Posts belonging to Category green power

The Rise Of The Electric Trucks

Nikola Motor, a company based in Salt Lake City, has announced that its  advanced R&D team has achieved 100% zero emissions on the Nikola One commercial class 8 truck. Working electric truck prototype will be unveiled on December 2 in Salt Lake City.


While other companies have recently announced battery-powered semi-trucks, those trucks are restricted to a range of only a couple hundred miles and four to eight hours of charging between stops,” said Founder and CEO Trevor Milton. “Nikola has engineered the holy grail of the trucking industry. We are not aware of any zero emission truck in the world that can haul 80,000 pounds more than 1,000 miles and do it without stopping. The Nikola One requires only 15 minutes of downtime before heading out for the next 1,000 miles.” “Imagine what this could do for the air in every city in America. We knew our emissions would be low, but to have the ability to achieve true zero emissions is revolutionary for the worldwide trucking industry,” Milton added.

When asked why no one had accomplished this before, Milton said, “It requires a specific zero emission refinement process of fuel and gutsy engineering and product execution. A traditional manufacturer would have to partner with an oil company, environmental group, electric vehicle engineering firm, a broad spectrum of suppliers and a world-class consulting firm to have figured it out. At Nikola, all of our development and talent is under one roof”.

In addition to the zero emission semi-truck, Nikola has initiated the first steps to manufacture emission-free power plants that range from 50 kilowatts to 50 megawatts, cutting power generation costs in half. Nikola believes this technology not only has the ability to transform America’s roadways, but how the world will migrate towards zero-emission energy going forward.

Two months ago, Nikola announced more than $2.3 billion in reservations, totaling more than 7,000 truck reservations with deposits. The Nikola One truck leasing program costs $4000 to $5000 per month, depending on which truck configuration and options the customer chooses. The first million miles of fuel under the lease is included with each truck sale, potentially offsetting 100% of the monthly cost. An average diesel burns approximately $400,000 in fuel and can rack up over $100,000 in maintenance costs over 1,000,000 miles. These costs are eliminated with the Nikola One lease. Now companies can have a zero emission truck with a return on their investment in the first month.



Nanotechnology To Save Polluted Lakes

Peruvian scientist Marino Morikawa, known for his work revitalizing polluted wetlands in the North of Lima using nanotechnology, now plans to try to clean up Lake Titicaca and the Huacachina lagoon, an oasis south of Lima. El Cascajo, an ecosystem of 123 acres in Chancay district, located north of Lima, began its recovery process in 2010 with two inventions that Morikawa came up with using his own resources and money..The project started after he got a call from Morikawa’s father, who informed him that El Cascajo, where he had gone fishing in so many occasion as a child, was “in very bad shape,” Morikawa explains.

The scientist set out to find a way to decontaminate the wetlands without using chemicals. His first invention was a micro nanobubbling system, consisting of bubbles10,000 times smaller than those in soda – which help trap and paralyze viruses and bacteria, causing them to evaporate. He also designed biological filters to retain inorganic pollutants, such as heavy metals and minerals that adhere to surfaces and are decomposed by bacteriaIn just 15 days, the effort led to a revival of the wetlands, a process that in the laboratory had taken six months.


Nature does its job. All I do is give it a boost to speed up the process,” Morikawa adds.

By 2013, about 60 percent of the wetlands was repopulated by migratory birds, that use El Cascajo as a layover on their route from Canada to Patagonia. Now, Morikawa has helped recover 30 habitats around the world, but has his sights on two ecosystems that are emblematic in Peru.

The first, scheduled for 2018, is the recovery of Lake Titicaca, the largest lake in South America, located 4,000 meters (13,115 feet) above sea level between Peru and Bolivia. The second project aims to restore the Huacachina lagoon near the southern city of Ica, where water stopped seeping in naturally in the 1980s.


