Posts belonging to Category sensors



Farming in Brooklyn

Erik Groszyk used to spend all day at his desk working as an investment banker. Now he cultivates his own urban farm out of a 40-foot shipping container in a Brooklyn parking lot.

I just found myself not satisfied and kind of yearning for more,’ says Erik Groszyk.  The Harvard grad is one of 10 ‘entrepreneurial farmers,’ selected from a batch of 500 applicants, working with Square Roots, an indoor urban farming company launched in November that grows local food year-round in the heart of New York City. Now, six months into the program, Groszyk said his training in farming, artificial lighting, water chemistry and nutrient balance allows him to harvest roughly 15 to 20 pounds of produce each week.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

People have lost trust in the food system, right? They want real food where they know their farmer, they know where their food is coming from, and they trust their food,‘ explains Tobias Peggs, Square Roots co-founder. He, along with his co-founder Kimbal Musk, the younger brother of Tesla‘s Elon Musk, aim to spread out to as many American cities as they possibly can in the next five to 10 years.

By 2050 there will be nine billion people on the planet and 70 percent will leave in urban areas. These people need feeding, and they will want local, real food,” he adds.
Square Roots sells food locally. It also plans to launch more urban farms, for others to operate, and will own a share in those farms’ revenues as well. Peggs says the company, by getting hyper-local, is looking to join a global food revolution. ‘America’s is the world’s great, greatest exporter. Right? We exported rock and roll, we exported Levi’s jeans. We also exported obesity. And the feeling is, if we can solve that, in America, through initiatives like Square Roots, bringing real food to everyone, getting more people on a healthy, low-cost, sustainable food system, that we’ll also be able to export that solution.’

Source: https://squarerootsgrow.com/
A
ND
http://www.reuters.com/

Legally Blind People Can See With A New Kind Of Glasses

A Canadian company based in Toronto has suceeded to build a kind of Google glass that is able to give back full sight to legally blind people.  The eSight is an augmented reality headset that houses a high-speed, high-definition camera that captures everything the user is looking at.

CLICK ON THE IMAGE TO ENJOY THE VIDEO


Algorithms enhance the video feed and display it on two, OLED screens in front of the user’s eyes. Full color video images are clearly seen by the eSight user with unprecedented visual clarity and virtually no lag. With eSight’s patented Bioptic Tilt capability, users can adjust the device to the precise position that, for them, presents the best view of the video while maximizing side peripheral vision. This ensures a user’s balance and prevents nausea – common problems with other immersive technologies. A blind individual can use both of their hands while they use eSight to see. It is lightweight, worn comfortably around the eyes and designed for various environments and for use throughout the day.

eSight is a comprehensive customized medical device that can replace all the many single-task assistive devices that are currently available but do not provide actual sight (e.g. white canes, magnifying devices, service animals, Braille machines, CCTV scanners, text-to-speech software). It allows a user to instantly auto-focus between short-range vision (reading a book or text on a smartphone) to mid-range vision (seeing faces or watching TV) to long-range vision (looking down a hallway or outsidea window). It is the only device for the legally blind that enables mobility without causing issues of imbalance or nausea (common with other immersive options). A legally blind individual can use eSight not just to see while sitting down but while being independently mobile (e.g. walking, exercising, commuting, travelling, etc).

According to The Wall Street Journal, the company is taking advantages of recent improvements in technology from VR headsets and smartphones that have trickled down to improve the latest version of the eSight. So far, the company has sold roughly a thousand units, but at $10,000 apiece, they’re not cheap (and most insurances apparently don’t cover the product), although eSight’s chief executive Brian Mech notes to the WSJ that getting devices to users is “a battle we are starting to wage.”

Source: https://www.esighteyewear.com/

Asthma: Graphene-Based Sensor Improves Treatment

Scientists from Rutgers University have created a graphene-based sensor that could lead to earlier detection of looming asthma attacks and improve the management of asthma and other respiratory diseases, preventing hospitalizations and deaths.

The sensor paves the way for the development of devices – possibly resembling fitness trackers like the Fitbit – which people could wear and then know when and at what dosage to take their medication.


Exhaled breath condensate (tiny droplets of liquid) are rapidly analyzed by a graphene-based nanoelectronic sensor that detects nitrite, a key inflammatory marker in the inner lining of the respiratory airway.

