Posts belonging to Category electronics

Mini Flying Machines

Tiny floating robots could be useful in all kinds of ways, for example, to probe the human gut for disease or to search the environment for pollutants. In a step toward such devices, researchers describe a new marriage of materials, combining ultrathin 2-D electronics with miniature particles to create microscopic machines. The researchers will present their work today at the 255th National Meeting & Exposition of the American Chemical Society (ACS). The meeting features more than 13,000 presentations on a wide range of science topics.

A schematic diagram of a microscopic chemical detection machine depicting a micrometer-sized polymer particle coated with a nanoelectronic circuit.

You can make electronic circuits that are a single atom thick, which is just insanely thin,” Michael Strano, Ph.D., says. “One creative use no one has thought of until now is taking these electronics and grafting them onto a colloidal particle. The particle, which can float in the air like a speck of dust, has simple computing functions. You can bring these new electronics to environments they otherwise could not access.

As a first step, the researchers needed to develop a compatible set of electronic components for the particle’s coating to form a closed autonomous circuit. “This was difficult to do,” says Volodymyr Koman, Ph.D., a research fellow in Strano’s group at Massachusetts Institute of Technology. “We went through a number of different devices to meet certain power and energy requirements.” In the end, Strano’s team selected a biocompatible material, SU-8, for the micrometer-sized particles and lithographically etched them to create a closed circuit consisting of a power source, a detector and a memory device.

The researchers envision a range of uses for these miniature flying machines. Monitoring large areas for bacteria, spores, smoke, dust or toxic fumes currently requires enormous resources, Koman says. Satellites or a fleet of flying drones can do these tasks but they are expensive, while on-the-ground sensors require labor-intensive installation, which is often slow in comparison to the aerosol spreading velocity. “As an alternative, we introduce the concept of an aerosolizable electronic device,” he says. As one example, the researchers tested the tiny devices in a simulated gas pipeline. The flying machines successfully sailed through the test chamber and detected the presence of carbon particulates or volatile organic compounds along the way and stored this information in memory.


How To Mimic Neural Tissue

U.S. Army-funded researchers at Brandeis University have discovered a process for engineering next-generation soft materials with embedded chemical networks that mimic the behavior of neural tissue. The breakthrough material may lead to autonomous soft robotics, dual sensors and actuators for soft exoskeletons, or artificial skins.

The research lays the foundations for futuristic soft active matter with highly distributed and tightly integrated sensing, actuation, computation and control, said Dr. Samuel Stanton, manager of the Complex and Dynamics Systems Program within the Engineering Sciences Directorate at the Army Research Office (ARO) , an element of the U.S. Army Research Laboratory, located at Research Triangle Park in Durham, North Carolina.

ARO funds research to initiate scientific and far-reaching technological discoveries in extramural organizations, educational institutions, nonprofit organizations and private industry that may make future American Soldiers stronger and safer.

The research team, led by Professor of Physics Dr. Seth Fraden of Brandeis University, drew inspiration from the mesmerizing sinuous motion of a swimming blue eel and puzzlingly large gap between how natural systems move and the lack of such coordinated and smooth movement in artificial systems.

New breakthrough material could lead to future autonomous soft robotics, dual sensors and actuators for soft exoskeletons, or artificial skins.

Our research interests lie squarely in the intersection of physics, chemistry, biology and materials science,” Fraden said. “Our lab is interdisciplinary, but we are also involved in several multi-investigator projects.

Fraden’s work sought to answer key questions, such as why is there such a void between the animate and inanimate that we never confuse the two, and if engineers could create materials with similar attributes to living organisms, but constructed from inanimate objects, can we do so using only chemicals and eschew use of motors and electronics? Looking deeper, Fraden studied how a type of neural network present in the eel, named the Central Pattern Generator (CPG), produces waves of chemical pulses that propagate down the eel’s spine to rhythmically drive swimming muscles.

Fraden’s lab approached the challenge of engineering a material mimicking the generator by first constructing a control device that produces the same neural activation patterns biologists have observed. There, they created a control system that runs on chemical power, as is done in biology, without resorting to any computer or electromechanical devices, which are the hallmarks of manmade, hard robotic technology.

