Posts belonging to Category Economy



Liquid Storage Of The Sun’s Power

Researchers at Chalmers University of Technology in Sweden have demonstrated efficient solar energy storage in a chemical liquid. The stored energy can be transported and then released as heat whenever needed. ​Many consider the sun the energy source of the future. But one challenge is that it is difficult to store solar energy and deliver the energy ‘on demand’.

The research team from Chalmers University has shown that it is possible to convert the solar energy directly into energy stored in the bonds of a chemical fluid – a so-called molecular solar thermal system. The liquid chemical makes it possible to store and transport the solar energy and release it on demand, with full recovery of the storage medium. The process is based on the organic compound norbornadiene that upon exposure to light converts into quadricyclane.
CLICK ON THE IMAGE TO ENJOY THE VIDEO

The technique means that we can store the solar energy in chemical bonds and release the energy as heat whenever we need it,’ says Professor Kasper Moth-Poulsen, who is leading the research team. ‘Combining the chemical energy storage with water heating solar panels enables a conversion of more than 80 percent of the incoming sunlight.’

The research project was initiated at Chalmers more than six years ago and the research team contributed in 2013 to a first conceptual demonstration. At the time, the solar energy conversion efficiency was 0.01 percent and the expensive element ruthenium played a major role in the compound. Now, four years later, the system stores 1.1 percent of the incoming sunlight as latent chemical energy – an improvement of a factor of 100. Also, ruthenium has been replaced by much cheaper carbon-based elements.

We saw an opportunity to develop molecules that make the process much more efficient,’ says Moth-Poulsen. ‘At the same time, we are demonstrating a robust system that can sustain more than 140 energy storage and release cycles with negligible degradation.’

The research is presented on the cover of the scientific journal Energy & Environmental Science.

Source: http://www.reuters.com/
a
nd
https://www.chalmers.se/

Your browsing history may be up for sale soon

A US House committee is set to vote on whether to kill privacy rules that would prevent internet service providers (ISPs) from selling users’ web browsing histories and app usage histories to advertisers. Planned protections, proposed by the Federal Communications Commission (FCC) that would have forced ISPs to get people’s consent before hawking their data – are now at risk. Here’s why it matters.

Your web browsing patterns contain a treasure trove of data, including your health concerns, shopping habits and visits to porn sites. ISPs can find out where you bank, your political views and sexual orientation simply based on the websites you visit. The fact that you’re looking at a website at all can also reveal when you’re at home and when you’re not.

spy your dataIf you ask the ISPs, it’s about showing the user more relevant advertising. They argue that web browsing history and app usage should not count as “sensitiveinformation.
Not all ISPs want to abolish the privacy protections. A list of several smaller providers – including Monkeybrains.net, Cruzio Internet and Credo Mobile – have written to representatives to oppose the decision. “One of the cornerstones of our businesses is respecting the privacy of our customers,” they said.
How does this differ from the way Google and Facebook use our data?
It’s much harder to prevent ISPs from tracking your data. You can choose not to use Facebook or Google’s search engine, and there are lots of tools you can use to block their tracking on other parts of the web, for example EFF’s Privacy Badger.

Consumers are generally much more limited for choice of ISP, in some cases only having one option in a given geographical area. This means they can’t choose one of the ISPs pledging to protect user data.

Source: https://www.theguardian.com/

How To Build A 3D Printed House in One Day For $10,000

San Francisco-based Apis Cor reported on its blog that on a cold day last December it (and a number of its partners) built an entire 400 square foot house with its custom printer and it only cost $10,000. Oh, and it took just 24 hours to complete.

ApisCor_febr_top

Others have claimed to build houses with 3D printers. But what makes Apis Cor’s house unique is that it wasn’t constructed from pre-printed panels that required assembly by construction workers. The “printer” used is a giant, mobile piece of crane-like equipment that layers on cement in one continuous process, building both the internal and external structure all at once instead of in multiple parts. It’s a one-story structure but it can be constructed in just about any shape and the company showed how it could be built in even the coldest of conditions in this YouTube video.

