Posts belonging to Category green power



Device Doubles The Energy Conversion Of Solar Cells

Scientists from Japan are utilizing nanotechnology advancements to strengthen solar cellsSolar cells convert light into electricity using a bevy of sources, including light from the sun and the burning of natural resources such as oil and natural gas. However, the cells do not convert all light to power equally, which led to scientists attempting to find ways to produce more power. The flame of a gas burner will shift from red to blue as the heat increases because higher temperatures emit light at shorter wavelengths. Higher heat offers more energy, making short wavelengths an important target in the design of solar cells. Kyoto University‘s Takashi Asano, began using optical technologies to improve energy production.

device to double the power of solar cells

Current solar cells are not good at converting visible light to electrical power. The best efficiency is only around 20 percent,” Asano said in a statement. “The problem is that heat dissipates light of all wavelengths, but a solar cell will only work in a narrow range. To solve this, we built a new nano-sized semiconductor that narrows the wavelength bandwidth to concentrate the energy.

The researchers were able to use their nanoscale semiconductor to raise the energy conversion rate to at least 40 percent. Asano and researchers at the Susumu Noda lab had previously attempted to work with higher wavelengths. “Our first device worked at high wavelengths but to narrow output for visible light required a new strategy, which is why we shifted to intrinsic silicon in this current collaboration with Osaka Gas,” Asano said. Visible wavelengths are emitted at 1000 degrees Celsius but conveniently silicon has a melting temperature of over 1,400 degrees Celsius.

This concept was utilized by the scientists, who etched silicon plates to have a large number of identical and equidistantly-spaced rods, the height, radii and spacing of which was optimized for the target bandwidth. Susumu Noda, a professor at Kyoto University, explained the benefits of the advancement: “Our technology has two important benefits. First is energy efficiency: we can convert heat into electricity much more efficiently than before. Secondly is design:  we can now create much smaller and more robust transducers, which will be beneficial in a wide range of applications.”

The study was published in Science Advances.

Source: http://www.rdmag.com/

Electric Motorbike Round-The-World Trip

80-day round-the-world trips aren’t new – but using an electric motorbike built from scratch by students on them certainly is. Eindhoven University of Technology (Netherlands) riders drove up to 500 kilometres a day on their self-constructed Storm Wave bike, relying entirely on battery power. Other students rode behind in a bus, with one change of driver and battery swap per day.

Storm electric motorcycleCLICK ON THE IMAGE TO ENJOY THE VIDEO

With a full pack you can ride 400 kilometres on one single charge. But during our tour we had to drive more, so we had to re-energise quickly. So we just took the empty ones out, replaced them with charged ones, and we could ride again,” says Bas Verkaik, Spokeperson for Storm Eindhoven.  Key to the Storm Wave is its unique modular system of 24 individual batteries. This helped ease navigation of difficult roads in countries like Turkmenistan and Uzbekhistan.

When we faced those bad roads we just took, for example half of the batteries out, we have a lighter motorcycle, lower centre of gravity, which makes it easier to handle,” comments Bas Verkaik. Storm Wave also contains a gearbox, unusual for an electric motorcycle, but allowing greater acceleration and efficiency at high speeds.

The misconceptions people have about electric vehicles is that either they’re slow or they don’t have enough power or they can’t drive fast or far enough. With our motorcycle it can go from zero to 100 (kilometres per hour) in under five seconds, and probably could go even faster if we changed some specs… I think it looks pretty nice. That’s also a misconception that people have, that electric vehicles have to be futuristic and they don’t like the design, but I’ve only heard good things about this motorcycle” , explains Storm Wave driver Yorick Heidema.

The 23 students returned home in November after receiving huge interest in cities they drove through. They say they’ve showed the world that long-distance electric vehicle travel isn’t just feasible, but cool too.

Source: https://www.storm-eindhoven.com/
AND
http://www.reuters.com/

Paracetamol On Mars

How to produce medicine sustainably and cheaply, anywhere you want, whether in the middle of the jungle or even on Mars? Looking for a ‘mini-factory’ whereby sunlight can be captured to make chemical products? Inspired by the art of nature where leaves are able to collect enough sunlight to produce food, chemical engineers at Eindhoven University of Technology (TU/e) in Netherlands have presented such a scenario. 
Using sunlight to make chemical products has long been a dream of many a chemical engineer. The problem is that the available sunlight generates too little energy to kick off reactions. However, nature is able to do this. Antenna molecules in leaves capture energy from sunlight and collect it in the reaction centers of the leaf where enough solar energy is present for the chemical reactions that give the plant its food (photosynthesis).

