Posts belonging to Category sensors



Coldest City Grow Tomatoes All Year Round

Greenhouse invented by a Japanese company allows what’s often called the coldest city on earth to grow tomatoes when temperatures drop to -50 Celsius. Yakutsk in Siberia is one of the coldest cities in the world. During the freezing winter months it averages a temperature of minus 34 degrees Celcius with only five hours of daylight. That means crops can’t be grown in the frozen soil. But local authorities now believe they’ve found a way around that. They’ve teamed up with Japanese firm Hokkaido Corporation to build greenhouses with special technology. The local mayor hopes the project will go a long way to providing the fruit and veg needed by Yakutsk‘s people.

tomatoesCLICK ON THE IMAGE TO ENJOY THE VIDEO

When the entire infrastructure is ready, when the first and the second of the greenhouses are complete and we reach full capacity, then we plan to harvest around 1700 tonnes of cucumbers, more than 600 tonnes of tomatoes and around 25 tonnes of greens which should satisfy about 30-40 percent of the Yakutsk population’s needs,” says Aisen Nikolaev, the Mayor of Yakutsk.  The greenhouses are specially designed to withstand the extreme cold. Three layers of a rubber made from rubber with frozen soil properties are used.

It is three times thinner, but at the same time it can be stretched widely. It takes seven tonnes of weight per square metre piece for the film to break. And of course it has unique thermal insulation qualities and it lets the sunlight through better than ordinary glass. Just three layers of this thinnest film managed to last through this winter with temperatures dropping below minus 50 Celsius,”  explains the Mayor. Until now most produce had to be transported from Russia‘s Krasnodor region or imported from China. But now, if the technology proves a success, the tomatoes won’t have to travel too far to feed Yakutsk.

Source: http://www.reuters.com/

How To Detect Nuclear Device

How to keep U.S. ports of entry safe and secure by detecting and interdicting illicit radioactive or nuclear materials? A team led by Northeastern’s Swastik Kar and Yung Joon Jung has developed a technology that could go a long way toward achieving that goal.

nuclear radiation

Our detector could dramatically change the manner and accuracy with which we are able to detect nuclear threats at home or abroad,” says Kar, associate professor in the Department of Physics. It could also help streamline radio-medicine, including radiation therapies and scanning diagnostics, boost the effectiveness of unmanned radiation monitoring vehicles in mapping and monitoring contaminated areas following disasters, and revolutionize radiometric imaging in space exploration. Made of graphene and carbon nanotubes, the researchers’ detector far outpaces any existing one in its ultrasensitivity to charged particles, minuscule size, low-power requirements, and low cost.

All radiation, of course, is not harmful, and even the type that may be depends on dosage and length of exposure. The word “radiation” refers simply to the emission and propagation of energy in the form of waves or particles. It has many sources, including the sun, electronic devices such as microwaves and cellphones, visible light, X-rays, gamma waves, cosmic waves, and nuclear fission, which is what produces power in nuclear reactors. Most of the harmful radiations are “ionizing radiations”—they have sufficient energy to remove electrons from the orbits of surrounding atoms, causing them to become charged, or “ionized.” It is those charged particles, or ions, that the detectors pick up and quantify, revealing the intensity of the radiation. Most current detectors, however, are not only bulky, power hungry, and expensive, they also cannot pick up very low levels of ions. Kar and Yung Joon’s detector, on the other hand, is so sensitive it can pick up just a single charged particle.

Our detectors are many orders of magnitude more sensitive in terms of how small a signal they can detect,” says Yung Joon, associate professor in the Department of Mechanical and Industrial Engineering. “Ours can detect one ion, the fundamental limit. If you can detect a single ion, then you can detect everything larger than that.”

Source: http://news.northeastern.edu/

‘Spray-On’ Memory for Paper, Fabric, Plastic

USB flash drives are already common accessories in offices and college campuses. But thanks to the rise in printable electronics, digital storage devices like these may soon be everywhere – including on our groceries, pill bottles and even clothingDuke University researchers have brought us closer to a future of low-cost, flexible electronics by creating a new “spray-on digital memory device using only an aerosol jet printer and nanoparticle inks. The device, which is analogous to a 4-bit flash drive, is the first fully-printed digital memory that would be suitable for practical use in simple electronics such as environmental sensors or RFID tags. And because it is jet-printed at relatively low temperatures, it could be used to build programmable electronic devices on bendable materials like paper, plastic or fabric.