Contractors worrying about their jobs shouldn’t panic…yet. Once all the walls are put together, those workers are then needed to do everything else – like installing windows and the roof, plus painting, insulating and putting in appliances, according to this report in Quartz. A finished test house that the company built with a partner in Russia is “cozy and comfortable” and includes “a hall, a bathroom, a living room and a compact functional kitchen with the most modern appliances from Samsung company,” Apis Cor’s blog boasts.

3D printed house

As you can see with the advent of new technology,” the company says in its blog post. “Construction 3D printing is changing the view and approach to the construction of low-rise buildings and provides new opportunities to implement custom architectural solutions.

The possibilities of this advancement in 3D printing are many. Houses could be quickly constructed for refugee camps, people displaced by natural disaster or for those who do not have available housing, such as the homeless. Governments could build entire communities of affordable housing at just a fraction of what’s paid today.

Source:  https://www.washingtonpost.com/
AND
http://apis-cor.com/

Wooden SkyScrapers

High-rise wooden buildings, such as 14-storey apartment building “The Tree” in Norway, are altering city skylines in what the timber industry is heralding as a new era that will dent the supremacy of concrete and steel.

wooden skyscraper

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Situated on the Bergen waterfront, The Tree is the tallest wooden building in the world. The 52.8 metre high structure is one of a growing number of so-called Plyscrapers altering city skylines. The timber industry say it’s an environmental solution, as countries seek to reduce emissions.

It will never totally displace concrete and steel, but it’s definitely a part in our solution towards our struggle towards a CO2 neutral society,”  says Ole Herman Kleppe, Chief Project Manager.

The architects insist that fears of fire in such timber homes are groundless.  “These columns and these CLT panels they don’t burn. They’re so thick that they don’t burn. In addition, they are painted with fire resistant paint and the house is sprinkled so we have all possible ways to prevent a fire in the house. So actually, this is the safest house in Bergen regarding fire.” explains Kleppe.

The 14-storey structure is made of sustainable wood. But concrete makers dispute the idea that timber is greener, insisting that deforestation causes more CO2 emissions. The Tree’s structure isn’t entirely wooden.

It’s concrete on this roof because it adds weight and it was necessary to add weight to this wooden building because it kind of dampens the swinging,” adds Per Reigstad, architect at Artec.

Later this year a wooden building that’s two inches taller will open in Vancouver. Even taller structures are being planned in Vienna and London.

Source: http://www.reuters.com/

SpaceX Hyperloop A Step Closer To Reality

The Hyperloop high-speed transportation system has moved a step closer to reality. Teams competed to design subscale versions of the transport pods that could one day whisk passengers between San Francisco and Los Angeles in under half an hour. The competition was hosted by SpaceX and its founder, Elon Musk. Although Musk is not directly involved in the construction of the Hyperloop, the billionaire entrepreneur originally envisioned the concept, having created an open-source plan that encouraged others to build it. The idea is that passengers would travel through low-pressure steel tubes at up to 800 mph (1,288 kph), propelled by a magnetic accelerator. The fastest pod in the competition reached 58mph (93 kph). That was designed and built by a 35-person team from the Technical University of Munich, Germany.

delft-hyperloopCLICK ON THE IMAGE TO ENJOY THE VIDEO

What made our team stand out is actually a compressor which we bought out of an old aircraft. It’s there to reduce drag and give us some additional speed.” A team from Delft University of Technology in the Netherlands achieved the highest overall score in the competition for their pod with a levitation, stabilization and braking system based on permanent magnets“, said Josef Fleischmann, member of the WARR team from Technical University of Munich.

Hyperloop, the technology is pretty much there already, we just have to implement it. One of the things this competition is for is to show the world that we can do this and convince them that we should build it somewhere and get the ball rolling,” explains Mars Geuze, technical of Delft Hyperloop.
SpaceX has said it will hold a second competition, open to both new and existing student teams, in Summer 2017, this time focused only on maximum speed.