Tiny High-Performance Solar Cells

University of Wisconsin—Madison engineers have created high-performance, micro-scale solar cells that outshine comparable devices in key performance measures. The miniature solar panels could power myriad personal deviceswearable medical sensors, smartwatches, even autofocusing contact lenses. Large, rooftop photovoltaic arrays generate electricity from charges moving vertically. The new, small cells, described today (Aug. 3, 2016) in the journal Advanced Materials Technologies, capture current from charges moving side-to-side, or laterally. And they generate significantly more energy than other sideways solar systems.

New-generation lateral solar cells promise to be the next big thing for compact devices because arranging electrodes horizontally allows engineers to sidestep a traditional solar cell fabrication process: the arduous task of perfectly aligning multiple layers of the cell’s material atop one another.

solar cells

From a fabrication point of view, it is always going to be easier to make side-by-side structures,” says Hongrui Jiang, a UW–Madison professor of electrical and computer engineering and corresponding author on the paper. “Top-down structures need to be made in multiple steps and then aligned, which is very challenging at small scales.

Lateral solar cells also offer engineers greater flexibility in materials selection.

Top-down photovoltaic cells are made up of two electrodes surrounding a semiconducting material like slices of bread around the meat in a sandwich. When light hits the top slice, charge travels through the filling to the bottom layer and creates electric current.

In the top-down arrangement, one layer needs to do two jobs: It must let in light and transmit charge. Therefore, the material for one electrode in a typical solar cell must be not only highly transparent, but also electrically conductive. And very few substances perform both tasks well.


How To Increase By Six Times The Capacity Of Lithium-Ion Batteries

The capacity of lithium-ion batteries might be increased by six times by using anodes made of silicon instead of graphite. A team from the Helmholtz-Zentrum Berlin (HZB) Institute of Soft Matter and Functional Materials has observed for the first time in detail how lithium ions migrate into thin films of silicon. It was shown that extremely thin layers of silicon would be sufficient to achieve the maximal load of lithium.

The team was able to show through neutron measurements made at the Institut Laue-Langevin in Grenoble, France, that lithium ions do not penetrate deeply into the silicon. During the charge cycle, a 20-nm anode layer develops containing an extremely high proportion of lithium. This means extremely thin layers of silicon would be sufficient to achieve the maximal load of lithium.
lithium-ion battery

Lithium-ion batteries provide laptops, smart phones, and tablet computers with reliable energy. However, electric vehicles have not gotten as far along with conventional lithium-ion batteries. This is due to currently utilised electrode materials such as graphite only being able to stably adsorb a limited number of lithium ions, restricting the capacity of these batteries. Semiconductor materials like silicon are therefore receiving attention as alternative electrodes for lithium batteries. Bulk silicon is able to absorb enormous quantities of lithium. However, the migration of the lithium ions destroys the crystal structure of silicon. This can swell the volume by a factor of three, which leads to major mechanical stresses. Now a team from the HZB Institute for Soft Matter and Functional Materials headed by Prof. Matthias Ballauff has directly observed for the first time a lithium-silicon half-cell during its charging and discharge cycles. “We were able to precisely track where the lithium ions adsorb in the silicon electrode using neutron reflectometry methods, and also how fast they were moving”, comments Dr. Beatrix-Kamelia Seidlhofer, who carried out the experiments using the neutron source located at the Institute Laue-Langevin.

She discovered two different zones during her investigations. Near the boundary to the electrolytes, a roughly 20-nm layer formed having extremely high lithium content: 25 lithium atoms were lodged among 10 silicon atoms. A second adjacent layer contained only one lithium atom for ten silicon atoms. Both layers together are less than 100 nm thick after the second charging cycle.

After discharge, about one lithium ion per silicon node in the electrode remained in the silicon boundary layer exposed to the electrolytes. Seidlhofer calculates from this that the theoretical maximum capacity of these types of silicon-lithium batteries lies at about 2300 mAh/g. This is more than six times the theoretical maximum attainable capacity for a lithium-ion battery constructed with graphite (372 mAh/g).

