Posts belonging to Category Economy



Hydrogen Economy Closer

Washington State University (WSU) researchers have found a way to more efficiently generate hydrogen from water — an important key to making clean energy more viable. Using inexpensive nickel and iron, the researchers developed a very simple, five-minute method to create large amounts of a high-quality catalyst required for the chemical reaction to split water.

Energy conversion and storage is a key to the clean energy economy. Because solar and wind sources produce power only intermittently, there is a critical need for ways to store and save the electricity they create. One of the most promising ideas for storing renewable energy is to use the excess electricity generated from renewables to split water into oxygen and hydrogen. Hydrogen has myriad uses in industry and could be used to power hydrogen fuel-cell carsIndustries have not widely used the water splitting process, however, because of the prohibitive cost of the precious metal catalysts that are required – usually platinum or ruthenium. Many of the methods to split water also require too much energy, or the required catalyst materials break down too quickly.

In their work, the researchers, led by professor Yuehe Lin in the School of Mechanical and Materials Engineering, used two abundantly available and cheap metals to create a porous nanofoam that worked better than most catalysts that currently are used, including those made from the precious metals. The catalyst they created looks like a tiny sponge. With its unique atomic structure and many exposed surfaces throughout the material, the nanofoam can catalyze the important reaction with less energy than other catalysts. The catalyst showed very little loss in activity in a 12-hour stability test.

We took a very simple approach that could be used easily in large-scale production,” said Shaofang Fu, a WSU Ph.D. student who synthesized the catalyst and did most of the activity testing. “The advanced materials characterization facility at the national laboratories provided the deep understanding of the composition and structures of the catalysts,” comments Junhua Song, another WSU Ph.D. student who worked on the catalyst characterization.

The findings are described in the journal Nano Energy.

Source: https://news.wsu.edu/

Making Fuel Cells for a Fraction of the Cost

It is the third announcement in less than one week for a major improvment in the making of fuel cells.

In the competition between Lithium-Ion batteries (e.g. Tesla cars), and hydrogen fuel cells (see picture of Nexo from Hyundai) that power electric cars, it is difficult to predict which one will be the winner at the end.

Fuel cells have the potential to be a clean and efficient way to run cars, computers, and power stations, but the cost of producing them is limiting their use. That’s because a key component of the most common fuel cells is a catalyst made from the precious metal platinum.

In a paper published in Small, researchers at the University of California, Riverside (UCR), describe the development of an inexpensive, efficient catalyst material for a type of fuel cell called a polymer electrolyte membrane fuel cell (PEMFC), which turns the chemical energy of hydrogen into electricity and is among the most promising fuel cell types to power cars and electronics.

The catalyst developed at UCR is made of porous carbon nanofibers embedded with a compound made from a relatively abundant metal such as cobalt, which is more than 100 times less expensive than platinum. The research was led by David Kisailus, the Winston Chung Endowed Professor in Energy Innovation in UCR’s Marlan and Rosemary Bourns College of Engineering.

Fuel cells, which are already being used by some carmakers, offer advantages over conventional combustion technologies, including higher efficiency, quieter operation and lower emissions. Hydrogen fuel cells emit only water.

Like batteries, fuel cells are electrochemical devices that comprise a positive and negative electrode sandwiching an electrolyte. When a hydrogen fuel is injected onto the anode, a catalyst separates the hydrogen molecules into positively charged particles called protons and negatively charged particles called electrons. The electrons are directed through an external circuit, where they do useful work, such as powering an electric motor, before rejoining the positively charged hydrogen ions and oxygen to form water.

A critical barrier to fuel cell adoption is the cost of platinum, making the development of alternative catalyst materials a key driver for their mass implementation.