Source: http://delfthyperloop.nl/#intro
AND
http://www.reuters.com

£25,000 To Fabricate A New Beer According To Your DNA

Can’t quite find the perfect pint? A London brewer claims to have the answer – a beer designed around your DNA profile. The Meantime Brewing Company in Greenwich says designing a product to suit a particular person’s palate is a world first.

meantime-beerCLICK ON THE IMAGE TO ENJOY THE VIDEO

What we looked at doing was trying to create a beer where we could produce a beer specifically to that person, so looking at their DNA to understand the taste profile of the individual to then say OK, you particularly identify bitter flavours, sweet flavours what have you and then produce a beer which has that characteristic so you would ultimately like that beer and it would be a great beer to taste and it would suit your taste buds perfectly.” explains Ciaran Giblin, Brewmaster at Meantime Brewing Company.

Launching in February, Meantime Bespoke customers will have their DNA analysed They’re looking for variations in the gene that allows us to taste bitter compounds like those found in cabbage, coffee and certain dark beers. Then it’s back to the brewery and tried and tested variations of barley, hops, yeast and water.

It’s about interpreting all these different facets to bring it together to produce one beer that someone is going to like. So it’s a complex process. It’s not a simple case of just putting it all in together and off it goes. There’s lots of elements that we’ve got to draw in together to focus on in order to deliver the beer that is perfect for someone to drink,” comments Ciaran Giblin.

Customers will pay 25,000 pounds for the privilege – and for a little extra can impact the whole process of creating a new beer .

You have influence on what the label looks like, on what the taste of the beer looks like. You can even get a glass perfectly formed to your hand so you can enjoy it in the perfect way. A glass can influence the flavour of the beer as well. So it really ticks off every box that you go through and then you get to share it with friends or if you’re a business or wherever you go,” says Richard Myers, Marketing Director of the company. Customers will get 12 hectolitres of their unique brew in bottles – more than 2,000 pints It can also be delivered in kegs to your favourite pub – where you’ll have even more friends than you realised.

Source: https://www.meantimebrewing.com/

The Rise Of The Hydrogen Electric Car

Right now, if you want an alternative-fuel vehicle, you have to pick from offerings that either require gasoline or an electrical outlet. The gas-electric hybrid and the battery-powered car — your Toyota Priuses, Chevy Volts, and Teslas — are staples in this space. There are drawbacks for drivers of both types. You still have to buy gas for your hybrid and you have to plug in your Tesla — sometimes under less than favorable conditions — lest you be stranded someplace far away from a suitable plug. Beyond that, automakers have been out to find the next viable energy source. Plug-in vehicles are more or less proven to be the answer, but Toyota and a handful of other carmakers are investigating hydrogen.

toyota-mirai

That’s where the Toyota Mirai comes in. The Mirai‘s interior center stack has all the technology you would expect from a car that retails for $57,500, including navigation, Bluetooth, and USB connectivity. It’s all accessible by touch screens and robust digital displays.
A fill-up on hydrogen costs just about as much as regular gasoline in San Francisco. The Mirai gets an estimated 67 MPGe (67 Miles per gallon gasoline equivalent = 28,5 kilometers per liter)), according to Toyota.
It’s an ambitious project for Toyota because the fueling infrastructure for this car is minimal. There are only 33 public hydrogen-filling stations in the US, according to the US Department of Energy. Twenty-six of those stations are in California, and there’s one each in Connecticut, Massachusetts, and South Carolina.

If you include public and private hydrogen stations, then the total climbs to 58 — nationwide. Compare that to the more than 15,100 public electric-charging stations and the 168,000 retail gas stations in the US, and you can see the obvious drawback of hydrogen-powered cars. Despite this, the Mirai is an interesting project, and you must keep in mind that Japan at the Government level seems to bet on a massively hydrogen powered economy in the near future (fuel, heating, replacement of nuclear energy, trains, electric vehicles, etc…).