PrintingMemory

Duke University researchers have developed a new “spray-on” digital memory (upper left) that could be used to build programmable electronics on flexible materials like paper, plastic or fabric. They used LEDS to demonstrate a simple application.

We have all of the parameters that would allow this to be used for a practical application, and we’ve even done our own little demonstration using LEDs,” said Duke graduate student Matthew Catenacci, who describes the device in a paper published online in the Journal of Electronic Materials. At the core of the new device, which is about the size of a postage stamp, is a new copper-nanowire-based printable material that is capable of storing digital information.

Memory is kind of an abstract thing, but essentially it is a series of ones and zeros which you can use to encode information,” said Benjamin Wiley, an associate professor of chemistry at Duke and an author on the paper.

Source: https://today.duke.edu/

NanoCar Race

The NanoCar Race is an event in which molecular machines compete on a nano-sized racetrack. These “NanoCars” or molecule-cars can have real wheels, an actual chassis…and are propelled by the energy of electric pulses! Nothing is visible to the naked eye, however a unique microscope located in Toulouse (France) will make it possible to follow the race. A genuine scientific prowess and international human adventure, the race is a one-off event, and will be broadcast live on the web, as well as at the Quai des Savoirs, science center in Toulouse.

nanocars

The NanoCar race takes place on a very small scale, that of molecules and atoms: the nano scale…as in nanometer! A nanometer is a billionth of a meter, or 0.000000001 meters or 10 -9 m. In short, it is 500,000 times thinner then a line drawn by a ball point pen; 30,000 times thinner than the width of a hair; 100 times smaller than a DNA molecule; 4 atoms of silicon lined up next to one another.

A very powerful microscope is necessary to observe molecules and atoms: the scanning tunneling microscope (STM) makes this possible, and it is also responsible for propelling the NanoCars. The scanning tunneling microscope was invented in 1981 by Gerd Binnig and Heinrich Rohrer, and earned them the Nobel Prize in Physics in 1986. The tunnel effect is a phenomenon in quantum mechanics: using a tip and an electric current, the microscope will use this phenomenon to determine the electric conductance between the tip and the surface, in other words the amount of current that is passing through.

nanocar in movement Screening provides an electronic map of the surface and of each atom or molecule placed on it.At the CNRS‘s Centre d’élaboration de matériaux et d’études structurales (CEMES) in Toulouse, it is the one of a kind STM microscope that makes the race possible: the equivalent of four scanning tunneling microscopes, this device is the only one able to simultaneously and independently map four sections of the track in real time, thanks to its four tungsten tips.

Source: http://nanocar-race.cnrs.fr/

How Brain Waves Can Control VR Video Games

Virtual reality is still so new that the best way for us to interact within it is not yet clear. One startup wants you to use your head, literally: it’s tracking brain waves and using the result to control VR video games.

Boston-based startup Neurable is focused on deciphering brain activity to determine a person’s intention, particularly in virtual and augmented reality. The company uses dry electrodes to record brain activity via electroencephalography (EEG); then software analyzes the signal and determines the action that should occur.

neurons2

You don’t really have to do anything,” says cofounder and CEO Ramses Alcaide, who developed the technology as a graduate student at the University of Michigan. “It’s a subconscious response, which is really cool.”

Neurable, which raised $2 million in venture funding late last year, is still in the early stages: its demo hardware looks like a bunch of electrodes attached to straps that span a user’s head, worn along with an HTC Vive virtual-reality headset. Unlike the headset, Neurable’s contraption is wireless—it sends data to a computer via Bluetooth. The startup expects to offer software tools for game development later this year, and it isn’t planning to build its own hardware; rather, Neurable hopes companies will be making headsets with sensors to support its technology in the next several years.

Source; https://www.technologyreview.com/
AND
http://neurable.com/

A Smartphone App To Loose Weight

Psychologists at the University of Exeter (UK) have found that less than ten minutes a day of ‘brain training’ using a game they have devised can slow impulses to reach for unhealthy snacks, and reduce calorie intake. Using neuroscience and lab trials to devise a proven method of curbing unhealthy food intake, Professor Natalia Lawrence’s Food Trainer app is being launched this week free to the public, in a month when people traditionally make resolutions to lose weight and cut down on junk foodDr Natalia Lawrence is a cognitive neuroscientist at Exeter University. She designed the app after using brain imaging to study how the brain’s reward system responded to pictures of unhealthy food.

food trainer

It’s very exciting to see that our free and simple training can change eating habits and have a positive impact on some people’s lives,” she said. “It’s a tool to help people make healthier choices. In an age where unhealthy food is so abundant and easily available and obesity is a growing health crisis, we need to design innovative ways to support people to live more healthily. We are optimistic that the way this app is devised will actually encourage people to opt for healthy food such as fruit and vegetables rather than junk food.