A breakthrough was made when Fraden and his team realized that the same CPG dynamics could be captured on a non-biological platform if they used a well-known oscillating chemical process known as the Belousov–Zhabotinsky reaction. The lab developed state-of-the-art fabrication techniques for soft materials engineering artificial chemical networks at the nanoscale that, altogether, would be capable of producing a wide variety of patterns. Their resulting robust chemical networks produced distributed dynamic patterns identical to the eel’s Central Pattern Generator.

Fraden noted that “the engineering principles they identified are general and can be applied to design a whole range of other Central Pattern Generators, such as those responsible for other autonomous functions, such as the gait of a horse, for example, walk, canter, trot and gallop.”


Sniffing Device Smells 17 Diseases On A Person’s Breath

Israeli scientists have told an audience of peers in London how they have developed a “cancer-sniffing nose” using nanotechnology to detect the disease early.The electronicnose’ he developed can smell 17 diseases on a person’s breath, including Alzheimer’s, Parkinson’s, tuberculous, diabetes and lung cancer. The non-intrusive medical device, which works by identifying as disease’s bio-markers, has attracted the attention of billionaires such as Bill and Melinda Gates, whose foundation focuses on the diagnostics of diseases.

Every disease has a unique signature – a ‘breath print,’” Hossam Haick, an Israeli researcher, explained. “The challenge is to bring the best science we have proven into reality by developing a smaller device that captures all the components of a disease appearing in the breath.”

Professor Hossam  Haick works at the Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute at the Technion in Israel and is an expert in the field of nanotechnology and non-invasive disease diagnosis.

The University said the latest advances in his research mean that it has the potential to identify diseases though sensors in mobile phones and wearable technology, and with more analysis and data it may even be able to predict cancer in the future.


Graphene Brain Implant Turns Thoughts Into Speech

More than 5 million people worldwide suffer annually from aphasia, an extremely invalidating condition in which patients lose the ability to comprehend and formulate language after brain damage or in the course of neurodegenerative disorders. Brain-computer interfaces (BCIs), enabled by forefront technologies and materials, are a promising approach to treat patients with aphasia. The principle of BCIs is to collect neural activity at its source and decode it by means of electrodes implanted directly in the brain. However, neurorehabilitation of higher cognitive functions such as language raises serious issues. The current challenge is to design neural implants that cover sufficiently large areas of the brain to allow for reliable decoding of detailed neuronal activity distributed in various brain regions that are key for language processing.


BrainCom is a FET Proactive project funded by the European Commission with 8.35M€ for the next 5 years. This interdisciplinary initiative involves 10 partners including technologists, engineers, biologists, clinicians, and ethics experts. They aim to develop a new generation of neuroprosthetic cortical devices enabling large-scale recordings and stimulation of cortical activity to study high level cognitive functions. Ultimately, the BraimCom project will seed a novel line of knowledge and technologies aimed at developing the future generation of speech neural prostheses. It will cover different levels of the value chain: from technology and engineering to basic and language neuroscience, and from preclinical research in animals to clinical studies in humans.

This recently funded project is coordinated by ICREA Prof. Jose A. Garrido, Group Leader of the Advanced Electronic Materials and Devices Group at the Institut Català de Nanociència i Nanotecnologia (Catalan Institute of Nanoscience and Nanotechnology – ICN2) and deputy leader of the Biomedical Technologies Work Package presented last year in Barcelona by the Graphene Flagship. The BrainCom Kick-Off meeting is held on January 12-13 at ICN2 and the Universitat Autònoma de Barcelona (UAB).

Recent developments show that it is possible to record cortical signals from a small region of the motor cortex and decode them to allow tetraplegic people to activate a robotic arm to perform everyday life actions. Brain-computer interfaces have also been successfully used to help tetraplegic patients unable to speak to communicate their thoughts by selecting letters on a computer screen using non-invasive electroencephalographic (EEG) recordings. The performance of such technologies can be dramatically increased using more detailed cortical neural information.

BrainCom project proposes a radically new electrocorticography technology taking advantage of unique mechanical and electrical properties of novel nanomaterials such as graphene, 2D materials and organic semiconductors.  The consortium members will fabricate ultra-flexible cortical and intracortical implants, which will be placed right on the surface of the brain, enabling high density recording and stimulation sites over a large area. This approach will allow the parallel stimulation and decoding of cortical activity with unprecedented spatial and temporal resolution.

