Posts belonging to Category Companies



Lab-grown Diamonds

This shiny, sparkly diamond was made inside a laboratory – but it has the same chemical makeup as its counterpart found deep inside the earth.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

All the composition is exactly the same. It is a real diamond. What we’ve done is we’ve just taken what’s happened in nature and just put it in a lab,” said  Kelly Good, Director of Marketing of Pure Grown Diamonds.

Essentially, all diamonds are carbon. And inside a laboratory, scientists are using a method called microwave plasma chemical vapour deposition to grow the stones from a diamond seed. They do it by creating a plasma ball made of hydrogen inside a growth chamber. Methane, which is a carbon source, is added. The carbon mix rains down on the diamond seeds, layer by layer, creating a large, rough diamond that is cut and polished. The process takes about 10 to 12 weeks. Marketers tout the lab-grown diamonds as an eco-friendly, conflict-free alternative to mined diamonds. “Our consumer is millennials, anybody who is getting engaged are really buying the lab-grown diamonds. They also like the fact of the environmental aspect of it. That it’s grown in a greenhouse. There is less soil being moved. We have a less carbon footprint,” explains Kelly Good.

While similar in appearance, there are differences. David Weinstein, Executive Director of the International  Gemological Institute (New York), comments: “I have a crystal, a diamond and I’m looking at it and I see a peridot crystal, a green peridot crystal, I know right away, this wasn’t created in a machine. So the inclusions can really be very telling as to what the origins of the material is. And that’s what our gemologists look for.”
While lab-grown gems have been around for decades, but it’s only recently that the science and technology have made it possible to grow large, gem quality stones. And according to a report by Morgan Stanley, the lab-grown diamond market could grow by about 15 percent by the year 2020.

Source: http://www.reuters.com/

The Ultra Smart Community Of The Future

Japan’s largest electronics show CEATEC – showcasing its version of our future – in a connected world with intelligent robots And cars that know when the driver is falling asleep. This is Omron‘s “Onboard Driving Monitoring Sensor,” checking its driver isn’t distracted.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We are developing sensors that help the car judge what state the driver is in, with regards to driving. For example, if the driver has his eyes open and set on things he should be looking at, if the driver is distracted or looking at smartphones, and these types of situations,” explains Masaki Suwa, Omron Corp. Chief Technologist.

After 18 years of consumer electronics, CEATEC is changing focus to the Internet of Things and what it calls ‘the ultra-smart community of the future‘ A future where machines take on more important roles – machines like Panasonic‘s CaloRieco – pop in your plate and know exactly what you are about to consume.

By placing freshly cooked food inside the machine, you can measure total calories and the three main nutrients: protein, fat and carbohydrate. By using this machine, you can easily manage your diet,” says Panasonic staff engineer Ryota Sato.

Even playtime will see machines more involved – like Forpheus the ping playing robot – here taking on a Olympic bronze medalist – and learning with every stroke.
Rio Olympics Table Tennis player , Jun Mizutani, Bronze Medalist, reports: “It wasn’t any different from playing with a human being. The robot kept improving and getting better as we played, and to be honest, I wanted to play with it when it had reached its maximum level, to see how good it is.”

Flying Electric Planes Between London And Paris

EasyJet could be flying planes powered by batteries rather than petroleum to destinations including Paris and Amsterdam within a decade. The UK carrier has formed a partnership with US firm Wright Electric, which is developing a battery-propelled aircraft for flights under two hoursEasyJet said the move would enable battery-powered aircraft to travel short-haul routes such as London to Paris and Amsterdam, and Edinburgh to Bristol. Wright Electric is aiming for an aircraft range of 335 miles, which would cover the journeys of about a fifth of passengers flown by easyJet.

Carolyn McCall, easyJet’s chief executive, said the aerospace industry would follow the lead of the automotive industry in developing electric engines that would cut emissions and noise.

For the first time in my career I can envisage a future without jet fuel and we are excited to be part of it,” she said. “It is now more a matter of when, not if, a short-haul electric plane will fly.”