Our vision is to develop a device that someone with asthma or another respiratory disease can wear around their neck or on their wrist and blow into it periodically to predict the onset of an asthma attack or other problems,” said Mehdi Javanmard, an assistant professor in the Department of Electrical and Computer Engineering. “It advances the field of personalized and precision medicine.

Javanmard and a diverse team of RutgersNew Brunswick experts describe their invention in a study published online today in the journal Microsystems & Nanoengineering.

Asthma, which causes inflammation of the airway and obstructs air flow, affects about 300 million people worldwide. About 17.7 million adults and 6.3 million children in the United States were diagnosed with asthma in 2014. Symptoms include coughing, wheezing, shortness of breath, and chest tightness. Other serious lung ailments include chronic obstructive pulmonary disease (COPD), which encompasses emphysema and chronic bronchitis.

Measuring biomarkers in exhaled breath condensatetiny liquid droplets discharged during breathing – can contribute to understanding asthma at the molecular level and lead to targeted treatment and better disease management. The Rutgers researchers’ miniaturized electrochemical sensor accurately measures nitrite in exhaled breath condensate using reduced graphene oxide. Reduced graphene oxide resists corrosion, has superior electrical properties and is very accurate in detecting biomarkers.

Source: http://news.rutgers.edu/

Super-material Bends, Shapes And Focuses Sound Waves

These tiny 3D-printed bricks could one day allow people to create their own acoustics. That’s the plan of scientists from the universities of Bristol and Sussex. They’ve invented a metamaterial which bends and manipulates sound in any way the user wants. It’s helped scientists create what they call a ‘sonic alphabet‘.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We have discovered that you just need 16 bricks to make any type of sound that you can imagine. You can shape the sound just with 16 of them, just like you create any words with just 26 letters,” says Dr. Gianluca Memoli, researcher at Interact Lab at University of Sussex.

DIY kits like this, full of batches of the 16 aural letters, could help users create a sound library, or even help people in the same car to hear separate things.

With our device what you can have is you can strap a static piece on top of existing speakers and they can direct sound in two different directions without any overlap. So the passengers can hear completely different information from the driver,” explains Professor Sri Subramanian Interact Lab at University of Sussex. This technology is more than five years away, but smaller versions could be used to direct medical ultrasound devices far sooner.  “In a year we could have a sleeve that we can put on top of already existing projects in the market and make them just a little bit better. For example, we can have a sleeve that goes on top of ultrasound pain relieving devices that are used for therapeutic pain,” he adds.
Researchers say spatial sound modulators will one day allow us to perform audible tasks previously unheard of.

Source: http://www.sussex.ac.uk/

Coldest City Grow Tomatoes All Year Round

Greenhouse invented by a Japanese company allows what’s often called the coldest city on earth to grow tomatoes when temperatures drop to -50 Celsius. Yakutsk in Siberia is one of the coldest cities in the world. During the freezing winter months it averages a temperature of minus 34 degrees Celcius with only five hours of daylight. That means crops can’t be grown in the frozen soil. But local authorities now believe they’ve found a way around that. They’ve teamed up with Japanese firm Hokkaido Corporation to build greenhouses with special technology. The local mayor hopes the project will go a long way to providing the fruit and veg needed by Yakutsk‘s people.

tomatoesCLICK ON THE IMAGE TO ENJOY THE VIDEO

When the entire infrastructure is ready, when the first and the second of the greenhouses are complete and we reach full capacity, then we plan to harvest around 1700 tonnes of cucumbers, more than 600 tonnes of tomatoes and around 25 tonnes of greens which should satisfy about 30-40 percent of the Yakutsk population’s needs,” says Aisen Nikolaev, the Mayor of Yakutsk.  The greenhouses are specially designed to withstand the extreme cold. Three layers of a rubber made from rubber with frozen soil properties are used.

It is three times thinner, but at the same time it can be stretched widely. It takes seven tonnes of weight per square metre piece for the film to break. And of course it has unique thermal insulation qualities and it lets the sunlight through better than ordinary glass. Just three layers of this thinnest film managed to last through this winter with temperatures dropping below minus 50 Celsius,”  explains the Mayor. Until now most produce had to be transported from Russia‘s Krasnodor region or imported from China. But now, if the technology proves a success, the tomatoes won’t have to travel too far to feed Yakutsk.

