Memory for Paper, Fabric, Plastic

USB flash drives are already common accessories in offices and college campuses. But thanks to the rise in printable electronics, digital storage devices like these may soon be everywhere – including on our groceries, pill bottles and even clothingDuke University researchers have brought us closer to a future of low-cost, flexible electronics by creating a new “spray-on digital memory device using only an aerosol jet printer and nanoparticle inks. The device, which is analogous to a 4-bit flash drive, is the first fully-printed digital memory that would be suitable for practical use in simple electronics such as environmental sensors or RFID tags. And because it is jet-printed at relatively low temperatures, it could be used to build programmable electronic devices on bendable materials like paper, plastic or fabric.

PrintingMemory

Duke University researchers have developed a new “spray-on” digital memory (upper left) that could be used to build programmable electronics on flexible materials like paper, plastic or fabric. They used LEDS to demonstrate a simple application.

We have all of the parameters that would allow this to be used for a practical application, and we’ve even done our own little demonstration using LEDs,” said Duke graduate student Matthew Catenacci, who describes the device in a paper published online in the Journal of Electronic Materials. At the core of the new device, which is about the size of a postage stamp, is a new copper-nanowire-based printable material that is capable of storing digital information.

Memory is kind of an abstract thing, but essentially it is a series of ones and zeros which you can use to encode information,” said Benjamin Wiley, an associate professor of chemistry at Duke and an author on the paper.

Source: https://today.duke.edu/

How To Color Textiles Without Polluting Environment

Fast fashion” might be cheap, but its high environmental cost from dyes polluting the water near factories has been well documented. To help stem the tide of dyes from entering streams and rivers, scientists report in the journal ACS Applied Materials & Interfaces a nonpolluting method to color textiles using 3-D colloidal crystals.

peacock feathers

Peacock feathers, opals and butterfly wings have inspired a new way to color voile fabrics without the pollutants of traditional dyes.

Dyes and pigments are chemical colors that produce their visual effect by selectively absorbing and reflecting specific wavelengths of visible light. Structural or physical colors — such as those of opals, peacock feathers and butterfly wings — result from light-modifying micro- and nanostructures. Bingtao Tang and colleagues from Universty of Maryland wanted to find a way to color voile textiles with structural colors without creating a stream of waste.

The researchers developed a simple, two-step process for transferring 3-D colloidal crystals, a structural color material, to voile fabrics. Their “dye” included polystyrene nanoparticles for color, polyacrylate for mechanical stability, carbon black to enhance color saturation and water. Testing showed the method could produce the full spectrum of colors, which remained bright even after washing. In addition, the team said that the technique did not produce contaminants that could pollute nearby water.

Source: http://pubs.acs.org/

Solar Nanotech-Powered Clothing

Marty McFly’s self-lacing Nikes in Back to the Future Part II inspired a University of Central Florida’s (UCF) scientist who has developed filaments that harvest and store the sun’s energy — and can be woven into textile.

The breakthrough would essentially turn jackets and other clothing into wearable, solar-powered batteries that never need to be plugged in. It could one day revolutionize wearable technology, helping everyone from soldiers who now carry heavy loads of batteries to a texting-addicted teen who could charge his smartphone by simply slipping it in a pocket.

back-to-the-future

That movie was the motivation,” Associate Professor Jayan Thomas, a nanotechnology scientist at the University of Central Florida’s NanoScience Technology Center, said of the film released in 1989. “If you can develop self-charging clothes or textiles, you can realize those cinematic fantasies – that’s the cool thing.

Thomas already has been lauded for earlier ground-breaking research. Last year, he received an R&D 100 Award – given to the top inventions of the year worldwide – for his development of a cable that can not only transmit energy like a normal cable but also store energy like a battery. He’s also working on semi-transparent solar cells that can be applied to windows, allowing some light to pass through while also harvesting solar power.

His new work builds on that research. “The idea came to me: We make energy-storage devices and we make solar cells in the labs. Why not combine these two devices together?” Thomas said.

Thomas, who holds joint appointments in the College of Optics & Photonics and the Department of Materials Science & Engineering, set out to do just that.

Taking it further, he envisioned technology that could enable wearable tech. His research team developed filaments in the form of copper ribbons that are thin, flexible and lightweight. The ribbons have a solar cell on one side and energy-storing layers on the other.

The research was published Nov. 11 in the academic journal Nature Communications.