The company said it was the next step in making the airline less harmful for the environment, after cutting carbon emissions per passenger kilometre by 31% between 2000 and 2016. Wright Electric claims that electric planes will be 50% quieter and 10% cheaper for airlines to buy and operate, with the cost saving potentially passed on to passengers. The US firm said its goal was for every short flight to be electric within 20 years. It has already built a two-seater prototype and is working towards a fully electric plane within a decade. The next step is to scale-up the technology to a 10-seater aircraft, and eventually to build a single aisle, short haul commercial plane, with the capacity to carry at least 120 passengers.

Source: https://www.theguardian.com/

Computer Reads Body Language

Researchers at Carnegie Mellon University‘s Robotics Institute have enabled a computer to understand body poses and movements of multiple people from video in real time — including, for the first time, the pose of each individual’s hands and fingers. This new method was developed with the help of the Panoptic Studio — a two-story dome embedded with 500 video cameras — and the insights gained from experiments in that facility now make it possible to detect the pose of a group of people using a single camera and a laptop computer.

Yaser Sheikh, associate professor of robotics, said these methods for tracking 2-D human form and motion open up new ways for people and machines to interact with each other and for people to use machines to better understand the world around them. The ability to recognize hand poses, for instance, will make it possible for people to interact with computers in new and more natural ways, such as communicating with computers simply by pointing at things.

Detecting the nuances of nonverbal communication between individuals will allow robots to serve in social spaces, allowing robots to perceive what people around them are doing, what moods they are in and whether they can be interrupted. A self-driving car could get an early warning that a pedestrian is about to step into the street by monitoring body language. Enabling machines to understand human behavior also could enable new approaches to behavioral diagnosis and rehabilitation, for conditions such as autism, dyslexia and depression.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We communicate almost as much with the movement of our bodies as we do with our voice,” Sheikh said. “But computers are more or less blind to it.”

In sports analytics, real-time pose detection will make it possible for computers to track not only the position of each player on the field of play, as is now the case, but to know what players are doing with their arms, legs and heads at each point in time. The methods can be used for live events or applied to existing videos.

To encourage more research and applications, the researchers have released their computer code for both multi-person and hand pose estimation. It is being widely used by research groups, and more than 20 commercial groups, including automotive companies, have expressed interest in licensing the technology, Sheikh said.

Sheikh and his colleagues have presented reports on their multi-person and hand pose detection methods at CVPR 2017, the Computer Vision and Pattern Recognition Conference  in Honolulu.

Source: https://www.cmu.edu/

New Treatment To Kill Cancer

Raise your hand if you haven’t been touched by cancer,” says Mylisa Parette to a roomful of strangers. Parette, the research manager for Keystone Nano (KN), has occasional opportunities to present her company’s technologies to business groups and wants to emphasize the scope of the problem that still confronts society. “It’s easier to see the effects of cancer when nobody raises their hand,” she says. Despite 40 years of the War on Cancer, one in two men and one in three women will be diagnosed with the disease at some point in their lifetime. Parette and her Keystone Nano colleagues are working on a new approach to cancer treatment. The company was formed from the collaboration of two Penn State faculty members who realized that the nanoparticle research that the one was undertaking could be used to solve the drug delivery problems that the other was facing.

Mark Kester, a pharmacologist at Penn State College of Medicine in Hershey, was working with a new drug that showed real promise as a cancer therapy but that could be dangerous if injected directly into the bloodstream. Jim Adair, a materials scientist in University Park, was creating nontoxic nanoparticles that could enclose drugs that might normally be toxic or hydrophobic and were small enough to be taken up by cells.

The two combined their efforts and, licensing the resulting technology from Penn State, they joined with entrepreneur Jeff Davidson, founder of the Biotechnology Institute and the Pennsylvania Biotechnology Association, to form Keystone Nano. The new company’s first hire was Parette, whose job is to translate the lab-scale technology into something that can be ramped up to an industrial scale, and to prepare that technology for FDA approval leading to clinical trials.