These technologies will help to advance the basic understanding of cortical speech networks and to develop rehabilitation solutions to restore speech using innovative brain-computer paradigms. The technology innovations developed in the project will also find applications in the study of other high cognitive functions of the brain such as learning and memory, as well as other clinical applications such as epilepsy monitoring.


Solar Cells Integrated With TriboElectric NanoGenerator Work When It Rains

Solar cells, as promising devices for converting light into electricity, have a dramatically reduced performance on rainy days Researchers from University of California  Los Angeles (UCLA) have built  an energy harvesting structure that integrates a solar cell and a triboelectric nanogenerator (TENG) device. Objective: to realize power generation from both sunlight and raindrops.

A heterojunction silicon (Si) solar cell is integrated with a TENG by a mutual electrode. Regarding the solar cell, imprinted PEDOT:PSS is used to reduce light reflection, which leads to an enhanced short-circuit current density. A single-electrode-mode water-drop TENG on the solar cell is built by combining imprinted polydimethylsiloxane (PDMS) as a triboelectric material combined with a PEDOT:PSS layer as an electrode. The increasing contact area between the imprinted PDMS and water drops greatly improves the output of the TENG.

The hybrid energy harvesting system integrated electrode configuration can combine the advantages of high current level of a solar cell and high voltage of a TENG device, promising an efficient approach to collect energy from the environment in different weather conditions.



Nanotechnology: A Treasure Trove With 1000 New 2D Materials

2D materials, which consist of a few layers of atoms, may well be the future of nanotechnology. They offer potential new applications and could be used in small, higher-performance and more energy-efficient devices. 2D materials were first discovered almost 15 years ago, but only a few dozen of them have been synthesized so far. Now, thanks to an approach developed by researchers from EPFL‘s Theory and Simulation of Materials Laboratory (THEOS) and from NCCR-MARVEL for Computational Design and Discovey of Novel Materials, many more promising 2D materials may now be identified. Their work was recently published in the journal Nature Nanotechnology, and even got a mention on the cover page.

The first 2D material to be isolated was graphene, in 2004, earning the researchers who discovered it a Nobel Prize in 2010. This marked the start of a whole new era in electronics, as graphene is light, transparent and resilient and, above all, a good conductor of electricity. It paved the way to new applications in numerous fields such as photovoltaics and optoelectronics.

A team from EPFL (Ecole Polytechnique Fédérale de Lausanne) and NCCR Marvel in Switzerland has identified more than 1,000 materials with a particularly interesting 2D structure. Their research, which made the cover page of Nature Nanotechnology, paves the way for groundbreaking technological applications.

To find other materials with similar properties, we focused on the feasibility of exfoliation,” explains Nicolas Mounet, a researcher in the THEOS lab and lead author of the study. “But instead of placing adhesive strips on graphite to see if the layers peeled off, like the Nobel Prize winners did, we used a digital method.”


Electric Bike With 230 Miles (370 km) Range

When it comes to the average ebike, the range typically varies from 20 to 50 miles. For those who like to use their bikes on outdoor adventures outside of the city, this is not enough. In order to take people farther, the DelFast ebike has a maximum range of over 200 miles (322 km).


To be more exact, the DelFast eBike tops out at 236 miles (370 km) and is aimed at those who like to enjoy long-distance trips both in and out of urban areas. At the heart of such a long-ranged ebike is a big battery. DelFast’s bicycle uses a U.S.-made battery capable of 3,000 cycles along with energy recuperation. For those smaller trips where battery power is less precious, the bike features two USB chargers for charging a phone or tablet.

On an ebike, 236 miles sounds like an incredibly long trip, but DelFast has made sure its ebike won’t make it feel that way. At cruising speed, the bike travels between 25 and 28 miles  per hour (45 km/h). For those really in a hurry, they can push it a little further to a maximum of 35 miles per hour (56 km/h). In order to get the most time out of a single charge, DelFast recommends an average speed of 16 miles per hour (25 km/h). Cyclists can swap on the fly between pedal-assist and three different power modes.

