Posts belonging to Category sensors

The Smell Of Death

Scientists in Korea have developed a bioelectronicnose’ that can specifically detect a key compound produced in decaying substances. When food begins to rot, the smell that we find repulsive comes from a compound known as cadaverine. That is also the substance responsible for the stench of rotting bodies, or cadavers—hence the name. The compound is the result of a bacterial reaction involving lysine, which is an amino acid commonly found in various food products. A previous study has shown that a receptor in zebrafish has an affinity for cadaverine. To make this receptor in the laboratory, scientists have turned to Escherichia coli bacteria as a host cell because it can easily produce large quantities of proteins. However, the production of this receptor in E. coli has been a challenge because it needs to be embedded in a membrane.

In this study, a team of researchers led by Associate Professor Hong Seunghun at Seoul National University packaged the cadaverine receptor from the zebrafish into nanodiscs, which are water friendly, membrane-like structures. The researchers then placed the receptor-containing nanodiscs in a special orientation on a carbon nanotube transistor, completing the bioelectronic nose. During testing with purified test compounds and real-world salmon and beef samples, the nose was selective and sensitive for cadaverine, even at low levels. The researchers suggest that the detector could someday prove useful in natural disaster scenarios, to recover corpses for identification.

The findings have been published in the journal ACS Nano.


Lenses Provide Nano Scale X-ray Microscopy

Scientists at DESY (Germany) have developed novel lenses that enable X-ray microscopy with record resolution in the nanometre regime. Using new materials, the research team led by DESY scientist Saša Bajt from the Center for Free-Electron Laser Science (CFEL) has perfected the design of specialised X-ray optics and achieved a focus spot size with a diameter of less than ten nanometres. A nanometre is a millionths of a millimetre and is smaller than most virus particles. They successfully used their lenses to image samples of marine plankton.

Modern particle accelerators provide ultra-bright and high-quality X-ray beams. The short wavelength and the penetrating nature of X-rays are ideal for the microscopic investigation of complex materials. However, taking full advantage of these properties requires highly efficient and almost perfect optics in the X-ray regime. Despite extensive efforts worldwide this turned out to be more difficult than expected, and achieving an X-ray microscope that can resolve features smaller than 10 nm is still a big challenge.


The silica shell of the diatom Actinoptychus senarius, measuring only 0.1 mm across, is revealed in fine detail in this X-ray hologram recorded at 5000-fold magnification with the new lenses. The lenses focused an X-ray beam to a spot of approximately eight nanometres diameter – smaller than a single virus – which then expanded to illuminate the diatom and form the hologram

The new lenses consist of over 10 000 alternating layers of a new material combination, tungsten carbide and silicon carbide. “The selection of the right material pair was critical for the success,” emphasises Bajt. “It does not exclude other material combinations but it is definitely the best we know now.” The resolution of the new lenses is about five times better than achievable with typical state-of-the-art lenses.

We produced the world’s smallest X-ray focus using high efficiency lenses,” says Bajt. The new lenses have an efficiency of more than 80 per cent. This high efficiency is achieved with the layered structures that make up the lens and which act like an artificial crystal to diffract X-rays in a controlled way.

The researchers have reported their work in the journal Light: Science and Applications.


How To Trap DNA molecules With Your Smartphone

Researchers from the University of Minnesota College of Science and Engineering have found yet another remarkable use for the wonder material graphenetiny electronictweezers” that can grab biomolecules floating in water with incredible efficiency. This capability could lead to a revolutionary handheld disease diagnostic system that could be run on a smart phoneGraphene, a material made of a single layer of carbon atoms, was discovered more than a decade ago and has enthralled researchers with its range of amazing properties that have found uses in many new applications from microelectronics to solar cells. The graphene tweezers developed at the University of Minnesota are vastly more effective at trapping particles compared to other techniques used in the past due to the fact that graphene is a single atom thick, less than 1 billionth of a meter.

The physical principle of tweezing or trapping nanometer-scale objects, known as dielectrophoresis, has been known for a long time and is typically practiced by using a pair of metal electrodes. From the viewpoint of grabbing molecules, however, metal electrodes are very blunt. They simply lack the “sharpness” to pick up and control nanometer-scale objects.