Davidson, Parette, and KN’s research team work out of the Zetachron building, a long, one-story science incubator a mile from Penn State’s University Park campus. Operated by the Centre County Industrial Development Corporation, the building was originally the home of the successful Penn State spin-out company that gave it its name. A second Keystone Nano lab was recently opened in the Hershey Center for Applied Research, a biotech incubator adjacent to Penn State College of Medicine.

Our excitement is that we think our technology has shown efficacy in a whole range of animal models,” Davidson, Keystone CEO, remarks during a recent meeting in the shared conference room at Zetachron. “We understand the method of action, the active ingredient. We think it has every chance of being useful in treating disease. Our question is, how do we push this forward from where we are today to determining, one way or another, that it really does work?

Keystone Nano is pioneering two approaches to cancer therapy, both of which rely on advances in nanotechnology to infiltrate tumors and deliver a therapeutic agent. The approach nearest to clinical trials is a ceramide nanoliposome, or what Davidson calls a “nano fat ball around an active ingredient.” Kester, in whose lab the approach was developed, thinks of it as a basketball with a thick bilayer coating that contains 30 percent active ceramide and a hollow interior that can hold another cancer drug.

Source: http://news.psu.edu/

Urban Farming At Home

Growing your own vegetables and herbs can be a laborious process. Lack of space in urban environments makes it even harder. But this smart garden is bringing the window box into the modern age. Much like Nespresso coffee capsules, users ‘plant’ this soil pod… containing the seeds and all the nutrients which are released in sync with the plant’s life cycle.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

This is the plastic container they put the growing substrate in here. It has a wick solution, so basically it starts to drain the water from the water tank, and the lamp does the rest of the job. The lamp imitates daylight time, so it’s 16 hours on and 8 hours off. So far we have tested some 7,000 different plants and each growing substrate is designed specifically for this plant,” says Karel Kask, sales Manager, Click and Grow. Estonia-based ‘Click and Grow‘ says it’s tested up to a thousand lighting solutions to ensure optimal growth. The red and white lights deliver the perfect spectrum they say, speeding up growth by 30 to 50 percent, depending on the plant. Each soil pod provides up to 3 harvests. ‘Click and Grow‘ was inspired by NASA technology used to grow food in space. Here, astronauts aboard the International Space Station sample lettuce they’ve grown.

They’re using quite similar soil-based solutions; so they take the soil substrate into space and grow them already in there. They have an automated watering solution. So it’s quite similar to the solution that we do.The Smart Garden 9, its latest and most advanced model, was displayed at this week’s IFA tech fair in Berlin,” adds Kask.

Regular Hydrogen Electric Bus Lines Will Open In 2019

Koningshooikt – Van Hool, the independent Belgian bus, coach and industrial vehicle manufacturer has won a contract in Pau, France, to supply 8 Exqui.Cities, known as “tram-buses“, powered by hydrogen. The use of hydrogen buses is not only a first for France it is also a world first for a full BRT (Bus Rapid Transit) system with 18-metre-long articulated tram-buses. This is the first time that hydrogen technology has been integrated as a power source in a tram-bus.

The brand new vehicle is an 18.62 metre-long articulated tram-bus with a 125 passenger capacity and an autonomy of around 300 km. The order of 8 Exqui.Cities will be delivered to the SMTU-PPP (Syndicat Mixte de Transports urbains – Pau Portes des Pyrénées) and the STAP (Société de Transport de l’Agglomération Paloise) in the second half of 2019.

The bus’s power source is an electric hybrid. On the one hand hydrogen (H2) and oxygen (O2) are converted to electricity in the fuel cell using electrolysis in “real time” and, on the other hand, the lithium batteries and electric motors provide additional power wherever and whenever it is needed. The energy that is released when the vehicle’s brakes are applied is also re-used. The use of this technology results in the 0-emission of greenhouse gases or air polluting substances. The vehicle’s only emission is water vapour.