The results ar published in the journal ACSnano (DOI: 10.1021/acsnano.6b02032).


Green Electronics

A team of University of Toronto chemists has created a battery that stores energy in a biologically-derived unit, paving the way for cheaper consumer electronics that are easier on the environment.

The battery is similar to many commercially-available high-energy lithium-ion batteries with one important difference. It uses flavin from vitamin B2 as the cathode: the part that stores the electricity that is released when connected to a device.


We’ve been looking to nature for a while to find complex molecules for use in a number of consumer electronics applications,” says Dwight Seferos, a professor in U of T’s department of chemistry and Canada Research Chair in Polymer Nanotechnology. “When you take something made by nature that is already complex, you end up spending less time making new material,” says Seferos.

The team created the material from vitamin B2 that originates in genetically-modified fungi using a semi-synthetic process to prepare the polymer by linking two flavin units to a long-chain molecule backbone. This allows for a green battery with high capacity and high voltage – something increasingly important as the ‘Internet of Things’ continues to link us together more and more through our battery-powered portable devices.

It’s a pretty safe, natural compound,” Seferos adds. “If you wanted to, you could actually eat the source material it comes from.” B2’s ability to be reduced and oxidized makes its well-suited for a lithium ion battery.


Could Nanotechnology End Hunger?

Each year, farmers around the globe apply more than 100 million tons of fertilizer to crops, along with more than 800,000 tons of glyphosate, the most commonly used agricultural chemical and the active ingredient in Monsanto’s herbicide Roundup. It’s a quick-and-dirty approach: Plants take up less than half the phosphorus in fertilizer, leaving the rest to flow into waterways, seeding algae blooms that can release toxins and suffocate fish. An estimated 90 percent of the pesticides used on crops dissipates into the air or leaches into groundwater.

child starving

With the global population on pace to swell to more than nine billion by 2050 amid the disruptions of climate change, scientists are racing to boost food production while minimizing collateral damage to the environment. To tackle this huge problem, they’re thinking small — very small, as in nanoparticles a fraction of the diameter of a human hair. Three of the most promising developments deploy nanoparticles that boost the ability of plants to absorb nutrients in the soil, nanocapsules that release a steady supply of pesticides and nanosensors that measure and adjust moisture levels in the soil via automated irrigation systems.

It’s all part of a rise in precision agriculture, which seeks a targeted approach to the use of fertilizer, water and other resources. Recognizing the potential impact of nanotechnology, the U.S. Department of Agriculture’s National Institute of Food and Agriculture (NIFA) beefed up funding between 2011 and 2015, from $10 million to $13.5 million. India, China and Brazil are also joining the latest green revolution. Scientists led by Pratim Biswas and Ramesh Raliya at Washington University in St. Louis have harnessed fungi to synthesize nanofertilizer. When sprayed on mung bean leaves, the zinc oxide nanoparticles increase the activity of three enzymes in the plant that convert phosphorus into a more readily absorbable form. Compared to untreated plants, nanofertilized mung beans absorbed nearly 11 percent more phosphorus and showed 27 percent more growth with a 6 percent increase in yield.

Raliya and his colleagues are also developing nanoparticles that enhance plants’ absorption of sunlight and investigating how nanofertilizers fortify crops with nutrients. In a study earlier this year, they found that zinc oxide and titanium dioxide nanoparticles increased levels of the antioxidant lycopene in tomatoes by up to 113 percent. Next, they want to design nanoparticles that enhance the protein content in peanuts. Along with mung beans, peanuts are a major source of protein in many developing countries.