Source: https://today.ucf.edu

How To Generate Wonderful Colors

Colors are produced in a variety of ways. The best known colors are pigments. However, the very bright colors of the blue tarantula or peacock feathers do not result from pigments, but from nanostructures that cause the reflected light waves to overlap. This produces extraordinarily dynamic color effects.

blue-tarantulaScientists from Karlsruhe Institute of Technology (KIT) in Germany, in cooperation with international colleagues, have now succeeded in replicating nanostructures that generate the same color irrespective of the viewing angle.

In contrast to pigments, structural colors are non-toxic, more vibrant and durable. In industrial production, however, pigments have the drawback of being strongly iridescent, which means that the color perceived depends on the viewing angle. An example is the rear side of a CD. Hence, such colors cannot be used for all applications. Bright colors of animals, by contrast, are often independent of the angle of view. Feathers of the kingfisher always appear blue, no matter from which angle we look. The reason lies in the nanostructures: While regular structures are iridescent, amorphous or irregular structures always produce the same color. Yet, industry can only produce regular nanostructures in an economically efficient way. Radwanul Hasan Siddique, researcher at KIT in collaboration with scientists from USA and Belgium has now discovered that the blue tarantula does not exhibit iridescence in spite of periodic structures on its hairs. First, their study revealed that the hairs are multi-layered, flower-like structure. Then, the researchers analyzed its reflection behavior with the help of computer simulations. In parallel, they built models of these structures using nano-3D printers and optimized the models with the help of the simulations. In the end, they produced a flower-like structure that generates the same color over a viewing angle of 160 degrees. This is the largest viewing angle of any synthetic structural color reached so far.

Apart from the multi-layered structure and rotational symmetry, it is the hierarchical structure from micro to nano that ensures homogeneous reflection intensity and prevents color changes. Via the size of the “flower,” the resulting color can be adjusted, which makes this coloring method interesting for industry. “This could be a key first step towards a future where structural colorants replace the toxic pigments currently used in textile, packaging, and cosmetic industries,” says Radwanul Hasan Siddique of KIT’s Institute of Microstructure Technology, who now works at the California Institute of Technology. He considers short-term application in textile industry feasible. Dr. Hendrik Hölscher thinks that the scalability of nano-3D printing is the biggest challenge on the way towards industrial use. Only few companies in the world are able to produce such prints.

Source: http://www.kit.edu

Self-healing Materials

A team of engineers at the University of California San Diego has developed a magnetic ink that can be used to make self-healing batteries, electrochemical sensors and wearable, textile-based electrical circuits. The key ingredient for the ink is microparticles oriented in a certain configuration by a magnetic field. Because of the way they’re oriented, particles on both sides of a tear are magnetically attracted to one another, causing a device printed with the ink to heal itself. The devices repair tears as wide as 3 millimeters—a record in the field of self-healing systems.

self-healing-wearable

Our work holds considerable promise for widespread practical applications for long-lasting printed electronic devices,” said Joseph Wang, director of the Center for Wearable Sensors and chair of the nanoengineering department at UC San Diego.

Existing self-healing materials require an external trigger to kick start the healing process. They also take anywhere between a few minutes to several days to work. By contrast, the system developed by Wang and colleagues doesn’t require any outside catalyst to work. Damage is repaired within about 50 milliseconds (0.05 seconds).

Engineers used the ink to print batteries, electrochemical sensors and wearable, textile-based electrical circuits. They then set about damaging these devices by cutting them and pulling them apart to create increasingly wide gaps. Researchers repeatedly damaged the devices nine times at the same location. They also inflicted damage in four different places on the same device. The devices still healed themselves and recovered their function while losing a minimum amount of conductivity.

For example, nanoengineers printed a self-healing circuit on the sleeve of a T-shirt and connected it with an LED light and a coin battery. The researchers then cut the circuit and the fabric it was printed on. At that point, the LED turned off. But then within a few seconds it started turning back on as the two sides of the circuit came together again and healed themselves, restoring conductivity.

Researchers detail their findings in the journal Science Advances.

Source: http://ucsdnews.ucsd.edu/

Self-Healable Lithium Ion Battery For Electronic Textile

Electronics that can be embedded in clothing are a growing trend. However, power sources remain a problem. In the journal Angewandte Chemie, scientists have now introduced thin, flexible, lithium ion batteries with self-healing properties that can be safely worn on the body. Even after completely breaking apart, the battery can grow back together without significant impact on its electrochemical properties.