Source: http://www.businessinsider.com

Hyperloop Competition

Elon Musk’s futuristic Hyperloop concept was unveiled in 2013… …a transport system allowing people to travel at almost the speed of sound inside reduced-pressure tubes. To bring the idea closer to reality Musk launched the SpaceX Hyperloop Pod contest. 30 teams, like this one from Delft University of Technology (Netherlands), will test their pods on a mile-long track in California next month. The Delft Hyperloop uses passive magnetic bearing to allow contact-free levitation.

delft-hyperloopCLICK ON THE IMAGE TO ENJOY THE VIDEO

What’s so nice about it is that these magnets they’re not electro-magnets that require current, but they’re passive, permanent magnets, so the ones you can put on your fridge, for example – and that makes the entire system very energy efficient. You don’t need to put in any power to start levitating. You just gain speed and then the vehicle wants to go up and levitate by itself,” explains Sascha Lamme, chief engineer for Delft Hyperloop.

The half-size pod prototype weighs just 149 kilograms. It’s designed to reach Musk’s 750 mile per hour target… …though the small test track will limit competitors to around half that. The Delft team insists its pod has proved safe in tests.
It starts levitating at a height of almost two centimetres. But also our braking system really controls the vehicle very smoothly, to get to a controlled stop, so that all the passengers still feel comfortable….Even when the power is lost in the entire vehicle, the vehicle will come to a quick standstill, so everyone is safe,” adds Sascha Lamme.  January’s competition winners will hope victory brings them closer to making Elon Musk’s high-speed dream a reality.

Source: http://delfthyperloop.nl/
A
ND
http://www.reuters.com/

Robotic Sommelier Blends The Wine That Matches Your Personal Taste

It’s a device that may have wine aficionados spluttering into their claret. Vinfusion is a robotic sommelier that helps you blend a glass of wine to your specific taste. It’s pre-loaded with four distinct base wines that can be mixed together into hundreds of new flavour combinations.

wineCLICK ON THE IMAGE TO ENJOY THE VIDEO

We took about 30-odd wines into the lab and analysed the chemical profile of those individual wines… we narrowed it down to four base wines; these are a Chilean Pinot Noir, a Chilean Merlot, an Australian Shiraz and a French sweet wine which is a Muscat. And we chose these wines to represent the extremes of the flavour space that we developed,” says Sajith Wimalaratne, Manager at Cambridge Consultants. Using simple terms like full-bodied or light, and dry or sweet the user simply adjusts the parameters on a sliding scale. Vinfusion also makes recommendations based on the wine you’ve created.

I’m going to blend my own wine. So I’m going to have quite a full-bodied wine, pretty soft and fairly sweet. And it says that this wine is similar to a ruby port. And now I’m going to blend this wine; so you can see we’ve got four wines blending in the chamber here, they’re coming in the top and they’re also being aerated to open up the bouquet of the wine, just as you would open a red wine for a while before you drink it.” adds Andrew Stratton, fluids engineer at Cambridge Consultants.

The wine dispensed – while certainly quaffable – would be unlikely to pass muster with serious wine lovers. The makers deliberately chose base wines priced around the 10-dollars the average consumer spend on a bottle.  “Wine is a complex beverage. And a lot of people just tend to stick to one or two that they know. But what we wanted to do was actually make this amazing range of wines out there, and make it more accessible to the consumer,” comments Sajith Wimalaratne.   Winemaking is steeped in history, largely defying technological interference. Vinfusion could, in theory, be loaded with finer wines producing a higher quality beverage. For wine snobs, however, any Vinfusion vintage might just be too unpalatable.