Graphene is the thinnest material ever discovered, and it is this property that allows us to make these tweezers so efficient. No other material can come close,” said research team leader Sang-Hyun Oh, a Professor at the University of Minnesota. “To build efficient electronic tweezers to grab biomolecules, basically we need to create miniaturized lightning rods and concentrate huge amount of electrical flux on the sharp tip. The edges of graphene are the sharpest lightning rods.

The team also showed that the graphene tweezers could be used for a wide range of physical and biological applications by trapping semiconductor nanocrystals, nanodiamond particles, and even DNA molecules. Normally this type of trapping would require high voltages, restricting it to a laboratory environment, but graphene tweezers can trap small DNA molecules at around 1 Volt, meaning that this could work on portable devices such as mobile phones.

The research study has been published  in Nature Communications.


Copycat Robot

Introducing T-HR3, third generation humanoid robot designed to explore how clever joints can improve brilliant balance and real remote controlToyota says its 29 joints allow it to copy the most complex of moves – safely bringing friendly, helpful robots one step closer.


Humanoid robots are very popular among Japanese people…creating one like this has always been our dream and that’s why we pursued it,” says Akifumi Tamaoki, manager of Partner robot division at Toyota.

The robot is controlled by a remote operator sitting in an exoskeletonmirroring its master’s moves, a headset giving the operator a realtime robot point of view.

We’re primarily focused on making this robot a very family-oriented one, so that it can help people including services such as carer” explains Tamaoki.
Toyota said T-HR3 could help around the homes or medical facilities in Japan or construction sites, a humanoid helping hand – designed for a population ageing faster than anywhere else on earth.


Glass Blocks Generate Electricity Using Solar Energy

Buildings consume more than forty percent of global electricity and reportedly cause at least a third of carbon emissions. Scientists want to cut this drastically – and create a net-zero energy future for new buildings. Build Solar want to help. The firm has created a glass brick containing small solar cells.


On top of this we have placed in some intelligent optics which are able to focus the incoming sunlight onto these solar cells almost throughout the day. When we do that we are able to generate a higher amount of electrical output from each solar cell that we are using,” says Dr Hasan Baig, founder of Build Solar.
As well as converting the sun’s power to electricity, the bricks have other abilities.
The product is aligned to provide three different things, including electricity, daylighting, and thermal insulation which is generally required by any kind of construction product. More importantly it is aesthetic in its look, so it fits in very well within the building architecture,” adds Dr Baig.
Using Building Integrated Photovoltaics, the technology would be used in addition to existing solar roof panels. The University of Exeter spin-off is fine-tuning the design, which works in many colours. The company says the product could be market ready by the end of next year.


Artificial Intelligence Chip Analyzes Molecular-level Data In Real Time

Nano Global, an Austin-based molecular data company, today announced that it is developing a chip using intellectual property (IP) from Arm, the world’s leading semiconductor IP company. The technology will help redefine how global health challenges – from superbugs to infectious diseases, and cancer are conquered.

The pioneering system-on-chip (SoC) will yield highly-secure molecular data that can be used in the recognition and analysis of health threats caused by pathogens and other living organisms. Combined with the company’s scientific technology platform, the chip leverages advances in nanotechnology, optics, artificial intelligence (AI), blockchain authentication, and edge computing to access and analyze molecular-level data in real time.

In partnership with Arm, we’re tackling the vast frontier of molecular data to unlock the unlimited potential of this universe,” said Steve Papermaster, Chairman and CEO of Nano Global. “The data our technology can acquire and process will enable us to create a safer and healthier world.”

We believe the technology Nano Global is delivering will be an important step forward in the collective pursuit of care that improves lives through the application of technology,” explained Rene Haas, executive vice president and president of IPG, Arm. “By collaborating with Nano Global, Arm is taking an active role in developing and deploying the technologies that will move us one step closer to solving complex health challenges.”

Additionally, Nano Global will be partnering with several leading institutions, including Baylor College of Medicine and National University of Singapore, on broad research initiatives in clinical, laboratory, and population health environments to accelerate data collection, analysis, and product development.
The initial development of the chip is in process with first delivery expected by 2020. The company is already adding new partners to their platform.


Printed 3D Nanostructures Against Counterfeiting

Security features are to protect bank notes, documents, and branded products against counterfeiting. Losses caused by product forgery and counterfeiting may be enormous. According to the German Engineering Association, the damage caused in 2016 in its branch alone amounted to EUR 7.3 billion. In the Advanced Materials Technologies journal, researchers of Karlsruhe Institute of Technology (KIT) and the ZEISS company now propose to use printed 3D microstructures instead of 2D structures, such as holograms, to improve counterfeit protection.