Additional advantages offered by hydrogen buses include their autonomy of over three hundred kilometres and fast re-fuelling (10 minutes). These buses therefore allow bus companies to reach the highest level of operational flexibility and productivity.

Source: http://www.vanhool.be/

No More Visit To The Doctor’s Office

A visit to the doctor’s office can feel like the worst thing when you’re already sick. This small device is aimed at replacing physical face-to-face check ups. It’s made by Israel’s Tytocare, a leading telemedicine company. Their Tyto device allows patients to conduct examinations of organs and be diagnosed by remote clinicians.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We basically replicate a face-to-face interaction with a remote clinician while allowing him to do a full physical examination, analysis and the diagnosis of a patient at home,” said Dedi Gilad, CEO of Tytocare.

The associated TytoApp guides users through complicated examinations. It can be used to check heart rate or temperature — as well as conduct examinations of the ears, throat and lungs. And it allows a clinician to interact with patients online or offline. It also represents a significant cost saving – in the US a basic primary care visit costs around 170 dollars, three times the cost of telemedicine appointments. The system was tested at Israel’s Schneider children’s hospital.

What we found was really remarkable, that there was almost no difference between the two types of examinations…But we must be careful about the use. There are certain diseases, certain complaints, that can not be answered by this kind of device and we should carefully judge case by case and be aware of the limitations of this device,”  explains Prof. Yehezkel Waisman, Director of The Emergency Medicine department at Schneider children hospital.

Telemedecine does have its critics, who believe that real-time encounters with a doctor will always be superior. But those behind it say it could drastically cut the number of face-to-face doctors’ visits and save money for healthcare providers and insurers.

Source: http://www.tytocare.com/
AND
http://www.reuters.com/

Three-Wheeled Electric Vehicle

This three-wheeled vehicle is the culmination of 10 years of work For Mark Frohnmayer. It’s the Arcimoto SRK — an all-electric commuter vehicle retailing at a base price of $12,000 — and Frohnmayer hopes his first customers will have them in their driveways by the end of summer.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

“I thought, you know, if we can build something that was much closer to the motorcycle in terms of efficiency and fun factor and, you know, footprint on the road but was close to the car in terms of capabilities and enclosable and carries groceries and stable, that we’d have a real product opportunity that the world has been missing for a long time,” says Mark Frohnmayer, Founder and President of Arcimoto SRK.

Frohnmayer built seven generations of prototypes with regular car steering wheels. His breakthrough moment came when he replaced the steering wheel with motorcycle handlebars.

By switching to handlebar steering, we were able to move the passengers into a more upright seating position like you’d have on a city scooter and that let us shorten the vehicle by almost two feet and drop hundreds of pounds — almost 600 pounds — of weight between generations 6 or generation 7 and generation 8 and that moved us way beyond our actual weight target and let us drop the cost to a point where it was actually going to be in the sweet spot that we were aiming for”, explains Frohnmayer.

The SRK can reach 85 mph (137 km/h) and has a range of 70 miles (113 km). It has an equivalent fuel consumption of 230 MPG”, the company says.
Arcimoto has already taken 1,500 reservations and hopes it’s just the beginning. Frohnmayer believes his small cars will soon have a big impact in the fight against climate change – offering commuters a sustainable and eco-friendly option to get to work.

Source: https://www.arcimoto.com/

AR Smart Glasses, Next Frontier Of FaceBook

Facebook is hard at work on the technical breakthroughs needed to ship futuristic smart glasses that can let you see virtual objects in the real world. A patent application for a “waveguide display with two-dimensional scanner” was published on Thursday by three members from the advanced research division of Facebook’s virtual-reality subsidiary, Oculus.

The smart glasses being developed by Oculus will use a waveguide display to project light onto the wearer’s eyes instead of a more traditional display. The smart glasses would be able to display images, video, and work with connected speakers or headphones to play audio when worn.The display “may augment views of a physical, real-world environment with computer-generated elements” and “may be included in an eye-wear comprising a frame and a display assembly that presents media to a user’s eyes,” according to the filing.