The Graphite Gold Rush

Much like the gold rush in North America in the 1800s, people are going out in droves searching for a different kind of precious metal, graphite. The thing your third grade pencils were made of is now one of the hottest commodities on the market. This graphite is not being mined by your run-of-the-mill, old-timey soot covered prospectors anymore. Big mining companies are all looking for this important resource integral to the production of lithium ion batteries due to the rise in popularity of electric cars. These players include Graphite Energy Corp., Teck Resources Limited, Nemaska LithiumLithium Americas Corp., and Cruz Cobalt Corp..

These companies looking to manufacturer their graphite-based products, have seen steady positive growth over the past year. Their development of cutting-edge new products seems to be paying off. But in order to continue innovating, these companies need the graphite to do it. One junior miner looking to capitalize on the growing demand for this commodity is Graphite Energy Corp. Graphite Energy is a mining company, that is focused on developing graphite resources. Graphite Energy‘s mining technology is friendly to the environment and has indicate graphite carbon (Cg) in the range of 2.2 percent to 22.30 percent with average 10.50 percent Cg from their Lac Aux Bouleaux Graphite Property in Southern Quebec.

Graphite is one of the most in demand technology metals that is required for a green and sustainable world. Demand is only set to increase as the need for lithium ion batteries grows, fueled by the popularity of electric vehicles. However, not all graphite is created equal. The price of natural graphite has more than doubled since 2013 as companies look to maintain environmental standards which the use of synthetic graphite cannot provide due to its pollutant manufacturing process. Synthetic graphite is also very expensive to produce, deriving from petroleum and costing up to ten times as much as natural graphite. Therefore manufacturers are interested in increasing the proportion of natural graphite in their products in order to lower their costs.

High-grade large flake graphite is the solution to the environmental issues these companies are facing. But there is only so much supply to go around. Recent news by Graphite Energy Corp. on February 26th showed promising exploratory results. The announcement of the commencement of drilling is a positive step forward to meeting this increased demand.

Everything from batteries to solar panels need to be made with this natural high-grade flake graphite because what is the point of powering your home with the sun or charging your car if the products themselves do more harm than good to the environment when produced. However, supply consistency remains an issue since mines have different raw material impurities which vary from mine to mine. Certain types of battery technology already require graphite to be almost 100 percent pure. It is very possible that the purity requirements will increase in the future.


Not just speed: 7 incredible things you can do with 5G

You can’t walk around Mobile World Congress  without 5G slapping you in the face. If there’s a phenomenon that’s dominated this week’s trade show besides the return of a 17-year-old phone, it’s the reality that the next generation of cellular technology has arrived. Well, at least it’s real in the confines of the Fira Gran Via convention center in Barcelona.

Above the Qualcomm booth flashed the slogan: “5G: From the company that brought you 3G and 4G.” If you took a few more steps, you could hear an Intel representative shout about the benefits of 5G. If you hopped over to Ericsson, you’d find a “5G avenue” with multiple exhibits demonstrating the benefits of the technology. Samsung kicked off its press conference not with its new tablets, but with a chat about 5G.

Remote surgery via a special glove, virtual reality and 5G

(click on the image to enjoy the video)

The hype around 5G has been brewing for more than a year, but we’re finally starting to see the early research and development bear fruit. The technology promises to change our lives by connecting everything around us to a network that is 100 times faster than our cellular connection and 10 times faster than our speediest home broadband service.

But it’s not just about speed for speed’s sake. While the move from 3G to 4G LTE was about faster connections, the evolution to 5G is so much more. The combination of speed, responsiveness and reach could unlock the full capabilities of other hot trends in technology, offering a boost to self-driving cars, drones, virtual reality and the internet of things. “If you just think of speed, you don’t see the magic of all it can do,” said Jefferson Wang, who follows the mobile industry for IBB Consulting.

The bad news: 5G is still a while away for consumers, and the industry is still fighting over the nitty-gritty details of the technology itself. The good news: There’s a chance it’s coming sooner than we thought. It’s clear why the wireless carriers are eager to move to 5G. With the core phone business slowing down, companies are eager for new tech to spark excitement and connect more devices. “We are absolutely convinced that 5G is the next revolution,” Tim Baxter, president of Samsung’s US unit, said during a press conference.


Electronics: Printing of flexible, stretchable silver nanowire circuits

Researchers at North Carolina State University ( NC State) have developed a new technique that allows them to print circuits on flexible, stretchable substrates using silver nanowires. The advance makes it possible to integrate the material into a wide array of electronic devices.