Source: http://www.reuters.com/

How To Detect Nuclear Device

How to keep U.S. ports of entry safe and secure by detecting and interdicting illicit radioactive or nuclear materials? A team led by Northeastern’s Swastik Kar and Yung Joon Jung has developed a technology that could go a long way toward achieving that goal.

nuclear radiation

Our detector could dramatically change the manner and accuracy with which we are able to detect nuclear threats at home or abroad,” says Kar, associate professor in the Department of Physics. It could also help streamline radio-medicine, including radiation therapies and scanning diagnostics, boost the effectiveness of unmanned radiation monitoring vehicles in mapping and monitoring contaminated areas following disasters, and revolutionize radiometric imaging in space exploration. Made of graphene and carbon nanotubes, the researchers’ detector far outpaces any existing one in its ultrasensitivity to charged particles, minuscule size, low-power requirements, and low cost.

All radiation, of course, is not harmful, and even the type that may be depends on dosage and length of exposure. The word “radiation” refers simply to the emission and propagation of energy in the form of waves or particles. It has many sources, including the sun, electronic devices such as microwaves and cellphones, visible light, X-rays, gamma waves, cosmic waves, and nuclear fission, which is what produces power in nuclear reactors. Most of the harmful radiations are “ionizing radiations”—they have sufficient energy to remove electrons from the orbits of surrounding atoms, causing them to become charged, or “ionized.” It is those charged particles, or ions, that the detectors pick up and quantify, revealing the intensity of the radiation. Most current detectors, however, are not only bulky, power hungry, and expensive, they also cannot pick up very low levels of ions. Kar and Yung Joon’s detector, on the other hand, is so sensitive it can pick up just a single charged particle.

Our detectors are many orders of magnitude more sensitive in terms of how small a signal they can detect,” says Yung Joon, associate professor in the Department of Mechanical and Industrial Engineering. “Ours can detect one ion, the fundamental limit. If you can detect a single ion, then you can detect everything larger than that.”

Source: http://news.northeastern.edu/

‘Spray-On’ Memory for Paper, Fabric, Plastic

USB flash drives are already common accessories in offices and college campuses. But thanks to the rise in printable electronics, digital storage devices like these may soon be everywhere – including on our groceries, pill bottles and even clothingDuke University researchers have brought us closer to a future of low-cost, flexible electronics by creating a new “spray-on digital memory device using only an aerosol jet printer and nanoparticle inks. The device, which is analogous to a 4-bit flash drive, is the first fully-printed digital memory that would be suitable for practical use in simple electronics such as environmental sensors or RFID tags. And because it is jet-printed at relatively low temperatures, it could be used to build programmable electronic devices on bendable materials like paper, plastic or fabric.

PrintingMemory

Duke University researchers have developed a new “spray-on” digital memory (upper left) that could be used to build programmable electronics on flexible materials like paper, plastic or fabric. They used LEDS to demonstrate a simple application.

We have all of the parameters that would allow this to be used for a practical application, and we’ve even done our own little demonstration using LEDs,” said Duke graduate student Matthew Catenacci, who describes the device in a paper published online in the Journal of Electronic Materials. At the core of the new device, which is about the size of a postage stamp, is a new copper-nanowire-based printable material that is capable of storing digital information.

Memory is kind of an abstract thing, but essentially it is a series of ones and zeros which you can use to encode information,” said Benjamin Wiley, an associate professor of chemistry at Duke and an author on the paper.

Source: https://today.duke.edu/

NanoCar Race

The NanoCar Race is an event in which molecular machines compete on a nano-sized racetrack. These “NanoCars” or molecule-cars can have real wheels, an actual chassis…and are propelled by the energy of electric pulses! Nothing is visible to the naked eye, however a unique microscope located in Toulouse (France) will make it possible to follow the race. A genuine scientific prowess and international human adventure, the race is a one-off event, and will be broadcast live on the web, as well as at the Quai des Savoirs, science center in Toulouse.

nanocars

The NanoCar race takes place on a very small scale, that of molecules and atoms: the nano scale…as in nanometer! A nanometer is a billionth of a meter, or 0.000000001 meters or 10 -9 m. In short, it is 500,000 times thinner then a line drawn by a ball point pen; 30,000 times thinner than the width of a hair; 100 times smaller than a DNA molecule; 4 atoms of silicon lined up next to one another.