Among those to have used the training is Fiona Furness, a studios manager for a charity providing studios for artists, who went from around 11 stone to around nine stone after taking part in a trial of the food training game. She said the “pounds just melted way”. “I used to feel really guilt about my bad snacking habits. I’d often be rushing about, and I’d grab something high calorie and unsatisfying – often a pack of crisps. I’d be hungry again really soon afterwards so it became a vicious cycle. The results have been remarkable,” she explained. “These days, if I am feeling peckish I’ll go for a banana or a pack of almonds. That’s the food I’m craving. I’m now closer to nine stone than 11 – the pounds just melted away over eight or nine months without me even noticing. The weight loss wasn’t really my goal though – I feel younger and more energetic. Perhaps I’m particularly susceptible to this kind of brain training, but it has been transformative for me.

A study of 83 adults showed that people who played the game online just 4 times in one week lost weight and ate an average of 220 kcal less per day – roughly equivalent to a chocolate-iced doughnut.The academics found in trials that playing the game without distractions for a few minutes a day can train the brain to control impulses to reach for chocolate, cakes, crisps or alcohol. The release of the free app will allow dieters or those who want to cut consumption of junk food or alcohol to try it and in the process generate more anonymous data to help psychologists measure how effective an app version of the brain-training programme can be.

The basis of the app is published research showing that people are more inclined to choose foods or drink high in sugar and fat because they activate the brain’s reward system, stimulating the release of dopamine and endorphins, which can produce feelings of pleasure and make the person want more. Research has found that the more people activate brain areas associated with reward when they see foods, the more they eat and the more weight they gain. Once triggered, these impulses can be hard to control.

Source: http://www.exeter.ac.uk/

Virtual Images that Blend In And Interact With The Real-World

Avegant, a Silicon Valley startup that sells a pair of headphones equipped with a VR-like portable screen, is breaking into augmented reality. The company today announced that it’s developed a new type of headset technology powered by a so-called light field display.

Avegant ARCLICK ON THE IMAGE TO ENJOY THE VIDEO

The research prototype, which Avegant eventually plans on turning into a consumer product, is based on the company’s previous work with its Glyph projector. That device was a visor of sorts that floats a virtual movie screen in front of your eyes, and developing it gave Avegant insight into how to build an AR headset of its own.

Like Microsoft’s HoloLens and the supposed prototype from secretive AR startup Magic Leap, Avegant’s new headset creates virtual images that blend in and interact with the real-world environment. In a demo, the company’s wired prototype proved to be superior in key ways to the developer version of the HoloLens. Avegant attributes this not to the power of its tethered PC, but to the device’s light field display — a technology Magic Leap also claims to have developed, yet has never been shown off to the public.

The demo I experienced featured a tour of a virtual Solar System, an immersion within an ocean environment, and a conversation with a virtual life-sized human being standing in the same room. To be fair, Avegant was using a tethered and bulky headset that wasn’t all that comfortable, while the HoloLens developer version is a refined wireless device. Yet with that said, Avegant’s prototype managed to expand the field of view, so you’re looking through a window more the size of a Moleskine notebook instead of a pack of playing cards. The images it produced also felt sharper, richer, and more realistic.

In the Solar System demo, I was able to observe a satellite orbiting an Earth no larger than a bocce ball and identify the Big Red Spot on Jupiter. Avegant constructed its demo to show off how these objects could exist at different focal lengths in a fixed environment — in this case a converted conference room at the company’s Belmont, California office. So I was able to stand behind the Sun and squint until the star went out of focus in one corner of my vision and a virtual Saturn and its rings became crystal clear in the distance.

Source: http://www.theverge.com/

Glucose Monitoring Strip

A research group from the Center for Nanoparticle Research within the Institute for Basic Science (IBS) in South Korea has developed a convenient and accurate sweat-based glucose monitoring and maintenance device. The research group has furthered its previous study* (Nat. Nanotech. 11, 566, 2016) to enhance the efficiency of the sweat collection and sensing & therapy process. This sweat-based system allows rapid glucose measurement incorporating small and sensitive sensors and also comes in a disposable strip sensor to the convenience of users. This accurate glucose analysis allows to prescribe a multistep and precisely controlled dosage of drug.

sweat monitoring stripOptical camera image of the disposable sweat monitoring strip (left). The disposable sweat analysis strip on human skin with perspiration (middle).The disposable strip-type sensors connected to a zero insertion force AQ50 (ZIF) connector (right).

