Posts belonging to Category Graphene

Nanotechnology Spacecraft

Renowned physicist Stephen Hawking is proposing a nanotechnology spacecraft that can travel at a fifth of the speed of light. At that speed, it could reach the nearest star in 20 years and send back images of a suspected “Second Earth” within 5 years. That means if we launched it today, we would have our first look at an Earth-like planet within 25 years.

Hawking proposed a nano-spacecraft, termed “Star Chip,” at the Starmus Festival IV: Life And The Universe, Trondheim, Norway, June 18 – 23, 2017. Hawking told attendees that every time intelligent life evolves it annihilates itself with “war, disease and weapons of mass destruction.” He asserted this as the primary reason why advanced civilizations from another part of the Universe are not contacting Earth and the primary reason we need to leave the Earth. His advocates we colonize a “Second Earth.”

Scientific evidence appears to support Hawking’s claim. The SETI Institute has been listening for evidence of extraterrestrial radio signals, a sign of advanced extraterrestrial life, since 1984. To date, their efforts have been futile. SETI claims, rightly, that the universe is vast, and they are listening to only small sectors, which is much like finding a needle in a haystack.


3-D Printed Graphene Foam

Nanotechnologists from Rice University and China’s Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene. The research could yield industrially useful quantities of bulk graphene and is described online in a new study in the American Chemical Society journal ACS Nano.

Laser sintering was used to 3-D print objects made of graphene foam, a 3-D version of atomically thin graphene. At left is a photo of a fingertip-sized cube of graphene foam; at right is a close-up of the material as seen with a scanning electron microscope

This study is a first of its kind,” said Rice chemist James Tour, co-corresponding author of the paper. “We have shown how to make 3-D graphene foams from nongraphene starting materials, and the method lends itself to being scaled to graphene foams for additive manufacturing applications with pore-size control.”

Graphene, one of the most intensely studied nanomaterials of the decade, is a two-dimensional sheet of pure carbon that is both ultrastrong and conductive. Scientists hope to use graphene for everything from nanoelectronics and aircraft de-icers to batteries and bone implants. But most industrial applications would require bulk quantities of graphene in a three-dimensional form, and scientists have struggled to find simple ways of creating bulk 3-D graphene.

For example, researchers in Tour’s lab began using lasers, powdered sugar and nickel to make 3-D graphene foam in late 2016. Earlier this year they showed that they could reinforce the foam with carbon nanotubes, which produced a material they dubbed “rebar graphene” that could retain its shape while supporting 3,000 times its own weight. But making rebar graphene was no simple task. It required a pre-fabricated 3-D mold, a 1,000-degree Celsius chemical vapor deposition (CVD) process and nearly three hours of heating and cooling.  “This simple and efficient method does away with the need for both cold-press molds and high-temperature CVD treatment,” said co-lead author Junwei Sha, a former student in Tour’s lab who is now a postdoctoral researcher at Tianjin. “We should also be able to use this process to produce specific types of graphene foam like 3-D printed rebar graphene as well as both nitrogen- and sulfur-doped graphene foam by changing the precursor powders.” Sha and colleagues conducted an exhaustive study to find the optimal amount of time and laser power to maximize graphene production. The foam created by the process is a low-density, 3-D form of graphene with large pores that account for more than 99 percent of its volume.

The 3-D graphene foams prepared by our method show promise for applications that require rapid prototyping and manufacturing of 3-D carbon materials, including energy storage, damping and sound absorption,” said co-lead author Yilun Li, a graduate student at Rice.


Nano-based Material Is 60 Times More Efficient To Produce Hydrogen

Global climate change and the energy crisis mean that alternatives to fossil fuels are urgently needed. Among the cleanest low-carbon fuels is hydrogen, which can react with oxygen to release energy, emitting nothing more harmful than water (H2O) as the product. However, most hydrogen on earth is already locked into H2O (or other molecules), and cannot be used for power.

Hydrogen can be generated by splitting H2O, but this uses more energy than the produced hydrogen can give back. Water splitting is often driven by solar power, so-called “solar-to-hydrogenconversion. Materials like titanium oxide, known as semiconductors with the wide band-gap, are traditionally used to convert sunlight to chemical energy for the photocatalytic reaction. However, these materials are inefficient because only the ultraviolet (UV) part of light is absorbed—the rest spectrum of sunlight is wasted.

Now, a team in Osaka University has developed a material to harvest a broader spectrum of sunlight. The three-part composites of this material maximize both absorbing light and its efficiency for water splitting. The core is a traditional semiconductor, lanthanum titanium oxide (LTO). The LTO surface is partly coated with tiny specks of gold, known as nanoparticles. Finally, the gold-covered LTO is mixed with ultrathin sheets of the element black phosphorus (BP), which acts as a light absorber.