Luminescent Solar Concentrator-based Photomicroreactor (LSC-PM, artificial leaf for organic synthesis), research by PhD Dario Cambie & Timothy Noël, group Micro Flow Chemistry and Process Technology, Chemical Engineering and Chemistry, TU Eindhoven. photo: TU/e, Bart van Overbeeke

Luminescent Solar Concentrator-based Photomicroreactor (LSC-PM, artificial leaf for organic synthesis), research by PhD Dario Cambie & Timothy Noël

CLICK ON THE IMAGE TO ENJOY THE VIDEO
The researchers came across relatively new materials, known as luminescent solar concentrators (LSC’s), which are able to capture sunlight in a similar way. Special light-sensitive molecules in these materials capture a large amount of the incoming light that they then convert into a specific color that is conducted to the edges via light conductivity. These LSC’s are often used in practice in combination with solar cells to boost the yield.

 


The results surpassed all their expectations, and not only in the lab. “Even an experiment on a cloudy day demonstrated that the chemical production was 40 percent higher than in a similar experiment without LSC material”, says research leader Noël. “We still see plenty of possibilities for improvement. We now have a powerful tool at our disposal that enables the sustainable, sunlight-based production of valuable chemical products like drugs or crop protection agents.”

For the production of drugs there is certainly a lot of potential. The chemical reactions for producing drugs currently require toxic chemicals and a lot of energy in the form of fossil fuels. By using visible light the same reactions become sustainable, cheap and, in theory, countless times faster. But Noël believes it should not have to stop there. “Using a reactor like this means you can make drugs anywhere, in principle, whether malaria drugs in the jungle or paracetamol on Mars. All you need is sunlight and this mini-factory.

The findings are described in the journal Angewandte Chemie.

Source: https://www.tue.nl/

How To Convert Heat Into Electricity

The same researchers who pioneered the use of a quantum mechanical effect to convert heat into electricity have figured out how to make their technique work in a form more suitable to industry. In Nature Communications, engineers from The Ohio State University (OSU) describe how they used magnetism on a composite of nickel and platinum to amplify the voltage output 10 times or more—not in a thin film, as they had done previously, but in a thicker piece of material that more closely resembles components for future electronic devices.

Many electrical and mechanical devices, such as car engines, produce heat as a byproduct of their normal operation. It’s called “waste heat,” and its existence is required by the fundamental laws of thermodynamics, explained study co-author Stephen Boona.

devices-that-convert-heat-into-electricityOver half of the energy we use is wasted and enters the atmosphere as heat,” said Boona, a postdoctoral researcher at Ohio State. “Solid-state thermoelectrics can help us recover some of that energy. These devices have no moving parts, don’t wear out, are robust and require no maintenance. Unfortunately, to date, they are also too expensive and not quite efficient enough to warrant widespread use. We’re working to change that.”But a growing area of research called solid-state thermoelectrics aims to capture that waste heat inside specially designed materials to generate power and increase overall energy efficiency.

Source: https://news.osu.edu/

The Rise Of The Hydrogen Electric Car

Right now, if you want an alternative-fuel vehicle, you have to pick from offerings that either require gasoline or an electrical outlet. The gas-electric hybrid and the battery-powered car — your Toyota Priuses, Chevy Volts, and Teslas — are staples in this space. There are drawbacks for drivers of both types. You still have to buy gas for your hybrid and you have to plug in your Tesla — sometimes under less than favorable conditions — lest you be stranded someplace far away from a suitable plug. Beyond that, automakers have been out to find the next viable energy source. Plug-in vehicles are more or less proven to be the answer, but Toyota and a handful of other carmakers are investigating hydrogen.

toyota-mirai

That’s where the Toyota Mirai comes in. The Mirai‘s interior center stack has all the technology you would expect from a car that retails for $57,500, including navigation, Bluetooth, and USB connectivity. It’s all accessible by touch screens and robust digital displays.
A fill-up on hydrogen costs just about as much as regular gasoline in San Francisco. The Mirai gets an estimated 67 MPGe (67 Miles per gallon gasoline equivalent = 28,5 kilometers per liter)), according to Toyota.
It’s an ambitious project for Toyota because the fueling infrastructure for this car is minimal. There are only 33 public hydrogen-filling stations in the US, according to the US Department of Energy. Twenty-six of those stations are in California, and there’s one each in Connecticut, Massachusetts, and South Carolina.

If you include public and private hydrogen stations, then the total climbs to 58 — nationwide. Compare that to the more than 15,100 public electric-charging stations and the 168,000 retail gas stations in the US, and you can see the obvious drawback of hydrogen-powered cars. Despite this, the Mirai is an interesting project, and you must keep in mind that Japan at the Government level seems to bet on a massively hydrogen powered economy in the near future (fuel, heating, replacement of nuclear energy, trains, electric vehicles, etc…).