Existing lithium ion batteries for wearable electronics can be bent and rolled up without any problems, but can break when they are twisted too far or accidentally stepped on—which can happen often when being worn. This damage not only causes the battery to fail, it can also cause a safety problem: Flammable, toxic, or corrosive gases or liquids may leak out.

A team led by Yonggang Wang and Huisheng Peng from  Fudan University in Shanghai – China, has now developed a new family of lithium ion batteries that can overcome such accidents thanks to their amazing self-healing powers. In order for a complicated object like a battery to be made self-healing, all of its individual components must also be self-healing. The scientists from Fudan University  the Samsung Advanced Institute of Technology (South Korea), and the Samsung R&D Institute China, have now been able to accomplish this.

self-healing-batteryThe electrodes in these batteries consist of layers of parallel carbon nanotubes. Between the layers, the scientists embedded the necessary lithium compounds in nanoparticle. In contrast to conventional lithium ion batteries, the lithium compounds cannot leak out of the electrodes, either while in use or after a break. The thin layer electrodes are each fixed on a substrate of self-healing polymer. Between the electrodes is a novel, solvent-free electrolyte made from a cellulose-based gel with an aqueous lithium sulfate solution embedded in it. This gel electrolyte also serves as a separation layer between the electrodes.

After a break, it is only necessary to press the broken ends together for a few seconds for them to grow back together. Both the self-healing polymer and the carbon nanotubes “stick” back together perfectly. The parallel arrangement of the nanotubes allows them to come together much better than layers of disordered carbon nanotubes. The electrolyte also poses no problems. Whereas conventional electrolytes decompose immediately upon exposure to air, the new gel is stable. Free of organic solvents, it is neither flammable nor toxic, making it safe for this application.

The capacity and charging/discharging properties of a batteryarmband” placed around a doll’s elbow were maintained, even after repeated break/self-healing cycles.

Source: http://eu.wiley.com/

Smart Textile Senses And Moves Like A Muscle

The ARC Center of Excellence for Electromaterials Science (ACES – Australia) researchers have for the first time, developed a smart textile from carbon nanotube and spandex fibres that can both sense and move in response to a stimulus like a muscle or joint.

Lead researcher Dr Javad Foroughi explains that the key difference between this, and previous ACES work, is the textile’s dual functionality.

katharina_schirmer_graduates

We have already made intelligent materials as sensors and integrated them into devices such as a knee sleeve that can be used to monitor the movement of the joint, providing valuable data that can be used to create a personalised training or rehabilitation program for the wearer,” Dr Foroughi said. “Our recent work allowed us to develop smart clothing that simultaneously monitors the wearer’s movements, senses strain, and adjusts the garment to support or correct the movement,” he adds.

The smart textile, which is easily scalable for the fabrication of industrial quantities, generates a mechanical work capacity and a power output which higher than that produced by human muscles. It has many potential applications ranging from smart textiles to robotics and sensors for lab on a chip devices. The team, having already created the knee sleeve prototype, is now working on using the smart textile as a wearable antenna, as well as in other biomedical applications.

Source: http://www.electromaterials.edu.au/

Smart Threads For Clothing And Robots

Fabrics containing flexible electronics are appearing in many novel products, such as clothes with in-built screens and solar panels. More impressively, these fabrics can act as electronic skins that can sense their surroundings and could have applications in robotics and prosthetic medicine. King Abdullah University of Science and Technology (KAUST – Saudi Arabia) researchers have now developed smart threads that detect the strength and location of pressures exerted on them1. Most flexible sensors function by detecting changes in the electrical properties of materials in response to pressure, temperature, humidity or the presence of gases. Electronic skins are built up as arrays of several individual sensors. These arrays currently need complex wiring and data analysis, which makes them too heavy, large or expensive for large-scale production.

Yanlong Tai and Gilles Lubineau from the University’s Division of Physical Science and Engineering have found a different approach. They built their smart threads from cotton threads coated with layers of one of the miracle materials of nanotechnology: single-walled carbon nanotubes (SWCNTs).

smart threadsThe twisted smart threads developed by KAUST researchers can be woven into pressure-sensitive electronic skin fabrics for use in novel clothing, robots or medical prosthetics

Cotton threads are a classic material for fabrics, so they seemed a logical choice,” said Lubineau. “Networks of nanotubes are also known to have piezoresistive properties, meaning their electrical resistance depends on the applied pressure.”