BP is a wonderful material for solar applications, because we can tune the frequency of light just by varying its thickness, from ultrathin to bulk,” the team leader Tetsuro Majima says. “This allows our new material to absorb visible and even near infrared light, which we could never achieve with LTO alone.”

By absorbing this broad sweep of energy, BP is stimulated to release electrons, which are then conducted to the gold nanoparticles coating the LTO. Gold nanoparticles also absorb visible light, causing some of its own electrons to be jolted out. The free electrons in both BP and gold nanoparticles are then transferred into the LTO semiconductor, where they act as an electric current for water splitting.

Hydrogen production using this material is enhanced not only by the broader spectrum of light absorption, but by the more efficient electron conduction, caused by the unique interface between two dimensional materials of BP and LTO. As a result, the material is 60 times more active than pure LTO.


30 Billion Switches Onto The New IBM Nano-based Chip

IBM is clearly not buying into the idea that Moore’s Law is dead after it unveiled a tiny new transistor that could revolutionise the design, and size, of future devices. Along with Samsung and Globalfoundries, the tech firm has created a ‘breakthrough’ semiconducting unit made using stacks of nanosheets. The companies say they intend to use the transistors on new five nanometer (nm) chips that feature 30 billion switches on an area the size of a fingernail. When fully developed, the new chip will help with artificial intelligence, the Internet of Things, and cloud computing.

For business and society to meet the demands of cognitive and cloud computing in the coming years, advancement in semiconductor technology is essential,” said Arvind Krishna, senior vice president, Hybrid Cloud, and director, IBM Research.

IBM has been developing nanometer sheets for the past 10 years and combined stacks of these tiny sheets using a process called Extreme Ultraviolet (EUV) lithography to build the structure of the transistor.

Using EUV lithography, the width of the nanosheets can be adjusted continuously, all within a single manufacturing process or chip design,” IBM and the other firms said. This allows the transistors to be adjusted for the specific circuits they are to be used in.


Scalable Catalyst Produces Cheap Pure Hydrogen

The “clean-energy economy” always seems a few steps away but never quite here. Fossil fuels still power transportation, heating and cooling, and manufacturing, but a team of scientists from Penn State and Florida State University have come one step closer to inexpensive, clean hydrogen fuel with a lower cost and industrially scalable catalyst that produces pure hydrogen through a low-energy water-splitting process.

Hydrogen fuel cells can boost a clean-energy economy not only in the transportation sector, where fast fueling and vehicle range outpace battery-powered vehicles, but also to store electrical energy produced by solar and wind. This research is another step forward to reaching that goal.
Energy is the most important issue of our time, and for energy, fuel cells are crucially important, and then for fuel cells, hydrogen is most important,” said Yu Lei, Penn State doctoral student and first author of an ACS Nano paper describing the water-splitting catalyst she and her colleagues theoretically predicted and then synthesized in the lab. “People have been searching for a good catalyst that can efficiently split water into hydrogen and oxygen. During this process, there will be no side products that are not environmentally friendly.”

The current industrial method of producing hydrogen — steam reforming of methane — results in the release of carbon dioxide into the atmosphere. Other methods use waste heat, from sources such as advanced nuclear power plants or concentrated solar power, both of which face technical challenges for commercial feasibility. Another industrial process uses platinum as the catalyst to drive the water-splitting process. Although platinum is a near-perfect catalyst, it is also expensive. A cheaper catalyst could make hydrogen a reasonable alternative to fossil fuels in transportation, and power fuel cells for energy storage applications.

Molybdenum disulfide has been predicted as a possible replacement for platinum, because the Gibbs free energy for hydrogen absorption is close to zero,” said Mauricio Terrones, professor of physics, materials science and engineering, and chemistry, Penn State. The lower the Gibbs free energy, the less external energy has to be applied to produce a chemical reaction.


How Yo Make Sea Water Drinkable

Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies. Now the much sought-after development of making membranes capable of sieving common salts has been achieved. New research demonstrates the real-world potential of providing clean drinking water for millions of people who struggle to access adequate clean water sources. Graphene-oxide membranes developed at the National Graphene Institute have already demonstrated the potential of filtering out small nanoparticles, organic molecules, and even large salts. Until now, however, they couldn’t be used for sieving common salts used in desalination technologies, which require even smaller sieves. Previous research at The University of Manchester found that if immersed in water, graphene-oxide membranes become slightly swollen and smaller salts flow through the membrane along with water, but larger ions or molecules are blocked.

The Manchester-based group have now further developed these graphene membranes and found a strategy to avoid the swelling of the membrane when exposed to water. The pore size in the membrane can be precisely controlled which can sieve common salts out of salty water and make it safe to drink.


Realisation of scalable membranes with uniform pore size down to atomic scale is a significant step forward and will open new possibilities for improving the efficiency of desalination technology,” says Professor Rahul Raveendran Nair.