The previous study reported a wearable graphene-based patch that allows diabetes monitoring and feedback therapy by using human sweat. The device’s pH and temperature monitoring functions enable systematic corrections of sweat glucose measurements.

The conventional treatment protocol causes a huge stress to diabetics since it requires painful and repetitive blood-withdrawal and insulin shots. Patients become reluctant to take the periodic tests and treatments, aggravating the diabetes symptoms and suffer severe diabetic complications. A recent alternative approach, sweat-based monitoring offers a painless blood glucose monitoring method, enabling more convenient control of blood glucose levels. However, many challenges still exist for the practical application of the existing system: tedious blood collection procedure; error-prone, enzyme-based glucose sensing that may lead to overtreatment of drugs, etc.

To address such issues, the research group presented an easy-to-use and multistage module to ensure an accurate glucose monitoring and therapy. To speed up the sweat collection, the researchers redevised the system to work under a small amount of sweat. They used electrochemically active, porous metal electrodes (replacing the graphene materials of the previous study) to enhance the sensitivity of the system. Also the porous structure allows to form strong linkage among enzymes, resulting in increased reliability of the sensors under mechanical friction and deformation.

Source: http://www.ibs.re.kr/

How To Recycle Carbon Dioxide

An international team of scientists led by Liang-shi Li at Indiana University (IU) has achieved a new milestone in the quest to recycle carbon dioxide in the Earth’s atmosphere into carbon-neutral fuels and others materials.

 

The chemists have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide — a carbon-neutral fuel source — more efficiently than any other method of “carbon reduction.”

molecular leaf

If you can create an efficient enough molecule for this reaction, it will produce energy that is free and storable in the form of fuels,” said Li, associate professor in the IU Bloomington College of Arts and Sciences‘ Department of Chemistry. “This study is a major leap in that direction.”

Burning fuel — such as carbon monoxide — produces carbon dioxide and releases energy. Turning carbon dioxide back into fuel requires at least the same amount of energy. A major goal among scientists has been decreasing the excess energy needed.

This is exactly what Li’s molecule achieves: requiring the least amount of energy reported thus far to drive the formation of carbon monoxide. The molecule — a nanographene-rhenium complex connected via an organic compound known as bipyridine — triggers a highly efficient reaction that converts carbon dioxide to carbon monoxide. The ability to efficiently and exclusively create carbon monoxide is significant due to the molecule’s versatility.

Carbon monoxide is an important raw material in a lot of industrial processes,” Li said. “It’s also a way to store energy as a carbon-neutral fuel since you’re not putting any more carbon back into the atmosphere than you already removed. You’re simply re-releasing the solar power you used to make it.

The secret to the molecule’s efficiency is nanographene — a nanometer-scale piece of graphite, a common form of carbon (i.e. the black “lead” in pencils) — because the material’s dark color absorbs a large amount of sunlight.

Li said that bipyridine-metal complexes have long been studied to reduce carbon dioxide to carbon monoxide with sunlight. But these molecules can use only a tiny sliver of the light in sunlight, primarily in the ultraviolet range, which is invisible to the naked eye. In contrast, the molecule developed at IU takes advantage of the light-absorbing power of nanographene to create a reaction that uses sunlight in the wavelength up to 600 nanometers — a large portion of the visible light spectrum.

Essentially, Li said, the molecule acts as a two-part system: a nanographeneenergy collector” that absorbs energy from sunlight and an atomic rheniumengine” that produces carbon monoxide. The energy collector drives a flow of electrons to the rhenium atom, which repeatedly binds and converts the normally stable carbon dioxide to carbon monoxide.

The idea to link nanographene to the metal arose from Li’s earlier efforts to create a more efficient solar cell with the carbon-based material. “We asked ourselves: Could we cut out the middle man — solar cells — and use the light-absorbing quality of nanographene alone to drive the reaction?” he said.

Next, Li plans to make the molecule more powerful, including making it last longer and survive in a non-liquid form, since solid catalysts are easier to use in the real world.

The process is reported in the Journal of the American Chemical Society.