Using a technique called electrospinning, the UCR researchers made paper-thin sheets of carbon nanofibers that contained metal ions — either cobalt, iron or nickel. Kisailus and his team, collaborating with scientists at Stanford University, determined that the new materials performed as good as the industry standard platinum-carbon systems, but at a fraction of the cost. “The key to the high performance of the materials we created is the combination of the chemistry and fiber processing conditions,” Kisailus said

Source: https://ucrtoday.ucr.edu/

Solar-driven Hydrogen Economy

Hydrogen as a fuel source, rather than hydrocarbons like oil and coal, offers many benefits. Burning hydrogen produces harmless water with the potential to eliminate carbon dioxide emissions and their environmental burden. In pursuit of technologies that could lead to a breakthrough in achieving a hydrogen economy, a key issue is making hydrogen cheaply. Using catalysts to split water is the ideal way to generate hydrogen, but doing so usually requires an energy input from other chemicals, electricity, or a portion of sunlight which has high enough energy.

Now researchers at Osaka University have developed a new catalytic system for efficiently splitting water and making hydrogen with energy from normal sunlight. Their study was recently reported in Angewandte Chemie International Edition.

It has not been possible to use visible light for photocatalysis, but our approach of combining nanostructured black phosphorus for water reduction to hydrogen and bismuth vanadate for water oxidation to oxygen lets us make use of a wide range of the solar spectrum to make hydrogen and oxygen with unprecedented efficiency,” lead author Mingshan Zhu says.

Black phosphorus has a flat, two-dimensional structure similar to that of graphene and strongly absorbs light across the whole of the visible spectrum. The researchers combined the black phosphorus with bismuth vanadate, which is a well-known water oxidation catalyst.

In the same way that plants shuttle electrons between different structures in natural photosynthesis to split water and make oxygen, the two components of this new catalyst could rapidly transfer electrons excited by sunlight. The amounts of the two components was also optimized in the catalyst, leading to production of hydrogen and oxygen gases in an ideal 2:1 ratio.

Source: http://resou.osaka-u.ac.jp/

Europe: 17 Organizations United To Produce Li-Ion Batteries

Energy storage has emerged as a central building block of the EU’s objectives in low emission electric transport and replacing electricity generated by fossil fuels with renewables. The realisation that batteries are of such strategic importance has come as a wake-up call, with Europe finding itself lagging in commercialising research in the field, and for now, completely dependent on manufacturers outside the EU for battery supplies. Public and private funders in Europe that have put €555 million into developing new energy storage technologies since 2008 have little to show for it in terms of commercial outputs.

While a number of start-ups, such as France’s NAWA Technology are working on various approaches to increasing energy density and speeding up recharging of electric vehicle batteries, none are in production. As yet, Europe has no factories producing electric vehicle batteries, though LG Chem of South Korea is currently constructing a manufacturing plant in Poland, which is due to open later this year. Another Korean manufacturer, SK Innovation, whose major customer is Mercedes-Benz, has announced it will invest $777 million to build a battery plant with capacity of 7.5 GW/year in Hungary

A European company, Northvolt is planning to build a plant in Skelleftea, northern Sweden, with construction due to start in the second half of 2018. Meanwhile, Frankfurt-based TerraE announced earlier in January that it has formed a consortium of 17 companies and research institutions to handle the planning for two large-scale lithium-ion battery cell manufacturing facilities in Germany. TerraE will build and operate the factories, where customers can have batteries produced to their own specifications.

Source: https://sciencebusiness.net/

Thin And Highly Insulating Walls Lower Heating Costs

Better thermal insulation means lower heating costs – but this should not be at the expense of exciting architecture. A new type of brick filled with aerogel could make thin and highly insulating walls possible in the future – without any additional insulation layer.

The calculation is simple: the better a building is insulated, the less heat is lost in winter – and the less energy is needed to achieve a comfortable room temperature. No wonder, then, that the Swiss Federal Office of Energy (SFOE) regularly raises the requirements for building insulation.

In order to achieve the same insulation values as a 165 mm thick wall of aerobricks, a wall of perlite bricks must be 263 mm thick – and a wall of non-insulating bricks even more than one meter!