Source: http://www.businessinsider.com

Hyperloop Competition

Elon Musk’s futuristic Hyperloop concept was unveiled in 2013… …a transport system allowing people to travel at almost the speed of sound inside reduced-pressure tubes. To bring the idea closer to reality Musk launched the SpaceX Hyperloop Pod contest. 30 teams, like this one from Delft University of Technology (Netherlands), will test their pods on a mile-long track in California next month. The Delft Hyperloop uses passive magnetic bearing to allow contact-free levitation.

delft-hyperloopCLICK ON THE IMAGE TO ENJOY THE VIDEO

What’s so nice about it is that these magnets they’re not electro-magnets that require current, but they’re passive, permanent magnets, so the ones you can put on your fridge, for example – and that makes the entire system very energy efficient. You don’t need to put in any power to start levitating. You just gain speed and then the vehicle wants to go up and levitate by itself,” explains Sascha Lamme, chief engineer for Delft Hyperloop.

The half-size pod prototype weighs just 149 kilograms. It’s designed to reach Musk’s 750 mile per hour target… …though the small test track will limit competitors to around half that. The Delft team insists its pod has proved safe in tests.
It starts levitating at a height of almost two centimetres. But also our braking system really controls the vehicle very smoothly, to get to a controlled stop, so that all the passengers still feel comfortable….Even when the power is lost in the entire vehicle, the vehicle will come to a quick standstill, so everyone is safe,” adds Sascha Lamme.  January’s competition winners will hope victory brings them closer to making Elon Musk’s high-speed dream a reality.

Source: http://delfthyperloop.nl/
A
ND
http://www.reuters.com/

Japan Bets On Hydrogen As A Green Energy Source

Hydrogen gas is a promising alternative energy source to overcome our reliance on carbon-based fuels, and has the benefit of producing only water when it is reacted with oxygen. However, hydrogen is highly reactive and flammable, so it requires careful handling and storage. Typical hydrogen storage materials are limited by factors like water sensitivity, risk of explosion, difficulty of control of hydrogen-generation.

alstom-hydrogen-electric-train Hydrogen gas can be produced efficiently from organosilanes, some of which are suitably air-stable, non-toxic, and cheap. Catalysts that can efficiently produce hydrogen from organosilanes are therefore desired with the ultimate goal of realizing safe, inexpensive hydrogen production in high yield. Ideally, the catalyst should also operate at room temperature under aerobic conditions without the need for additional energy input. A research team led by Kiyotomi Kaneda and Takato Mitsudome at Osaka University have now developed a catalyst that realizes efficient environmentally friendly hydrogen production from organosilanes. The catalyst is composed of gold nanoparticles with a diameter of around 2 nm supported on hydroxyapatite.

The team then added the nanoparticle catalyst to solutions of different organosilanes to measure its ability to induce hydrogen production. The nanoparticle catalyst displayed the highest turnover frequency and number attained to date for hydrogen production catalysts from organosilanes. For example, the  converted 99% of dimethylphenylsilane to the corresponding silanol in just 9 min at room temperature, releasing an equimolar amount of hydrogen gas at the same time. Importantly, the catalyst was recyclable without loss of activity. On/off switching of hydrogen production was achieved using the nanoparticle catalyst because it could be easily separated from its organosilane substrate by filtration. The activity of the catalyst increased as the nanoparticle size decreased.

A prototype portable hydrogen fuel cell containing the nanoparticle catalyst and an organosilane substrate was fabricated. The fuel cell generated power in air at room temperature and could be switched on and off as desired.

Generation of hydrogen from inexpensive organosilane substrates under ambient conditions without additional energy input represents an exciting advance towards the goal of using hydrogen as a green energy source.

Source: https://www.eurekalert.org/
AND
http://www.nature.com/

Why North Atlantic Tuna Is Less Toxic ?

In a piece of welcome news for seafood lovers, a Stony Brook-led research team has found declining levels of mercury in bluefin tuna caught in the North Atlantic over the past decadeMercury is a neurotoxin harmful to humans, and tuna provide more mercury to humans than any other source.

