Posts belonging to Category electronics

Wireless Power

A new method developed by Disney Research for wirelessly transmitting power throughout a room enables users to charge electronic devices as seamlessly as they now connect to WiFi hotspots, eliminating the need for electrical cords or charging cradles. The researchers demonstrated their method, called quasistatic cavity resonance (QSCR), inside a specially built 16-by-16-foot room at their lab. They safely generated near-field standing magnetic waves that filled the interior of the room, making it possible to power several cellphones, fans and lights simultaneously.


This new innovative method will make it possible for electrical power to become as ubiquitous as WiFi,” said Alanson Sample, associate lab director & principal research scientist at Disney Research. “This in turn could enable new applications for robots and other small mobile devices by eliminating the need to replace batteries and wires for charging.

In this work, we’ve demonstrated room-scale wireless power, but there’s no reason we couldn’t scale this down to the size of a toy chest or up to the size of a warehouse,” said Sample, who leads the lab’s Wireless Systems Group.

According to Sample, is a long-standing technological dream. Celebrated inventor Nikola Tesla famously demonstrated a wireless lighting system in the 1890s and proposed a system for transmitting power long distances to homes and factories, though it never came to fruition. Today, most wireless power transmission occurs over very short distances, typically involving charging stands or pads.

The QSCR method involves inducing electrical currents in the metalized walls, floor and ceiling of a room, which in turn generate uniform magnetic fields that permeate the room’s interior. This enables power to be transmitted efficiently to receiving coils that operate at the same resonant frequency as the magnetic fields. The induced currents in the structure are channeled through discrete capacitors, which isolate potentially harmful electrical fields.

Our simulations show we can transmit 1.9 kilowatts of power while meeting federal safety guidelines,” Chabalko said. “This is equivalent to simultaneously charging 320 smart phones.”

A research report on QSCR by the Disney Research team of Matthew J. Chabalko, Mohsen Shahmohammadi and Alanson P. Sample was published in the online journal PLOS ONE.


How To Fine-Tune NanoFabrication

Daniel Packwood, Junior Associate Professor at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS), is improving methods for constructing tiny “nanomaterials” using a “bottom-up” approach called “molecular self-assembly”. Using this method, molecules are chosen according to their ability to spontaneously interact and combine to form shapes with specific functions. In the future, this method may be used to produce tiny wires with diameters 1/100,000th that of a piece of hair, or tiny electrical circuits that can fit on the tip of a needle.


Molecular self-assembly is a spontaneous process that cannot be controlled directly by laboratory equipment, so it must be controlled indirectly. This is done by carefully choosing the direction of the intermolecular interactions, known as “chemical control”, and carefully choosing the temperature at which these interactions happen, known as “entropic control”. Researchers know that when entropic control is very weak, for example, molecules are under chemical control and assemble in the direction of the free sites available for molecule-to-molecule interaction. On the other hand, self-assembly does not occur when entropic control is much stronger than the chemical control, and the molecules remain randomly dispersed.

Packwood teamed up with colleagues in Japan and the U.S. to develop a computational method that allows them to simulate molecular self-assembly on metal surfaces while separating the effects of chemical and entropic controls. This new computational method makes use of artificial intelligence to simulate how molecules behave when placed on a metal surface. Specifically, a “machine learning” technique is used to analyse a database of intermolecular interactions. This machine learning technique builds a model that encodes the information contained in the database, and in turn this model can predict the outcome of the molecular self-assembly process with high accuracy.


Nano-LED 1000 Times More Efficient

The electronic data connections within and between microchips are increasingly becoming a bottleneck in the exponential growth of data traffic worldwide. Optical connections are the obvious successors but optical data transmission requires an adequate nanoscale light source, and this has been lacking. Scientists at Eindhoven University of Technology (TU/e) now have created a light source that has the right characteristics: a nano-LED that is 1000 times more efficient than its predecessors, and is capable of handling gigabits per second data speeds.