Traditionally, the insulating layers are applied to the finished walls. Increasingly, however, self-insulating bricks are being used – saving both work steps and costs and opening up new architectural possibilities. Insulating bricks offer a workable compromise between mechanical and thermal properties and are also suited for multi-storey buildings. They are already available on the market in numerous models: some have multiple air-filled chambers, others have larger cavities filled with insulating materials such as pearlite, mineral wool or polystyrene. Their thermal conductivity values differ depending on the structure and filling material. In order to reach the insulation values of walls with seperate insulating layers, the insulating bricks are usually considerably thicker than normal bricks.

Empa researchers have now replaced Perlite in insulating bricks with Aerogel: a highly porous solid with very high thermal insulation properties that can withstand temperatures of up to 300°C (see box). It is not a novel material for the researchers: they have already used it to develop a high-performance insulating plaster which, among other things, allows historical buildings to be renovated energetically without affecting their appearance.

Together with his colleagues, Empa researcher Jannis Wernery from the research department «Building Energy Materials and Components» has developed a paste-like mixture of aerogel particles to be used as filler material for the brick. «The material can easily be filled into the cavities and then joins with the clay of the bricks», says Wernery. «The aerogel stays in the bricks – you can work with them as usual.» The «Aerobrick» was born.

Source: https://www.empa.ch/

New Robust Oilseed Crop Resists Drought

University of Copenhagen (Denmark) and the global player Bayer CropScience have successfully developed a new oilseed crop that is much more resistant to heat, drought and diseases than oilseed rape. The breakthrough is big and it will feature as cover story of the April issue of Nature Biotechnology.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Oilseed rape does not grow very well in warm and dry areas. We are very happy that we have succeeded in using a groundbreaking technology on a mustard plant, which is a close relative to rape. The result is an oilseed crop with improved agronomic traits that is tolerant to global warming. The new crop will enable cultivation in areas that today is not suitable for oilseed crops, such as the Western part of Canada, parts of Eastern Europe, Australia and India”, explains Professor Barbara Ann Halkier, Head of DynaMo Center of Excellence, University of Copenhagen, is one of the scientists who has worked on developing a new oilseed crop with better properties.

The mustard plant is similar to oilseed rape in many ways. It looks like a rape plant and its oil has the same attractive features with high content of mono– and polyunsaturated fatty acids e.g. omega-3 and -6 plus antioxidants and vitamins. However, it is also a lot more robust when grown under arid conditions and upon exposure to diseases. Mustard is therefore an obvious candidate to replace oilseed rape.

Until now it has been an undefeatable challenge that mustard seeds are full of the bitter defense compounds that give mustard its characteristic flavor. Consequently, the protein-rich seed meal that remains after the oil is pressed out of the seeds is useless as animal feed,” adds Barbara Ann Halkier.

In close collaboration with Bayer CropScience – one of the major global players within plant biotechnology and breeding – she and other scientists from the DynaMo Center have found an original solution to this problem.

Source: http://news.ku.dk/

In 2025 Humanity Could Benefit From A Major New Source Of Clean Power

An international project to generate energy from nuclear fusion has reached a key milestone, with half of the infrastructure required now built. Bernard Bigot, the director-general of the International Thermonuclear Experimental Reactor (Iter), the main facility of which is based in southern France, said the completion of half of the project meant the effort was back on track, after a series of difficulties. This would mean that power could be produced from the experimental site from 2025.

Nuclear fusion occurs when two atoms combine to form a new atom and a neutron. The atoms are fired into a plasma where extreme temperatures overcome their repulsion and forces them together. The fusion releases about four times the energy produced when an atom is split in conventional nuclear fission

The effort to bring nuclear fusion power closer to operation is backed by some of the world’s biggest developed and emerging economies, including the EU, the US, China, India, Japan, Korea and Russia. However, a review of the long-running project in 2013 found problems with its running and organisation. This led to the appointment of Bigot, and a reorganisation that subsequent reviews have broadly endorsed.

Fusion power is one of the most sought-after technological goals in the pursuit of clean energy. Nuclear fusion is the natural phenomenon that powers the sun, converting hydrogen into helium atoms through a process that occurs at extreme temperatures.