A very powerful microscope is necessary to observe molecules and atoms: the scanning tunneling microscope (STM) makes this possible, and it is also responsible for propelling the NanoCars. The scanning tunneling microscope was invented in 1981 by Gerd Binnig and Heinrich Rohrer, and earned them the Nobel Prize in Physics in 1986. The tunnel effect is a phenomenon in quantum mechanics: using a tip and an electric current, the microscope will use this phenomenon to determine the electric conductance between the tip and the surface, in other words the amount of current that is passing through.

nanocar in movement Screening provides an electronic map of the surface and of each atom or molecule placed on it.At the CNRS‘s Centre d’élaboration de matériaux et d’études structurales (CEMES) in Toulouse, it is the one of a kind STM microscope that makes the race possible: the equivalent of four scanning tunneling microscopes, this device is the only one able to simultaneously and independently map four sections of the track in real time, thanks to its four tungsten tips.

Source: http://nanocar-race.cnrs.fr/

How Brain Waves Can Control VR Video Games

Virtual reality is still so new that the best way for us to interact within it is not yet clear. One startup wants you to use your head, literally: it’s tracking brain waves and using the result to control VR video games.

Boston-based startup Neurable is focused on deciphering brain activity to determine a person’s intention, particularly in virtual and augmented reality. The company uses dry electrodes to record brain activity via electroencephalography (EEG); then software analyzes the signal and determines the action that should occur.

neurons2

You don’t really have to do anything,” says cofounder and CEO Ramses Alcaide, who developed the technology as a graduate student at the University of Michigan. “It’s a subconscious response, which is really cool.”

Neurable, which raised $2 million in venture funding late last year, is still in the early stages: its demo hardware looks like a bunch of electrodes attached to straps that span a user’s head, worn along with an HTC Vive virtual-reality headset. Unlike the headset, Neurable’s contraption is wireless—it sends data to a computer via Bluetooth. The startup expects to offer software tools for game development later this year, and it isn’t planning to build its own hardware; rather, Neurable hopes companies will be making headsets with sensors to support its technology in the next several years.

Source; https://www.technologyreview.com/
AND
http://neurable.com/

A Smartphone App To Loose Weight

Psychologists at the University of Exeter (UK) have found that less than ten minutes a day of ‘brain training’ using a game they have devised can slow impulses to reach for unhealthy snacks, and reduce calorie intake. Using neuroscience and lab trials to devise a proven method of curbing unhealthy food intake, Professor Natalia Lawrence’s Food Trainer app is being launched this week free to the public, in a month when people traditionally make resolutions to lose weight and cut down on junk foodDr Natalia Lawrence is a cognitive neuroscientist at Exeter University. She designed the app after using brain imaging to study how the brain’s reward system responded to pictures of unhealthy food.

food trainer

It’s very exciting to see that our free and simple training can change eating habits and have a positive impact on some people’s lives,” she said. “It’s a tool to help people make healthier choices. In an age where unhealthy food is so abundant and easily available and obesity is a growing health crisis, we need to design innovative ways to support people to live more healthily. We are optimistic that the way this app is devised will actually encourage people to opt for healthy food such as fruit and vegetables rather than junk food.

Among those to have used the training is Fiona Furness, a studios manager for a charity providing studios for artists, who went from around 11 stone to around nine stone after taking part in a trial of the food training game. She said the “pounds just melted way”. “I used to feel really guilt about my bad snacking habits. I’d often be rushing about, and I’d grab something high calorie and unsatisfying – often a pack of crisps. I’d be hungry again really soon afterwards so it became a vicious cycle. The results have been remarkable,” she explained. “These days, if I am feeling peckish I’ll go for a banana or a pack of almonds. That’s the food I’m craving. I’m now closer to nine stone than 11 – the pounds just melted away over eight or nine months without me even noticing. The weight loss wasn’t really my goal though – I feel younger and more energetic. Perhaps I’m particularly susceptible to this kind of brain training, but it has been transformative for me.

A study of 83 adults showed that people who played the game online just 4 times in one week lost weight and ate an average of 220 kcal less per day – roughly equivalent to a chocolate-iced doughnut.The academics found in trials that playing the game without distractions for a few minutes a day can train the brain to control impulses to reach for chocolate, cakes, crisps or alcohol. The release of the free app will allow dieters or those who want to cut consumption of junk food or alcohol to try it and in the process generate more anonymous data to help psychologists measure how effective an app version of the brain-training programme can be.