The researchers showed their threads had decreased resistance when subjected to stronger mechanical strains, and crucially the amplitude of the resistance change also depended on the thickness of the SWCNT coating.

These findings led the researchers to their biggest breakthrough: they developed threads of graded thickness with a thick SWCNT layer at one end tapering to a thin layer at the other end. Then, by combining threads in pairs—one with graded thickness and one of uniform thickness—the researchers could not only detect the strength of an applied pressure load, but also the position of the load along the threads.

Our system is not the first technology to sense both the strength and position of applied pressures, but our graded structure avoids the need for complicated electrode wirings, heavy data recording and analysis,” said Tai.

The researchers have used their smart threads to build two- and three-dimensional arrays that accurately detect pressures similar to those that real people and robots might be exposed to.
We hope that electronic skins made from our smart threads could benefit any robot or medical prosthetic in which pressure sensing is important, such as artificial hands,” said Lubineau.

https://discovery.kaust.edu.sa/

Walking on The Street With Your Massaging Jacket

While it’s not visible to the naked eye, both of these people are getting a back massage, thanks to this jacket called the Airawear. Designed by TWare in Singapore, it uses air to create pressure on targeted parts of the upper and lower back with a massaging sensation. There are six inflatable pressure point relaxers that target muscles and pain points. They’re all controlled with a smart phone app, which means you’re free to continue working or going about your regular activities. CEO Lin Wei Liang says it’s the perfect solution, for people who spend their days hunched over computers.

aerawearCLICK ON THE IMAGE TO ENJOY THE VIDEO

We’re always in a tense, hunched-back position, in a bad posture, and that causes a lot of back pain and shoulder pain … So, in this context, it’s very hard for employees to maybe take out any kind of conventional massage device, or any hand-held massage device to start to provide some massage to themselves to get some form of relief. So what we have here is much more invisible, discreet, something that you can wear just like a normal hoodie or jacket, and yet you can get that massage without people noticing ,” says Lin Wei Liang, Tware CEO.

The device also has a posture correction feature that sends a signal when sensors detect the user needs an adjustment. Airawear does require a charge and has a built-in USB port so users can get three hours of continuous massage. At a recent trial potential buyers gave the $119 jacket a spin.

I thought it was great, I loved the pressure coming out of the jacket. You can basically feel your whole body just relaxing. The mode I was actually on was the “Relax” mode, so it’s not too much pressure, but it’s just enough that it makes you feel comfortable enough and at ease“, comments Cianta Seneviratne. As for the actual health benefits, not everyone agrees that the jacket should be used to treat back pain.

Physiotherapist Michelle Tong explains: “I would think that they’d wear it and forget about the time. You might be using it and working, and you might be massaged for five hours, for example. So you question whether the person would develop a tolerance to it, so each time they’re using it, they end up having to apply a high pressure each time, just to get the same effect, as you would if you were taking painkillers.

That doesn’t seem to be affecting Tware‘s plans. The company’s crowd funding campaign on Kickstarter, has already surpassed its goal by more than $50 thousand (USD). Deliveries of jackets are expected to begin in November of 2016.

Source: http://mytware.com/

Dancing At A Club, Feel The Bass Through All Your Body, Immersed

Nothing compares to the sensation of music reverberating through your body while dancing at a club. Well – that’s about to change. The full body music experience can now be enjoyed anywhere, according to the makers of a wearable device called SubPac.

subpac dancingCLICK ON THE IMAGE TO ENJOY THE VIDEO

“It’s a combination of proprietary tactile speaker components, membranes that spread the experience throughout your body and electronics that make sure the stuff and sound that goes through it is optimal”, says John Alexiou , President of the Canadian company SubPac.  “It’s really meant to be a solution where any time you’re hearing sound, whether you’re in a music environment, a film environment, an auto environment, you’re going to be physically immersed in that as well,“, he adds.

The company has raised more than $6 million (USD) in funding with heavy hitting backers from the both tech and music scene. Star hip hop producer Timbaland has partnered in the company – he sees a market in people still wanting to ‘feel‘ the music, but not necessarily up for the loud club scene.

It sounds great, but you’re coming home with these headaches from these shows. And you notice the headache gets more intense or something starts to impair, you don’t even know, you think it’s something else. So this is going to save everybody’s eardrums and still get the feeling of explosion“, comments the music producer Timbaland.
With two models priced at less than $350, the company is hoping the technology will be as popular as the music that inspired it.

Source: http://thesubpac.com/