The new findings from a group of scientists at The University of Manchester have been published in the journal Nature Nanotechnology.


Startup Promises Immortality Through AI, Nanotechnology, and Cloning

One of the things humans have plotted for centuries is escaping death, with little to show for it, until now. One startup called Humai has a plan to make immortality a reality. The CEO, Josh Bocanegra says when the time comes and all the necessary advancements are in place, we’ll be able to freeze your brain, create a new, artificial body, repair any damage to your brain, and transfer it into your new body. This process could then be repeated in perpetuityHUMAI stands for: Human Resurrection through Artificial Intelligence. The technology to accomplish this isn’t here now, but on the horizon. Bocanegra says they’ll reach this Promethean feat within 30 years. 2045 is currently their target date. So how do they plan to do it?

We’re using artificial intelligence and nanotechnology to store data of conversational styles, behavioral patterns, thought processes and information about how your body functions from the inside-out. This data will be coded into multiple sensor technologies, which will be built into an artificial body with the brain of a deceased human, explains the website.


Legally Blind People Can See With A New Kind Of Glasses

A Canadian company based in Toronto has suceeded to build a kind of Google glass that is able to give back full sight to legally blind people.  The eSight is an augmented reality headset that houses a high-speed, high-definition camera that captures everything the user is looking at.


Algorithms enhance the video feed and display it on two, OLED screens in front of the user’s eyes. Full color video images are clearly seen by the eSight user with unprecedented visual clarity and virtually no lag. With eSight’s patented Bioptic Tilt capability, users can adjust the device to the precise position that, for them, presents the best view of the video while maximizing side peripheral vision. This ensures a user’s balance and prevents nausea – common problems with other immersive technologies. A blind individual can use both of their hands while they use eSight to see. It is lightweight, worn comfortably around the eyes and designed for various environments and for use throughout the day.

eSight is a comprehensive customized medical device that can replace all the many single-task assistive devices that are currently available but do not provide actual sight (e.g. white canes, magnifying devices, service animals, Braille machines, CCTV scanners, text-to-speech software). It allows a user to instantly auto-focus between short-range vision (reading a book or text on a smartphone) to mid-range vision (seeing faces or watching TV) to long-range vision (looking down a hallway or outsidea window). It is the only device for the legally blind that enables mobility without causing issues of imbalance or nausea (common with other immersive options). A legally blind individual can use eSight not just to see while sitting down but while being independently mobile (e.g. walking, exercising, commuting, travelling, etc).

According to The Wall Street Journal, the company is taking advantages of recent improvements in technology from VR headsets and smartphones that have trickled down to improve the latest version of the eSight. So far, the company has sold roughly a thousand units, but at $10,000 apiece, they’re not cheap (and most insurances apparently don’t cover the product), although eSight’s chief executive Brian Mech notes to the WSJ that getting devices to users is “a battle we are starting to wage.”


Rechargeable Lithium Metal Battery

Rice University scientists have created a rechargeable lithium metal battery with three times the capacity of commercial lithium-ion batteries by resolving something that has long stumped researchers: the dendrite problem.

The Rice battery stores lithium in a unique anode, a seamless hybrid of graphene and carbon nanotubes. The material first created at Rice in 2012 is essentially a three-dimensional carbon surface that provides abundant area for lithium to inhabit. Lithium metal coats the hybrid graphene and carbon nanotube anode in a battery created at Rice University. The lithium metal coats the three-dimensional structure of the anode and avoids forming dendrites.

The anode itself approaches the theoretical maximum for storage of lithium metal while resisting the formation of damaging dendrites or “mossy” deposits.

Dendrites have bedeviled attempts to replace lithium-ion with advanced lithium metal batteries that last longer and charge faster. Dendrites are lithium deposits that grow into the battery’s electrolyte. If they bridge the anode and cathode and create a short circuit, the battery may fail, catch fire or even explode.

Rice researchers led by chemist James Tour found that when the new batteries are charged, lithium metal evenly coats the highly conductive carbon hybrid in which nanotubes are covalently bonded to the graphene surface. As reported in the American Chemical Society journal ACS Nano, the hybrid replaces graphite anodes in common lithium-ion batteries that trade capacity for safety.

Lithium-ion batteries have changed the world, no doubt,” Tour said, “but they’re about as good as they’re going to get. Your cellphone’s battery won’t last any longer until new technology comes along.

He said the new anode’s nanotube forest, with its low density and high surface area, has plenty of space for lithium particles to slip in and out as the battery charges and discharges. The lithium is evenly distributed, spreading out the current carried by ions in the electrolyte and suppressing the growth of dendrites.


Asthma: Graphene-Based Sensor Improves Treatment

Scientists from Rutgers University have created a graphene-based sensor that could lead to earlier detection of looming asthma attacks and improve the management of asthma and other respiratory diseases, preventing hospitalizations and deaths.