By using waveguide technology, Facebook is taking a similar approach to Microsoft‘s HoloLens AR headset and the mysterious glasses being developed by the Google-backed startup Magic Leap.

One of the authors of the patent is, in fact, lead Oculus optical scientist Pasi Saarikko, who joined Facebook in 2015 after leading the optical design of the HoloLens at Microsoft.

While work is clearly being done on the underlying technology for Facebook‘s smart glasses now, don’t expect to see the device anytime soon. Michael Abrash, the chief scientist of Oculus, recently said that AR glasses won’t start replacing smartphones until as early as 2022.

Facebook CEO Mark Zuckerberg has called virtual and augmented reality the next major computing platform capable of replacing smartphones and traditional PCs. Facebook purchased Oculus for $2 billion in 2014 and plans to spend billions more on developing the technology.

Source: http://pdfaiw.uspto.gov/
A
ND
http://www.businessinsider.com

Pilotless Cargo Flights By 2025

Pilotless planes would save airlines $35bn (£27bn) a year and could lead to substantial fare cuts – if passengers were able to stomach the idea of remote-controlled flying, according to new research. The savings for carriers could be huge, said investment bank UBS, even though it may take until the middle of the century for passengers to have enough confidence to board a pilotless plane. UBS estimated that pilots cost the industry $31bn a year, plus another $3bn in training, and that fully automated planes would fly more efficiently, saving another $1bn a year in fuel.

Passengers could benefit from a reduction in ticket prices of about a tenth, the report said. “The average percentage of total cost and average benefit that could be passed onto passengers in price reduction for the US airlines is 11%,” it said, although the savings in Europe would be less, at 4% on average but rising to 8% at RyanairAircraft costs and fuel make up a much larger proportion of costs at airlines than pilot salaries, but UBS said profits at some major airlines could double if they switched to pilotless.

More than half of the 8,000 people UBS surveyed, however, said they would refuse to travel in a pilotless plane, even if fares were cut. “Some 54% of respondents said they were unlikely to take a pilotless flight, while only 17% said they would likely undertake a pilotless flight. Perhaps surprisingly, half of the respondents said that they would not buy the pilotless flight ticket even if it was cheaper,” the report said. It added, however, that younger and more educated respondents were more willing to fly on a pilotless plane. “This bodes well for the technology as the population ages,” it said.

Source: https://www.theguardian.com/

By 2025 Renewables Will Power 67 Percent Of South Australia

Declining renewables and energy storage costs will increasingly squeeze out gas-fired generation in South Australia as early as 2025, a joint research report conducted by Wood Mackenzie and GTM Research shows. The South Australia experience is noteworthy in a global power mix set to increasingly shift to renewable energy. South Australia retired its last coal plant in 2016 and is projected to have installed renewable energy capacity exceed its peak demand by 2020.

By 2025, wind, solar and battery costs will fall by 15 percent, 25 percent and 50 percent respectively. By then, renewables and batteries could offer a lower cost alternative to combined-cycle gas turbine plants, which are commonly used to manage base load power generation in South Australia. Meanwhile by 2035, renewables and batteries will provide a commercial solution for both base loads and peak loads. As a consequence, gas will increasingly be used just for emergency back-up.

One determining factor is the rate with which battery charging costs declines. By 2025, we expect battery charging cost to decrease as off-peak prices will gradually be set by excess wind generation. Battery storage then becomes a potential solution for managing peak loads,” said Bikal Pokharel, principal analyst for Wood Mackenzie‘s Asia-Pacific power and renewables .
By 2025 it’s expected that 67 percent of South Australia’s power capacity will come from renewables. Gas demand in the power sector will then decline by 70 percent.

Currently, South Australia’s peak loads are managed by open-cycle gas turbine (OCGT) plants. But by 2025, battery storage would be cheaper than OCGTs in managing peak loads even at gas price of A$7/mmbtu. OCGTs would then be relegated as emergency back-ups.”

Source: https://www.woodmac.com/