A study led by Stony Brook University’s School of Marine and Atmospheric Sciences (SoMAS) and published in Environmental Science & Technology provides a new data set, the largest of its kind, of mercury concentrations in Atlantic bluefin tuna. The data demonstrate that, while tissue concentrations were higher than in most other fish species, there has been a consistent decline in mercury concentrations in these tuna over time, regardless of age of the fish.

blue-sea

KEY FINDINGS:

The researchers measured mercury concentrations from the tissue of 1,292 bluefin tuna caught between 2004 and 2012

  • Over the eight-year period, mercury levels in the fish fell 19 percent.
  • Mercury concentrations were generally high, and were highest in the largest, oldest fish; no differences were noted between males and females.
  • Mercury in the air over the North Atlantic fell 20 percent from 2001 to 2009.
  • Global levels of mercury emissions have fallen 2.8 percent a year from 1990 to 2007.

The rate of decline parallels the declines – over the same time period — of mercury emissions, mercury levels in North Atlantic air, and mercury concentrations in North Atlantic seawater. Authors of the study include Stony Brook’s Cheng-Shiuan Lee, a Ph.D student in chemical/biological oceanography, and Nicholas S. Fisher, Distinguished Professor & Director, Consortium for Inter-Disciplinary Environmental Research at SoMAS.

According Fisher, the finding appears to indicate that changes in mercury levels in fish tissue respond in real time to changes in mercury loadings into the ocean. The study suggests that mercury levels may be improving as a result of declining coal use, reducing emissions that drift over the Atlantic.

Source: http://www.stonybrook.edu/

How To Capture Energy From Human Motion

The day of charging cellphones with finger swipes and powering Bluetooth headsets simply by walking is now much closer. Michigan State University engineering researchers have created a new way to harvest energy from human motion, using a film-like device that actually can be folded to create more power. With the low-cost device, known as a nanogenerator, the scientists successfully operated an LCD touch screen, a bank of 20 LED lights and a flexible keyboard, all with a simple touching or pressing motion and without the aid of a battery.

energy-from-human-motionThe foldable keyboard, created by Michigan State University engineer Nelson Sepulveda and his research team, operates by touch; no battery is needed. Sepulveda developed a new way to harvest energy from human motion using a pioneering device called a biocompatible ferroelectret nanogenerator, or FENG.

We’re on the path toward wearable devices powered by human motion,” said Nelson Sepulveda, associate professor of electrical and computer engineering and lead investigator of the project. “What I foresee, relatively soon, is the capability of not having to charge your cell phone for an entire week, for example, because that energy will be produced by your movement,” said Sepulveda,.

The innovative process starts with a silicone wafer, which is then fabricated with several layers, or thin sheets, of environmentally friendly substances including silver, polyimide and polypropylene ferroelectret. Ions are added so that each layer in the device contains charged particles. Electrical energy is created when the device is compressed by human motion, or mechanical energy. The completed device is called a biocompatible ferroelectret nanogenerator, or FENG. The device is as thin as a sheet of paper and can be adapted to many applications and sizes. The device used to power the LED lights was palm-sized, for example, while the device used to power the touch screen was as small as a finger.

Advantages such as being lightweight, flexible, biocompatible, scalable, low-cost and robust could make FENGa promising and alternative method in the field of mechanical-energy harvesting” for many autonomous electronics such as wireless headsets, cell phones and other touch-screen devices, the study says. Remarkably, the device also becomes more powerful when folded.

Each time you fold it you are increasing exponentially the amount of voltage you are creating,” Sepulveda said. “You can start with a large device, but when you fold it once, and again, and again, it’s now much smaller and has more energy. Now it may be small enough to put in a specially made heel of your shoe so it creates power each time your heel strikes the ground.” Sepulveda and his team are developing technology that would transmit the power generated from the heel strike to, say, a wireless headset.

The  findings have been published in the journal Nano Energy.

Nanoparticles Eradicate PreCancerous Cells In The Liver

According to the American Cancer Society, more than 700,000 new cases of liver cancer are diagnosed worldwide each year. Currently, the only cure for the disease is to surgically remove the cancerous part of the liver or transplant the entire organ. However, an international study led by University of Missouri (MU) – School of Medicine  researchers has proven that a new minimally invasive approach targets and destroys precancerous tumor cells in the livers of mice and invitro human cells.

liver cancer

The limitations when treating most forms of cancer involve collateral damage to healthy cells near tumor sites,” said Kattesh Katti, PhD, Curators’ Professor of Radiology and Physics at the MU School of Medicine and lead author of the study. “For more than a decade we have studied the use of nanotechnology to test whether targeted treatments would reduce or eliminate damage to nearby healthy cells. Of particular interest has been the use of green nanotechnology approaches pioneered here at MU that use natural chemical compounds from plants.”

The study was conducted in the United States and Egypt, and it involved the use of gold nanoparticles encapsulated by a protective stabilizer called gum Arabic. The nanoparticles were introduced to the livers of mice intravenously and were heated with a laser through a process known as photothermal therapy.