Today, optical security features, such as holograms, are frequently based on two-dimensional microstructures,” says Professor Martin Wegener, expert for 3D printing of microstructures at the Institute of Nanotechnology of KIT. “By using 3D-printed fluorescent microstructures, counterfeit protection can be increased.” The new security features have a side length of about 100 µm and are barely visible with the eye or a conventional microscope. For their production and application, Wegener and his team have developed an innovative method that covers all processes from microstructure fabrication to the readout of information.

The microstructures consist of a 3D cross-grid scaffold and dots that fluoresce in different colors and can be arranged variably in three dimensions within this grid. To produce and print such microstructures, the experts use a rapid and precise laser lithography device developed and commercialized by the Nanoscribe company, a spinoff of KIT. It enables highly precise manufacture of voluminous structures of a few millimeters edge length or of microstructured surfaces of several cm² in dimension. The special 3D printer produces the structures layer by layer from non-fluorescent and two fluorescent photoresists. A laser beam very precisely passes certain points of the liquid photoresist. The material is exposed and hardened at the focus point of the laser beam. The resulting filigree structure is then embedded in a transparent polymer in order to protect it against damage.


Breathing in Delhi air equivalent to smoking 44 cigarettes a day

It was early on the morning when residents in the Indian capital of Delhi first began to notice the thick white haze that had descended across the city. Initially viewed as a mild irritant, by mid-week its debilitating effects were evident to all, as the city struggled to adapt to the new eerie, martian-like conditions brought about by the pollution.

The World Health Organization considers anything above 25 to be unsafe. That measure is based on the concentration of fine particulate matter, or PM2.5, per cubic meter. The microscopic particles, which are smaller than 2.5 micrometers in diameter, are considered particularly harmful because they are small enough to lodge deep into the lungs and pass into other organs, causing serious health risks.
With visibility severely reduced, trains have been canceled, planes delayed and cars have piled into each other, with multiple traffic accidents reported across the city. On the afternoon, city chiefs closed all public and private schools, requesting instead that the city’s tens of thousands of school-aged children remain indoors; they banned incoming trucks and halted civil construction projects; while they announced new plans to begin implementing a partial ban on private car use as of next week. But as the city woke up to a fourth straight day of heavy pollution, practical considerations were being overtaken by more serious concerns, with journalists and doctors warning residents of the long-term health implications.

Air quality readings in the Indian capital have reached frightening levels in recent days, at one point topping the 1,000 mark on the US embassy air quality index. Across the capital, doctors reported a surge in patients complaining of chest pain, breathlessness and burning eyes. “The number of patients have increased obviously,” said Deepak Rosha, a pulmonologist at Apollo Hospital, one of the largest private hospitals in Delhi. “I don’t think it’s ever been so bad in Delhi. I’m very angry that we’ve had to come to this.”
Breathing in air with a PM2.5 content of between 950 to 1,000 is considered roughly equivalent to smoking 44 cigarettes a day, according to the independent Berkeley Earth science research group.

Photovoltaics: Light Absorption Enhanced by Up to 200 Percent

Sunlight reflected by solar cells is lost as unused energy. The wings of the butterfly Pachliopta aristolochiae are drilled by nanostructures (nanoholes) that help absorbing light over a wide spectrum far better than smooth surfaces. Researchers of Karlsruhe Institute of Technology (KIT) in Germany, have now succeeded in transferring these nanostructures to solar cells and, thus, enhancing their light absorption rate by up to 200 percent.

 “The butterfly studied by us is very dark black. This signifies that it perfectly absorbs sunlight for optimum heat management. Even more fascinating than its appearance are the mechanisms that help reaching the high absorption. The optimization potential when transferring these structures to photovoltaics (PV) systems was found to be much higher than expected,” says Dr. Hendrik Hölscher of KIT’s Institute of Microstructure Technology (IMT).