NANO LEDWith electrical cables reaching their limits, optical connections like fiberglass are increasingly becoming the standard for data traffic. Over longer distances almost all data transmission is optical. Within computer systems and microchips, too, the growth of data traffic is exponential, but that traffic is still electronic, and this is increasingly becoming a bottleneck. Since these connections (‘interconnects’) account for the majority of the energy consumed by chips, many scientists around the world are working on enabling optical (photonic) interconnects. Crucial to this is the light source that converts the data into light signals which must be small enough to fit into the microscopic structures of microchips. At the same time, the output capacity and efficiency have to be good. Especially the efficiency is a challenge, as small light sources, powered by nano– or microwatts, have always performed very inefficiently to date.
The researchers in Eindhoven believe that their nano-LED is a viable solution that will take the brake off the growth of data traffic on chips. However, they are cautious about the prospects. The development is not yet at the stage where it can be exploited by the industry and the production technology that is needed still has to get off the ground.
The findings are reported in the online journal Nature Communications.


A ”NaNose” Device Identifies 17 Types Of Diseases With A Single Sniff

The future of early diagnoses of disease could be this simple, according to a team of researchers in Israel. The ‘NaNose‘ as they call it can differentiate between 17 types of diseases with a single sniff identifying so-called smelly compounds in anything from cancers to Parkinson’s.


Indeed, what we have found in our most recent research in this regard, that 17 types of disease have 13 common compounds that are found in all different types of disease, but the mixture of the compounds and the composition of these compounds changes from one disease to another disease. And this is what is really unique and what really we expect to see and utilize in order to make the diagnosis from exhaled breat,” says Professor Hossam  Haick ftom the Institute of Technology- Technion.

The NaNose uses “artificially intelligent nanoarraysensors to analyze the data obtained from receptors that “smell” the patient’s breath.

So our main idea is to try an imitate what’s going on in nature. So like we can take a canine, a dog and train it to scent the smell of drugs, of explosives or a missing person, we are trying to do it artificially. And we can do that by using these nano-materials and we build these nano material-based sensors. And of course there are many advantages and one of them of course is going all the way from sensors big as this to really small devices like this that have that have on them eight sensors and which can be incorporated to systems like this, or even smaller,” explains Doctor Yoav Broza from Technion .

Several companies are now trying to commercialize the technology – and encourage its use in healthcare systems… or see it incorporated into your smartphone.


Solar Panels Reach 36.4 Percent Efficiency

Swiss start-up Insolight says its solar panels double the yield achieved by other sun-powered technology. In independent tests the panels reached an efficiency of 36.4 percent.


Traditionally the market sits at around 18 percent and we can double this. Therefore we can double the return on investment for the final client….Our key innovation is that you do not need to rotate the panel in order to follow the sun. We can follow the sun in a flat manner, like any other solar panel, which makes it that our panel can be installed on standard rooftops, with standard mounting technology,” says Florian Gerlich Co-Founder of Insolight company.

Tiny square super cells capture all of the sun’s rays, underneath round lenses, using a patented microtracking system. “Why micro? Why tracking? Micro is a really really small movement that is encapsulated into the solar panel and tracking is to track the sun to concentrate the light into our really tiny solar cell,” comments Noe Bory from Insolight.  An injection-moulded transparent plate moves one centimetre throughout the day, a small sensor detecting the sun’s position.

“As you see here the small squares spread out over the whole surface and under each of these lenses there is a small solar cell. It’s a bit like the lenses that you’re using in your reading lenses or your reading glasses. It’s the same technology, it’s just a particular shape in order to be able to follow the sun from morning to the evening,” adds Florian Gerlich.

The panels may be more expensive to buy than current technology. But Insolight says energy prices will be slashed from 14 US cents per kilowatt hour to 9 cents. A large bed of panels will be tested in Lausanne this summer. Insolight says the system could be market-ready next year.

SpaceX Hyperloop A Step Closer To Reality

The Hyperloop high-speed transportation system has moved a step closer to reality. Teams competed to design subscale versions of the transport pods that could one day whisk passengers between San Francisco and Los Angeles in under half an hour. The competition was hosted by SpaceX and its founder, Elon Musk. Although Musk is not directly involved in the construction of the Hyperloop, the billionaire entrepreneur originally envisioned the concept, having created an open-source plan that encouraged others to build it. The idea is that passengers would travel through low-pressure steel tubes at up to 800 mph (1,288 kph), propelled by a magnetic accelerator. The fastest pod in the competition reached 58mph (93 kph). That was designed and built by a 35-person team from the Technical University of Munich, Germany.


What made our team stand out is actually a compressor which we bought out of an old aircraft. It’s there to reduce drag and give us some additional speed.” A team from Delft University of Technology in the Netherlands achieved the highest overall score in the competition for their pod with a levitation, stabilization and braking system based on permanent magnets“, said Josef Fleischmann, member of the WARR team from Technical University of Munich.