Gum Arabic is a natural gum made of the hardened sap from acacia trees,” said Katti, who also serves as director of the MU Institute of Green Nanotechnology and Professor of Medical Research at the MU School of Medicine. “It is FDA-approved for human consumption and is primarily used in the food industry as an additive. It also promotes adhesion of gold nanoparticles engineered to attract to precancerous and malignant cells – which are much more susceptible to lower levels of heat than healthy cells. Once the nanoparticles travel and adhere to cancerous cells, they are heated to a temperature that destroys them but leaves healthy tissue unaffected.”

Katti’s team studied a total of 224 mice. Half were identified as having precancerous cells in their livers. The other half had normal liver tissue. Outside of the control group, the mice received either an intravenous injection of gum Arabic alone or gum Arabic-encapsulated gold nanoparticles with or without laser therapy.

The administration of gum Arabic, gold nanoparticles and photothermal therapy caused no change to healthy tissue, which confirmed the safe use of these treatments,” Katti said. “However, the use of gum Arabic-encapsulated nanoparticles combined with photothermal therapy resulted in the targeted eradication of the precancerous cells and their genetic code in both our mice model and the human invitro cell model we developed for this study.”

Source: http://medicine.missouri.edu/

The Biggest Solar Plant Ever Built produces electricity at $0.10/kWh

The massive, 648-megawatt array was officially linked to the grid after being hooked up to a 400kV substation, the operator Adani Green Energy Ltd announced. The plant is spread across 2,500 acres in the town of Kamuthi in the Ramanathapuram district (India)  and will supply enough clean, green energy for 300,000 homes. The Deccan Chronicle reported that the $679 million solar park consists of 380,000 foundations, 2.5 million solar modules, 576 inverters, 154 transformers and 6,000-kilometers of cables. The plant was built with parts and machinery from around the world. Adani Group chairman Gautam Adani formally dedicated the structure to the nation.

solar-plant-in-india

“This is a momentous occasion for the state of Tamil Nadu as well as the entire country“, he said. “We are extremely happy to dedicate this plant to the nation; a plant of this magnitude reinstates the country’s ambitions of becoming one of the leading green energy producers in the world.”

India has an ambitious solar energy goal. In 2014, Indian Prime Minister Narendra Modi announced plans to increase solar power capacity to 100 gigawatts by 2022, five times higher than the previous target.

The plant was commissioned by Tamil Nadu chief minister J Jayalalithaa. Indian Express reported in July 2015 that the state government would buy the entire 648 megawatts produced by Adani at a fixed price of $0.10/kWh (Rs 7.01/kWh) for 25 years.

Source: http://www.ecowatch.com/

Diamond NanoThread, The New Wonder Material

Would you dress in diamond nanothreads? It’s not as far-fetched as you might think. And you’ll have a Brisbane-based carbon chemist and engineer to thank for it. QUT’s Dr Haifei Zhan is leading a global effort to work out how many ways humanity can use a newly-invented material with enormous potential – diamond nanothread (DNT). First created by Pennsylvania State University last year, one-dimensional DNT is similar to carbon nanotubes, hollow cylindrical tubes 10,000 times smaller than human hair, stronger than steel – but brittle.

diamond-nanothread

DNT, by comparison, is even thinner, incorporating kinks of hydrogen in the carbon’s hollow structure, called Stone-Wale (SW) transformation defects, which I’ve discovered reduces brittleness and adds flexibility,” said Dr Zhan, from QUT’s School of Chemistry, Physics and Mechanical Engineering.

That structure makes DNT a great candidate for a range of uses. It’s possible DNT may become as ubiquitous a plastic in the future, used in everything from clothing to cars.

DNT does not look like a rock diamond. Rather, its name refers to the way the carbon atoms are packed together, similar to diamond, giving it its phenomenal strength. Dr Zhan has been modelling the properties of DNT since it was invented, using large-scale molecular dynamics simulations and high-performance computing. He was the first to realise the SW defects were the key to DNT’s versatility.

While both carbon nanotubes and DNT have great potential, the more I model DNT properties, the more it looks to be a superior material,” Dr Zhan said. “The SW defects give DNT a flexibility that rigid carbon nanotubes can’t replicate – think of it as the difference between sewing with uncooked spaghetti and cooked spaghetti. “My simulations have shown that the SW defects act like hinges, connecting straight sections of DNT. And by changing the spacing of those defects, we can a change – or tune – the flexibility of the DNT.

That research is published in the peer-reviewed publication Nanoscale.

Source: https://www.qut.edu.au/