Silver nanowires have drawn significant interest in recent years for use in many applications, ranging from prosthetic devices to wearable health sensors, due to their flexibility, stretchability and conductive properties. While proof-of-concept experiments have been promising, there have been significant challenges to printing highly integrated circuits using silver nanowires. Silver nanoparticles can be used to print circuits, but the nanoparticles produce circuits that are more brittle and less conductive than silver nanowires. But conventional techniques for printing circuits don’t work well with silver nanowires; the nanowires often clog the printing nozzles.

Our approach uses electrohydrodynamic printing, which relies on electrostatic force to eject the ink from the nozzle and draw it to the appropriate site on the substrate,” says Jingyan Dong, co-corresponding author of a paper on the work and an associate professor in NC State’s Edward P. Fitts Department of Industrial & Systems Engineering. “This approach allows us to use a very wide nozzle – which prevents clogging – while retaining very fine printing resolution.” “And because our ‘ink’ consists of a solvent containing silver nanowires that are typically more than 20 micrometers long, the resulting circuits have the desired conductivity, flexibility and stretchability,” says Yong Zhu, a professor of mechanical engineering at NC State and co-corresponding author of the paper.

In addition, the solvent we use is both nontoxic and water-soluble,” says Zheng Cui, a Ph.D. student at NC State and lead author of the paper. “Once the circuit is printed, the solvent can simply be washed off.” What’s more, the size of the printing area is limited only by the size of the printer, meaning the technique could be easily scaled up.

The researchers have used the new technique to create prototypes that make use of the silver nanowire circuits, including a glove with an internal heater and a wearable electrode for use in electrocardiography. NC State has filed a provisional patent on the technique.


Light-Powered Wires To Modulate Brain’s Electrical Signals

The human brain largely remains a black box: How the network of fast-moving electrical signals turns into thought, movement and disease remains poorly understood. But it is electrical, so it can be hacked—the question is finding a precise, easy way to manipulate electrical signaling between neurons.

A new University of Chicago study shows how tiny, light-powered wires could be fashioned out of silicon to provide these electrical signals. Published Feb. 19 in Nature Nanotechnology, the study offers a new avenue to shed light on—and perhaps someday treat—brain disorders.

Ten years ago, the science world was alive with speculation about a recently discovered technique called optogenetics, which would manipulate neural activity with light. The problem is that it has to be done with genetics: inserting a gene into a target cell that would make it respond to light. Other ways of modulating neurons have since been suggested, but a perfect alternative remains elusive.

A team led by Asst. Prof. Bozhi Tian built minuscule wires previously designed for solar cells. These nanowires are so small that hundreds of them could sit side by side on the edge of a sheet of paper—putting them on the same scale as the parts of cells they’re trying to communicate with.

These nanowires combine two types of silicon to create a small electrical current when struck by light. Gold, diffused by a special process onto the surface of the wire, acts as a catalyst to promote electrochemical reactions.

The rod at top right is positioned to modify electrical signaling between the neurons. The entire image is smaller than the diameter of a single human hair.

When the wire is in place and illuminated, the voltage difference between the inside and outside of the cell is slightly reduced. This lowers the barrier for the neuron to fire an electrical signal to its neighboring cells,” Tian said.


Simple Blood Test To Detect Eight Types Of Cancer

Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

The test, called CancerSEEK, is a unique noninvasive, multianalyte test that simultaneously evaluates levels of eight cancer proteins and the presence of cancer gene mutations from circulating DNA in the blood. The test is aimed at screening for eight common cancer types that account for more than 60 percent of cancer deaths in the U.S. Five of the cancers covered by the test currently have no screening test.


The use of a combination of selected biomarkers for early detection has the potential to change the way we screen for cancer, and it is based on the same rationale for using combinations of drugs to treat cancers,” says Nickolas Papadopoulos, Ph.D., senior author and professor of oncology and pathology.

Circulating tumor DNA mutations can be highly specific markers for cancer. To capitalize on this inherent specificity, we sought to develop a small yet robust panel that could detect at least one mutation in the vast majority of cancers,” adds Joshua Cohen, an M.D.-Ph.D. student at the Johns Hopkins University School of Medicine and the paper’s first author. “In fact, keeping the mutation panel small is essential to minimize false-positive results and keep such screening tests affordable.”

The findings were published online by Science.