Source: http://news.indiana.edu/

Car Pollution: Nanoparticles Travel Directly From The Nose To The Brain

The closer a person lives to a source of pollution, like a traffic dense highway, the more likely they are to develop Alzheimer’s or dementia, according to a study by the University of Southern California (USC) that has linked a close connection to pollution and the diseases. In a mobile lab, located just off of one of Los Angeles’ busiest freeways, USC scientists used a state-of-the-art pollution particle collector capable of gathering nano-sized particulate matter.

car pollution

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We have shown that, as you would expect, the closer you get to the sources of these particles in our case the freeways, the higher the concentrations. So there is an exponential decay with distance. That means basically that, the concentration of where we are right now and if we were, let’s just say 20 or 10 or 50 yards from the freeway, those levels would be probably 10 times higher than where we are right now,” says Costas Sioutas, USC Professor of Environmental Engineering.

That means proximity to high concentrations of fossil fuel pollution, like a congested freeway, could be hazardous. Particulate matter roughly 30 times thinner than the width of a human hair, called PM2.5, is inhaled and can travel directly through the nose into the brain. Once there, the particles cause inflammatory responses and can result in the buildup of a type of plaque, which is thought to further the progression of Alzheimer’s. “Our study brought in this new evidence and I would say probably so far the most convincing evidence that the particle may increase the risk of dementia. This is really a public health problem. And I think the policy makers need to be aware of that, the public health risk associated with high level of PM2.5,” explains Jiu-Chiuan Chen, Associate Professor of Preventive Medicine.

USC researchers analyzed the data of more than 3,500 women who had the APOE4 gene, the major known risk-factor gene for Alzheimer’s disease. It showed that, over the course of a decade, the women who lived in a location with high levels of the PM2.5 pollution were 92 percent more likely to develop dementia.

Source: https://news.usc.edu/
A
ND
http://www.reuters.com/

Drones Re-Charging Wireless While Airborne

Scientists have demonstrated a highly efficient method for wirelessly transferring power to a drone while it is flying. The breakthrough could in theory allow flying drones to stay airborne indefinitely by simply hovering over a ground support vehicle to recharge opening up new potential industrial applications.

The technology uses inductive coupling, a concept initially demonstrated by inventor Nikola Tesla over 100 years ago. Two copper coils are tuned into one another, using electronics, which enables the wireless exchange of power at a certain frequency. Scientists have been experimenting with this technology for decades, but have not been able to wirelessly power flying technology.

prodrone

Now, scientists from Imperial College London (ICL) have removed the battery from an off-the-shelf mini-drone and demonstrated that they can wirelessly transfer power to it via inductive coupling. They believe their demonstration is the first to show how this wireless charging method can be efficiently done with a flying object like a drone, potentially paving the way for wider use of the technology.

To demonstrate their approach the researchers bought an off-the-shelf quadcopter drone, around 12 centimetres in diameter, and altered its electronics and removed its battery. They made a copper foil ring, which is a receiving antennae that encircles the drone’s casing. On the ground, a transmitter device made out of a circuit board is connected to electronics and a power source, creating a magnetic field.

The drone’s electronics are tuned or calibrated at the frequency of the magnetic field. When it flies into the magnetic field an alternating current (AC) voltage is induced in the receiving antenna and the drone’s electronics convert it efficiently into a direct current (DC) voltage to power it.

Source: http://www3.imperial.ac.uk/

Printable solar cells

A University of Toronto (U of T) Engineering innovation could make building printing cells as easy and inexpensive as printing a newspaper. Dr. Hairen Tan and his team have cleared a critical manufacturing hurdle in the development of a relatively new class of solar devices called perovskite solar cells. This alternative solar technology could lead to low-cost, printable solar panels capable of turning nearly any surface into a power generator.

Printable Perovskite SolarCell

Economies of scale have greatly reduced the cost of silicon manufacturing,” says University Professor Ted Sargent (ECE), an expert in emerging solar technologies and the Canada Research Chair in Nanotechnology and senior author on the paper. “Perovskite solar cells can enable us to use techniques already established in the printing industry to produce solar cells at very low cost. Potentially, perovskites and silicon cells can be married to improve efficiency further, but only with advances in low-temperature processes.”

Today, virtually all commercial solar cells are made from thin slices of crystalline silicon which must be processed to a very high purity. It’s an energy-intensive process, requiring temperatures higher than 1,000 degrees Celsius and large amounts of hazardous solvents.

In contrast, perovskite solar cells depend on a layer of tiny crystals — each about 1,000 times smaller than the width of a human hair — made of low-cost, light-sensitive materials. Because the perovskite raw materials can be mixed into a liquid to form a kind of ‘solar ink’, they could be printed onto glass, plastic or other materials using a simple inkjet process.

Source: http://news.engineering.utoronto.ca