Hyperloop, the technology is pretty much there already, we just have to implement it. One of the things this competition is for is to show the world that we can do this and convince them that we should build it somewhere and get the ball rolling,” explains Mars Geuze, technical of Delft Hyperloop.
SpaceX has said it will hold a second competition, open to both new and existing student teams, in Summer 2017, this time focused only on maximum speed.


First Driverless Electric Bus Line Opened In Paris

Shuttling their way to a greener city. Paris opening its first driverless buses to the public on Monday. Fully electric and fully autonomous, the ‘EZ 10‘ transports up to 10 passengers across the Seine between two main stations. The buses use laser sensors to analyse their surroundings on the road and for now they don’t have to share it with any other vehicles.


“Fewer people come on board, its slower, its electric, it doesn’t pollute and it can be stored away more easily but it will never replace a traditional bus“, says Jose Gomes, who has been driving buses here for 26 years. He’ll oversee the smooth operation of the autonomous bus.

The shuttles come as Paris faces high pollution levels. City mayor Anna Hidalgo wants to reduce the number of cars, while authorities crack down on traffic restrictions. It may be a short 130m stretch for the buses but for Paris, it’s a big step towards promoting cleaner transport.


Reconfigurable Materials

Metamaterialsmaterials whose function is determined by structure, not composition — have been designed to bend light and sound, transform from soft to stiff, and even dampen seismic waves from earthquakes. But each of these functions requires a unique mechanical structure, making these materials great for specific tasks, but difficult to implement broadly. But what if a material could contain within its structure, multiple functions and easily and autonomously switch between them?

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute of Biologically Inspired Engineering at Harvard University have developed a general framework to design reconfigurable metamaterials. The design strategy is scale independent, meaning it can be applied to everything from meter-scale architectures to reconfigurable nano-scale systems such as photonic crystals, waveguides and metamaterials to guide heat.

In terms of reconfigurable metamaterials, the design space is incredibly large and so the challenge is to come up with smart strategies to explore it,” said Katia Bertoldi, John L. Loeb Associate Professor of the Natural Sciences at SEAS and senior author of the paper. “Through a collaboration with designers and mathematicians, we found a way to generalize these rules and quickly generate a lot of interesting designs.”

The research is published in Nature.

Device Doubles The Energy Conversion Of Solar Cells

Scientists from Japan are utilizing nanotechnology advancements to strengthen solar cellsSolar cells convert light into electricity using a bevy of sources, including light from the sun and the burning of natural resources such as oil and natural gas. However, the cells do not convert all light to power equally, which led to scientists attempting to find ways to produce more power. The flame of a gas burner will shift from red to blue as the heat increases because higher temperatures emit light at shorter wavelengths. Higher heat offers more energy, making short wavelengths an important target in the design of solar cells. Kyoto University‘s Takashi Asano, began using optical technologies to improve energy production.

device to double the power of solar cells

Current solar cells are not good at converting visible light to electrical power. The best efficiency is only around 20 percent,” Asano said in a statement. “The problem is that heat dissipates light of all wavelengths, but a solar cell will only work in a narrow range. To solve this, we built a new nano-sized semiconductor that narrows the wavelength bandwidth to concentrate the energy.

The researchers were able to use their nanoscale semiconductor to raise the energy conversion rate to at least 40 percent. Asano and researchers at the Susumu Noda lab had previously attempted to work with higher wavelengths. “Our first device worked at high wavelengths but to narrow output for visible light required a new strategy, which is why we shifted to intrinsic silicon in this current collaboration with Osaka Gas,” Asano said. Visible wavelengths are emitted at 1000 degrees Celsius but conveniently silicon has a melting temperature of over 1,400 degrees Celsius.

This concept was utilized by the scientists, who etched silicon plates to have a large number of identical and equidistantly-spaced rods, the height, radii and spacing of which was optimized for the target bandwidth. Susumu Noda, a professor at Kyoto University, explained the benefits of the advancement: “Our technology has two important benefits. First is energy efficiency: we can convert heat into electricity much more efficiently than before. Secondly is design:  we can now create much smaller and more robust transducers, which will be beneficial in a wide range of applications.”

The study was published in Science Advances.