Replicating that process on earth at sufficient scale could unleash more energy than is likely to be needed by humanity, but the problem is creating the extreme conditions necessary for such reactions to occur, harnessing the resulting energy in a useful way, and controlling the reactions once they have been induced.

The Iter project aims to use hydrogen fusion, controlled by large superconducting magnets, to produce massive heat energy which would drive turbines – in a similar way to the coal-fired and gas-fired power stations of today – that would produce electricity. This would produce power free from carbon emissions, and potentially at low cost, if the technology can be made to work at a large scale.

For instance, according to Iter scientists, an amount of hydrogen the size of a pineapple could be used to produce as much energy as 10,000 tonnes of coal.

Source: https://www.theguardian.com/

Virgin Hyperloop One’s System Over 240 mph (387 km/h)

In a recent test, Virgin Hyperloop One‘s system beat all previous speed records, hitting nearly 387 kilometers per hour (240 miles per hour). With Richard Branson now in their corner, the company could dominate the future of hyperloop transportation. On December 18, Virgin Hyperloop One announced the completion of third phase testing on the DevLoop, the world’s first full-scale hyperloop test site. During these tests, the system clocked a lightning-fast speed of nearly 387 kmh (240 mph), breaking the 355 kmh (220 mph) hyperloop speed record set by Elon Musk’s hyperloop in August.

During this phase of testing, the company experimented with using a new airlock that helps test pods transition between atmospheric and vacuum conditions. By combining magnetic levitation, extremely low aerodynamic drag, and the level of air pressure experienced at 200,000 feet above sea level, the system proved that it is capable of reaching airline speeds over long distances.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The recent phase three testing continues to prove the incredible persistence and determination of our DevLoop team — the close to 200 engineers, machinists, welders, and fabricators who collaborated to make hyperloop a reality today,” Josh Giegel, Virgin Hyperloop One’s co-founder and chief technology officer, stated in a press release announcing the new hyperloop speed record.

Source: https://hyperloop-one.com/

Gilded fuel cells boost electric car efficiency

To make modern-day fuel cells less expensive and more powerful, a team led by Johns Hopkins chemical engineers has drawn inspiration from the ancient Egyptian tradition of gilding. Egyptian artists at the time of King Tutankhamun often covered cheaper metals (copper, for instance) with a thin layer of a gleaming precious metal such as gold to create extravagant masks and jewelry. In a modern-day twist, the Johns Hopkins-led researchers have applied a tiny coating of costly platinum just one nanometer thick—100,000 times thinner than a human hair—to a core of much cheaper cobalt. This microscopic marriage could become a crucial catalyst in new fuel cells that generate electric current to power cars and other machines.

The new fuel cell design would save money because it would require far less platinum, a very rare and expensive metal that is commonly used as a catalyst in present-day fuel-cell electric cars. The researchers, who published their work earlier this year in Nano Letters, say that by making electric cars more affordable, this innovation could curb the emission of carbon dioxide and other pollutants from gasoline– or diesel-powered vehicles.

This technique could accelerate our launch out of the fossil fuel era,” said Chao Wang, a Johns Hopkins assistant professor in the Department of Chemical and Biomolecular Engineering and senior author of the study. “It will not only reduce the cost of fuel cells. It will also improve the energy efficiency and power performance of clean electric vehicles powered by hydrogen.”

In their journal article, the authors tipped their hats to the ancient Egyptian artisans who used a similar plating technique to give copper masks and other metallic works of art a lustrous final coat of silver or gold.The idea,” Wang said, “is to put a little bit of the precious treasure on top of the cheap stuff.”

He pointed out that platinum, frequently used in jewelry, also is a critical material in modern industry. It catalyzes essential reactions in activities including petroleum processing, petrochemical synthesis, and emission control in combustion vehicles, and is used in fuel cells. But, he said, platinum’s high cost and limited availability have made its use in clean energy technologies largely impractical—until now.