The sensor paves the way for the development of devices – possibly resembling fitness trackers like the Fitbit – which people could wear and then know when and at what dosage to take their medication.

Exhaled breath condensate (tiny droplets of liquid) are rapidly analyzed by a graphene-based nanoelectronic sensor that detects nitrite, a key inflammatory marker in the inner lining of the respiratory airway.

Our vision is to develop a device that someone with asthma or another respiratory disease can wear around their neck or on their wrist and blow into it periodically to predict the onset of an asthma attack or other problems,” said Mehdi Javanmard, an assistant professor in the Department of Electrical and Computer Engineering. “It advances the field of personalized and precision medicine.

Javanmard and a diverse team of RutgersNew Brunswick experts describe their invention in a study published online today in the journal Microsystems & Nanoengineering.

Asthma, which causes inflammation of the airway and obstructs air flow, affects about 300 million people worldwide. About 17.7 million adults and 6.3 million children in the United States were diagnosed with asthma in 2014. Symptoms include coughing, wheezing, shortness of breath, and chest tightness. Other serious lung ailments include chronic obstructive pulmonary disease (COPD), which encompasses emphysema and chronic bronchitis.

Measuring biomarkers in exhaled breath condensatetiny liquid droplets discharged during breathing – can contribute to understanding asthma at the molecular level and lead to targeted treatment and better disease management. The Rutgers researchers’ miniaturized electrochemical sensor accurately measures nitrite in exhaled breath condensate using reduced graphene oxide. Reduced graphene oxide resists corrosion, has superior electrical properties and is very accurate in detecting biomarkers.


Self-Healing Lithium-Ion Batteries

Researchers at the University of Illinois have found a way to apply self-healing technology to lithium-ion batteries to make them more reliable and last longer.

The group developed a battery that uses a silicon nanoparticle composite material on the negatively charged side of the battery and a novel way to hold the composite together – a known problem with batteries that contain silicon.

Materials science and engineering professor Nancy Sottos and aerospace engineering professor Scott White led the study published in the journal Advanced Energy Materials.

“This work is particularly new to self-healing materials research because it is applied to materials that store energy,” White said. “It’s a different type of objective altogether. Instead of recovering structural performance, we’re healing the ability to store energy.”

The negatively charged electrode, or anode, inside the lithium-ion batteries that power our portable devices and electric cars are typically made of a graphite particle composite. These batteries work well, but it takes a long time for them to power up, and over time, the charge does not last as long as it did when the batteries were new.

Silicon has such a high capacity, and with that high capacity, you get more energy out of your battery, except it also undergoes a huge volume expansion as it cycles and self-pulverizes,” Sottos explained.

Past research found that battery anodes made from nanosized silicon particles are less likely to break down, but suffer from other problems.

You go through the charge-discharge cycle once, twice, three times, and eventually you lose capacity because the silicon particles start to break away from the binder,” White said.

To combat this problem, the group further refined the silicon anode by giving it the ability to fix itself on the fly. This self-healing happens through a reversible chemical bond at the interface between the silicon nanoparticles and polymer binder.


3D Printing Art And Design in Paris

Do you plan  to travel to Paris? In this case do not miss to visit the Centre Pompidou,  this huge museum, located in the center of Paris and dedicated to modern Art.  You can assist to  “Mutations/Créations“: a new event decidedly turned towards the future and the interaction between digital technology and creation; a territory shared by art, innovation and science.


Drawing on all the disciplines in a mix of research, art and engineering, the first edition of this annual event calls upon music, design and architecture. It consists of two exhibitions (“Imprimer le monde“ and “Ross Lovegrove“), an Art/Innovation Forum entitled “Vertigo“, and various study days and get-togethers. Each year, thematic and monographic exhibitions will be staged around meetings and workshops that turn the Centre Pompidou into an “incubator“: a place for demonstrating prototypes, carrying out artistic experiments in vivo, and talking with designers. This platform will also be a critical observatory and a tool for analysing the impact of creation on society. How have the various forms of creation begun using digital technologies to open up new industrial perspectives? How do they question the social, economic and political effects of these industrial developments, and their ethical limits? What formal transformations have come about in music, art, design and architecture with regard to technical and scientific progress?

In the same space,  you can see a  new retrospective devoted to British designer Ross Lovegrove, which shows how the artist has introduced a fresh dialogue between nature and technology, where art and science converge. He employs a “holistic“ idea of design through a visionary practice that began incorporating digital changes during the 1990s, rejecting the productivism of mass industry and replacing it with a more economical approach to materials and forms. This exhibition emphasises the role of design in the postindustrial era, now that we are seeing a significant shift from mechanics to organics: a changeover symptomatic of our times, which these “digital forms“ endeavour to highlight.