Source: http://www.reuters.com/

Japan Bets On Hydrogen As A Green Energy Source

Hydrogen gas is a promising alternative energy source to overcome our reliance on carbon-based fuels, and has the benefit of producing only water when it is reacted with oxygen. However, hydrogen is highly reactive and flammable, so it requires careful handling and storage. Typical hydrogen storage materials are limited by factors like water sensitivity, risk of explosion, difficulty of control of hydrogen-generation.

alstom-hydrogen-electric-train Hydrogen gas can be produced efficiently from organosilanes, some of which are suitably air-stable, non-toxic, and cheap. Catalysts that can efficiently produce hydrogen from organosilanes are therefore desired with the ultimate goal of realizing safe, inexpensive hydrogen production in high yield. Ideally, the catalyst should also operate at room temperature under aerobic conditions without the need for additional energy input. A research team led by Kiyotomi Kaneda and Takato Mitsudome at Osaka University have now developed a catalyst that realizes efficient environmentally friendly hydrogen production from organosilanes. The catalyst is composed of gold nanoparticles with a diameter of around 2 nm supported on hydroxyapatite.

The team then added the nanoparticle catalyst to solutions of different organosilanes to measure its ability to induce hydrogen production. The nanoparticle catalyst displayed the highest turnover frequency and number attained to date for hydrogen production catalysts from organosilanes. For example, the  converted 99% of dimethylphenylsilane to the corresponding silanol in just 9 min at room temperature, releasing an equimolar amount of hydrogen gas at the same time. Importantly, the catalyst was recyclable without loss of activity. On/off switching of hydrogen production was achieved using the nanoparticle catalyst because it could be easily separated from its organosilane substrate by filtration. The activity of the catalyst increased as the nanoparticle size decreased.

A prototype portable hydrogen fuel cell containing the nanoparticle catalyst and an organosilane substrate was fabricated. The fuel cell generated power in air at room temperature and could be switched on and off as desired.

Generation of hydrogen from inexpensive organosilane substrates under ambient conditions without additional energy input represents an exciting advance towards the goal of using hydrogen as a green energy source.

Source: https://www.eurekalert.org/
AND
http://www.nature.com/

How To Fabricate The Hardest Diamond

The Australian National University (ANU) has led an international project to make a diamond that’s predicted to be harder than a jeweller’s diamond and useful for cutting through ultra-solid materials on mining sites. ANU Associate Professor Jodie Bradby said her team – including ANU PhD student Thomas Shiell and experts from RMIT, the University of Sydney and the United States – made nano-sized Lonsdaleite, which is a hexagonal diamond only found in nature at the site of meteorite impacts such as Canyon Diablo in the US.

diamond

This new diamond is not going to be on any engagement rings. You’ll more likely find it on a mining site – but I still think that diamonds are a scientist’s best friend. Any time you need a super-hard material to cut something, this new diamond has the potential to do it more easily and more quickly,” said Dr Bradby from the ANU Research School of Physics and Engineering.

Her research team made the Lonsdaleite in a diamond anvil at 400 degrees Celsius, halving the temperature at which it can be formed in a laboratory. “The hexagonal structure of this diamond’s atoms makes it much harder than regular diamonds, which have a cubic structure. We’ve been able to make it at the nanoscale and this is exciting because often with these materials ‘smaller is stronger‘.”

Lonsdaleite is named after the famous British pioneering female crystallographer Dame Kathleen Lonsdale, who was the first woman elected as a Fellow to the Royal Society.

The research is published in Scientific Reports.

Source: http://www.anu.edu.au/

Self-Driving Truck Delivered 50,000 Beers

If you drank a cold beer in Colorado Springs this weekend, it may have been delivered by a self-driving truck. Outfitted with $30,000 worth of hardware and software from San Francisco startup Otto, a company just bought by UBER, , the truck had just hours before made the world’s first autonomous truck delivery.

self-driving-truck-otto

computer take control on the road and delivered 50,000 cans of Budweiser  — in what the beer company says was the first commercial delivery using the tech. The truck that made the 120-mile journey is one of a handful of Volvo rigs equipped with tech developed by Otto, a start-up Uber acquired in August. Unlike other self-driving systems on the market, such as Tesla‘s autopilot, Otto‘s tech lets drivers get out from behind the wheel altogether.

Source: http://www.washingtonpost.com/