Source: https://hub.jhu.edu/

Flying MotorBikes For Dubai Police

Dubai Police, already home to Lamborghini patrol cars and android officers, has decided to take to the skies in what can only be described as a flying motorbike.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The vehicle, called the Scorpion and designed by Russian tech company Hoversurf, relies on four propellers to stay airborne, with the rider crouched precariously close to the exposed blades. Capable of 40 mph and a travel time of 25 minutes, the single-seat craft, which can carry 600 lbs, can also operate autonomously.

After appearing at tech shows earlier this year, Dubai Police has decided to add one to its list of cutting-edge gadgets, all part of the force’s “smart city” plans.

Unveiled at Dubai’s Gitex Technology show, the Scorpion was presented alongside a new electric motorbike concept by Japanese firm Mikasa — firmly rooted to the ground, but with a top speed of 124 mph according to the police and looking like something out of the film “Tron.”
Source: http://edition.cnn.com/

Budweiser Orders 40 Tesla Electric Trucks

The list of companies placing orders for Tesla Semi electric trucks keeps growing weeks after the unveiling event last month. Now Anheuser-Busch, the brewer behind Budweiser, announced that it ordered 40 Tesla Semi trucks. Last week, DHL confirmed an order of 10 trucks – bringing the tally to just over 200 Tesla Semi trucks. The brewer says that it will include the electric trucks in its distribution network as part of its commitment to reduce its operational carbon footprint by 30 percent by 2025. Considering the size of their distribution network, they say that it would be the equivalent of removing nearly 500,000 cars from the road globally each year.

At Anheuser-Busch, we are constantly seeking new ways to make our supply chain more sustainable, efficient, and innovative. This investment in Tesla semi-trucks helps us achieve these goals while improving road safety and lowering our environmental impact,” commented James Sembrot, Senior Director of Logistics Strategy.

Tesla Semi is actually only one part of Anheuser-Busch’s effort to modernize its fleet. They also confirmed orders from Nikola Motors for their battery/fuel cell hydrogen trucks and Uber’s Otto autonomous trucks.

Last year, Uber’s Otto completed its first shipment by self-driving truck with an autonomous beer run with Budweiser.

Source: https://electrek.co/

3D-Printed Plastic Objects Connect To The Internet Without Any Electronics

Researchers from the University of Washington (UW) have developed 3D-printed plastic objects that can connect to the internet without any electronics or batteries. The researchers found a way to 3D-print plastic objects that can absorb or reflect ambient WiFi signals and send data wirelessly to any WiFi receiver like a smartphone or router.

Possible use cases include an attachment for laundry detergent that can sense when soap is running low, or a water sensor that notifies your smartphone when there is a leak.

As the UW explains in its news release, the researchers “replaced some functions normally performed by electrical components with mechanical motion activated by springs, gears, switches and other parts that can be 3-D printed — borrowing from principles that allow battery-free watches to keep time.” The scientists found that those mechanical motions can trigger gears and springs that connect to an antenna, all within the object.
The team opens new approach: “Can objects made of plastic materials be connected to smartphones and other Wi-Fi devices, without the need for batteries or electronics? A positive answer would enable a rich ecosystem of ‘talking objects3D printed with commodity plastic filaments that have the ability to sense and interact with their surroundings. Imagine plastic sliders or knobs that can enable rich physical interaction by dynamically sending information to a nearby Wi-Fi receiver to control music volume and lights in a room. This can also transform inventory management where for instance a plastic detergent bottle can self-monitor usage and re-order supplies via a nearby Wi-Fi device.
Such a capability democratizes the vision of ubiquitous connectivity by enabling designers to download and use our computational modules, without requiring the engineering expertise to integrate radio chips and other electronics in their physical creations. Further, as the commoditization of 3D printers continues, such a communication capability opens up the potential for individuals to print highly customized wireless sensors, widgets and objects that are tailored to their individual needs and connected to the Internet ecosystem
.”

Source: http://printedwifi.cs.washington.edu/
https://www.geekwire.com/