The basis of the app is published research showing that people are more inclined to choose foods or drink high in sugar and fat because they activate the brain’s reward system, stimulating the release of dopamine and endorphins, which can produce feelings of pleasure and make the person want more. Research has found that the more people activate brain areas associated with reward when they see foods, the more they eat and the more weight they gain. Once triggered, these impulses can be hard to control.

Source: http://www.exeter.ac.uk/

Virtual Images that Blend In And Interact With The Real-World

Avegant, a Silicon Valley startup that sells a pair of headphones equipped with a VR-like portable screen, is breaking into augmented reality. The company today announced that it’s developed a new type of headset technology powered by a so-called light field display.

Avegant ARCLICK ON THE IMAGE TO ENJOY THE VIDEO

The research prototype, which Avegant eventually plans on turning into a consumer product, is based on the company’s previous work with its Glyph projector. That device was a visor of sorts that floats a virtual movie screen in front of your eyes, and developing it gave Avegant insight into how to build an AR headset of its own.

Like Microsoft’s HoloLens and the supposed prototype from secretive AR startup Magic Leap, Avegant’s new headset creates virtual images that blend in and interact with the real-world environment. In a demo, the company’s wired prototype proved to be superior in key ways to the developer version of the HoloLens. Avegant attributes this not to the power of its tethered PC, but to the device’s light field display — a technology Magic Leap also claims to have developed, yet has never been shown off to the public.

The demo I experienced featured a tour of a virtual Solar System, an immersion within an ocean environment, and a conversation with a virtual life-sized human being standing in the same room. To be fair, Avegant was using a tethered and bulky headset that wasn’t all that comfortable, while the HoloLens developer version is a refined wireless device. Yet with that said, Avegant’s prototype managed to expand the field of view, so you’re looking through a window more the size of a Moleskine notebook instead of a pack of playing cards. The images it produced also felt sharper, richer, and more realistic.

In the Solar System demo, I was able to observe a satellite orbiting an Earth no larger than a bocce ball and identify the Big Red Spot on Jupiter. Avegant constructed its demo to show off how these objects could exist at different focal lengths in a fixed environment — in this case a converted conference room at the company’s Belmont, California office. So I was able to stand behind the Sun and squint until the star went out of focus in one corner of my vision and a virtual Saturn and its rings became crystal clear in the distance.

Source: http://www.theverge.com/

Glucose Monitoring Strip

A research group from the Center for Nanoparticle Research within the Institute for Basic Science (IBS) in South Korea has developed a convenient and accurate sweat-based glucose monitoring and maintenance device. The research group has furthered its previous study* (Nat. Nanotech. 11, 566, 2016) to enhance the efficiency of the sweat collection and sensing & therapy process. This sweat-based system allows rapid glucose measurement incorporating small and sensitive sensors and also comes in a disposable strip sensor to the convenience of users. This accurate glucose analysis allows to prescribe a multistep and precisely controlled dosage of drug.

sweat monitoring stripOptical camera image of the disposable sweat monitoring strip (left). The disposable sweat analysis strip on human skin with perspiration (middle).The disposable strip-type sensors connected to a zero insertion force AQ50 (ZIF) connector (right).

The previous study reported a wearable graphene-based patch that allows diabetes monitoring and feedback therapy by using human sweat. The device’s pH and temperature monitoring functions enable systematic corrections of sweat glucose measurements.

The conventional treatment protocol causes a huge stress to diabetics since it requires painful and repetitive blood-withdrawal and insulin shots. Patients become reluctant to take the periodic tests and treatments, aggravating the diabetes symptoms and suffer severe diabetic complications. A recent alternative approach, sweat-based monitoring offers a painless blood glucose monitoring method, enabling more convenient control of blood glucose levels. However, many challenges still exist for the practical application of the existing system: tedious blood collection procedure; error-prone, enzyme-based glucose sensing that may lead to overtreatment of drugs, etc.

To address such issues, the research group presented an easy-to-use and multistage module to ensure an accurate glucose monitoring and therapy. To speed up the sweat collection, the researchers redevised the system to work under a small amount of sweat. They used electrochemically active, porous metal electrodes (replacing the graphene materials of the previous study) to enhance the sensitivity of the system. Also the porous structure allows to form strong linkage among enzymes, resulting in increased reliability of the sensors under mechanical friction and deformation.

Source: http://www.ibs.re.kr/