How To Fast Manufacture NanoRobots

A team of researchers led by Biomedical Engineering Professor Sam Sia at Columbia Engineering has developed a way to manufacture microscale machines from biomaterials that can safely be implanted in the body. Working with hydrogels, which are biocompatible materials that engineers have been studying for decades, Sia has invented a new technique that stacks the soft material in layers to make devices that have three-dimensional, freely moving parts. The study, published online January 4, 2017, in Science Robotics, demonstrates a fast manufacturing method Sia calls “implantable microelectromechanical systems” (iMEMS).

By exploiting the unique mechanical properties of hydrogels, the researchers developed a “locking mechanism” for precise actuation and movement of freely moving parts, which can function as valves, manifolds, rotors, pumps, and drug delivery systems. They were able to tune the biomaterials within a wide range of mechanical and diffusive properties and to control them after implantation without a sustained power supply, such as a toxic battery. They then tested the payload delivery in a bone cancer model and found that the triggering of releases of doxorubicin from the device over 10 days showed high treatment efficacy and low toxicity, at 1/10th of the standard systemic chemotherapy dose.

implantable nanorobot

Overall, our iMEMS platform enables development of biocompatible implantable microdevices with a wide range of intricate moving components that can be wirelessly controlled on demand and solves issues of device powering and biocompatibility,” says Sia, also a member of the Data Science Institute. “We’re really excited about this because we’ve been able to connect the world of biomaterials with that of complex, elaborate medical devices.  Our platform has a large number of potential applications, including the drug delivery system demonstrated in our paper which is linked to providing tailored drug doses for precision medicine.”


Electric Motorbike Round-The-World Trip

80-day round-the-world trips aren’t new – but using an electric motorbike built from scratch by students on them certainly is. Eindhoven University of Technology (Netherlands) riders drove up to 500 kilometres a day on their self-constructed Storm Wave bike, relying entirely on battery power. Other students rode behind in a bus, with one change of driver and battery swap per day.

Storm electric motorcycleCLICK ON THE IMAGE TO ENJOY THE VIDEO

With a full pack you can ride 400 kilometres on one single charge. But during our tour we had to drive more, so we had to re-energise quickly. So we just took the empty ones out, replaced them with charged ones, and we could ride again,” says Bas Verkaik, Spokeperson for Storm Eindhoven.  Key to the Storm Wave is its unique modular system of 24 individual batteries. This helped ease navigation of difficult roads in countries like Turkmenistan and Uzbekhistan.

When we faced those bad roads we just took, for example half of the batteries out, we have a lighter motorcycle, lower centre of gravity, which makes it easier to handle,” comments Bas Verkaik. Storm Wave also contains a gearbox, unusual for an electric motorcycle, but allowing greater acceleration and efficiency at high speeds.

The misconceptions people have about electric vehicles is that either they’re slow or they don’t have enough power or they can’t drive fast or far enough. With our motorcycle it can go from zero to 100 (kilometres per hour) in under five seconds, and probably could go even faster if we changed some specs… I think it looks pretty nice. That’s also a misconception that people have, that electric vehicles have to be futuristic and they don’t like the design, but I’ve only heard good things about this motorcycle” , explains Storm Wave driver Yorick Heidema.

The 23 students returned home in November after receiving huge interest in cities they drove through. They say they’ve showed the world that long-distance electric vehicle travel isn’t just feasible, but cool too.


No More Speakers For Television

Sony has created the world’s first television which can emit sound from the screen itself, removing the need for separate speakers. Unveiled at CES 2017 in Las Vegas, the A1 BRAVIA OLED series features a unique “Acoustic Surface“, which sees the sound being emitted from the whole of the screen.

Sony Bravia

Sony creates a 3D sound scape by pairing the objects you’re viewing on the screen to the sound that they are making. For example, if you were watching a movie where a car drives across the screen, the sound will follow the movement of the car, adding a whole new level of immersion to your home entertainment experience. The screen transmits sound through two transducers which are located on the back of screen. These generate vibrations onto the area of the screen that’s required to transmit the sound. Despite the BRAVIA screen working as both a screen and a speaker, it remains impressively streamline. The display also comes with clean cable management to keep wires out of view. The technology could eventually expand to include LED screens, but Sony don’t have any plans do this just yet, as the multiple layers that make up a LED screen makes it harder to retain the picture and audio quality.

By truly fusing together the image and sound, Sony’s new BRAVIA TV gives a heightened TV viewing experience without you having to set up a complex system of surround sound speakers.