The scientists of the team of Hendrik Hölscher and Radwanul H. Siddique (formerly KIT, now Caltech) reproduced the butterfly’s nanostructures in the silicon absorbing layer of a thin-film solar cell. Subsequent analysis of light absorption yielded promising results: Compared to a smooth surface, the absorption rate of perpendicular incident light increases by 97% and rises continuously until it reaches 207% at an angle of incidence of 50 degrees. “This is particularly interesting under European conditions. Frequently, we have diffuse light that hardly falls on solar cells at a vertical angle,” Hendrik Hölscher says. However, this does not automatically imply that efficiency of the complete PV system is enhanced by the same factor, says Guillaume Gomard of IMT. “Also other components play a role. Hence, the 200 percent are to be considered a theoretical limit for efficiency enhancement.

The scientists have reported their results in the journal Science Advances. (DOI: 10.1126/sciadv.1700232.)


Sophia The Robot Says: ‘I have feelings too’

Until recently, the most famous thing that Sophia the robot had ever done was beat Jimmy Fallon a little too easily in a nationally televised game of rock-paper-scissors.


But now, the advanced artificial intelligence robot — which looks like Audrey Hepburn, mimics human expressions and may be the grandmother of robots that solve the world’s most complex problems — has a new feather in her cap:


The kingdom of Saudi Arabia officially granted citizenship to the humanoid robot last week during a program at the Future Investment Initiative, a summit that links deep-pocketed Saudis with inventors hoping to shape the future.

Sophia’s recognition made international headlines — and sparked an outcry against a country with a shoddy human rights record that has been accused of making women second-class citizens.


Acupuncture And Nanotechnology Married To Cure Cancer

DGIST (Daegu Gyeongbuk Institute of Science and Technology) in South Korea announced that Professor Su-Il In’s research team from the department of Energy Science and Engineering has presented the possibility of cancer treatment, including colorectal cancer, using acupuncture needles that employ nanotechnology for the first time in the world.

The research team of Professor Su-Il In, through joint research with Dr. Eunjoo Kim of Companion Diagnostics & Medical Technology Research Group at DGIST and Professor Bong-Hyo Lee’s research team from the College of Oriental Medicine at Daegu Haany University, has published a study showing that the molecular biologic indicators related to anticancer effects are changed only by the treatment of acupuncture, which is widely used in oriental medicine.

In oriental medicine, treatment using acupuncture needles has been commonly practiced for thousands of years in the fields of treating musculoskeletal disorders, pain relief, and addiction relief. Recently, it has emerged as a promising treatment for brain diseases, gastrointestinal disorders, nausea, and vomiting, and studies are under way to use acupuncture to treat severe diseases.


Not only that, Professor In’s team discovered that acupuncture needles can be used for cancer treatment which is difficult to treat in modern medicine. In this study, the researchers developed nanoporous needles with microscopic holes in the surface of the needles ranging from nanopores (nm = one billionth of a meter) to micrometers (μm = one millionth of a meter) by applying relatively simple electrochemical nanotechnology. By increasing the surface area of the needle by a factor of ten, the nanoporous needles doubled the electrophysiological signal generation function by needle stimulus.

As a result of AOM administration in rats, the rats receiving periodic acupuncture treatment with nanoporous needles were found to have a much lower incidence of abnormal vascular clusters as a precursor to colorectal cancer in the initiation stage than those in the control group.


Thin Films Power Electronics Mixed In Fabrics

Scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) reported significant advances in the thermoelectric performance of organic semiconductors based on carbon nanotube thin films that could be integrated into fabrics to convert waste heat into electricity or serve as a small power source.

The research demonstrates significant potential for semiconducting single-walled carbon nanotubes (SWCNTs) as the primary material for efficient thermoelectric generators, rather than being used as a component in a “compositethermoelectric material containing, for example, carbon nanotubes and a polymer. The discovery is outlined in the new Energy & Environmental Science paper, Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films.

There are some inherent advantages to doing things this way,” said Jeffrey Blackburn, a senior scientist in NREL’s Chemical and Materials Science and Technology center and co-lead author of the paper with Andrew Ferguson. These advantages include the promise of solution-processed semiconductors that are lightweight and flexible and inexpensive to manufacture. Other NREL authors are Bradley MacLeod, Rachelle Ihly, Zbyslaw Owczarczyk, and Katherine Hurst. The NREL authors also teamed with collaborators from the University of Denver and partners at International Thermodyne, Inc., based in Charlotte, N.C.

Ferguson, also a senior scientist in the Chemical and Materials Science and Technology center, said the introduction of SWCNT into fabrics could serve an important function for “wearable” personal electronics. By capturing body heat and converting it into electricity, the semiconductor could power portable electronics or sensors embedded in clothing.