Others are exploring nanoparticles that protect plants against insects, fungi and weeds. The Connecticut Agricultural Experiment Station and other institutions recently began field trials that use several types of metal oxide nanoparticles on tomato, eggplant, corn, squash and sorghum plants in areas infected with fungi known to threaten crops. Researchers led by Leonardo Fernandes Fraceto, of the Institute of Science and Technology, São Paulo State University, Campus Sorocaba, are designing slow-release nanocapsules that contain two types of fungicides or herbicides to reduce the likelihood of targeted fungi and weeds developing resistance. Scientists at the University of Tehran are conducting similar research. Still others are working on nanocapsules that release plant growth hormones. Existing technology could increase average yields up to threefold in many parts of Africa.

Solar Cells : How To Boost Efficiency Up To 30%

Researchers from the University of Houston have reported the first explanation for how a class of materials changes during production to more efficiently absorb light, a critical step toward the large-scale manufacture of better and less-expensive solar panels. The work, published this month as the cover story for Nanoscale, offers a mechanism study of how a perovskite thin film changes its microscopic structure upon gentle heating, said Yan Yao, assistant professor of electrical and computer engineering and lead author on the paper. This information is crucial for designing a manufacturing process that can consistently produce high-efficiency solar panels.

Perovskite cheap

Last year Yao and other researchers identified the crystal structure of the non-stoichiometric intermediate phase as the key element for high-efficiency perovskite solar cells. But what happened during the later thermal annealing step remained unclear. The work is fundamental science, Yao said, but critical for processing more efficient solar cells.

Otherwise, it’s like a black box,” he said. “We know certain processing conditions are important, but we don’t know why.”

The work also yielded a surprise: the materials showed a peak efficiency – the rate at which the material converted light to electricity – before the intermediate phase transformation was complete, suggesting a new way to produce the films to ensure maximum efficiency. Yao said researchers would have expected the highest efficiency to come after the material had been converted to 100 percent perovskite film. Instead, they discovered the best-performing solar devices were those for which conversion was stopped at 18 percent of the intermediate phase, before full conversion.

We found that the phase composition and morphology of solvent engineered perovskite films are strongly dependent on the processing conditions and can significantly influence photovoltaic performance,” the researchers wrote. “The strong dependence on processing conditions is attributed to the molecular exchange kinetics between organic halide molecules and DMSO (dimethyl sulfoxide) coordinated in the intermediate phase.

Perovskite compounds commonly are comprised of a hybrid organic-inorganic lead or tin halide-based material and have been pursued as potential materials for solar cells for several years. Yao said their advantages include the fact that the materials can work as very thin films – about 300 nanometers, compared with between 200 and 300 micrometers for silicon wafers, the most commonly used material for solar cells. Perovskite solar cells also can be produced by solution processing at temperatures below 150 degrees Centigrade (about 300 degrees Fahrenheit) making them relatively inexpensive to produce.

At their best, perovskite solar cells have an efficiency rate of about 22 percent, slightly lower than that of silicon (25 percent). But the cost of silicon solar cells is also dropping dramatically, and perovskite cells are unstable in air, quickly losing efficiency. They also usually contain lead, a toxin.

Still, Yao said, the materials hold great promise for the solar industry, even if they are unlikely to replace silicon entirely. Instead, he said, they could be used in conjunction with silicon, boosting efficiency to 30 percent or so.


How To Replace Air Conditionning And Save Electricity Bill

A team of researchers from Institut Teknologi Maju (ITMA), Universiti Putra Malaysia (UPM) has succeeded in inventing a new system, known as Nanotechnology for Encapsulation of Phase Change Material (NPCM) that can bring down room temperature in buildings, thus minimising the use of air-conditioning or heating systems, and saving electricity bill.

skyscraper in the desertHead of research team, Prof. Dr. Mohd Zobir Hussein said the encapsulation technology could change material at nano-sized regime which is good for use as thermal energy storage media. “This NPCM method is the first of its kind in Malaysia that can absorb, store and release thermal heat when the surrounding temperature where the material is located is above or below melting temperature. These properties allow the phase change material to store the thermal energy when it melts and releases the energy when it solidifies,” he said.

If it is used as passive or active building component, it can help in controlling the internal building temperature fluctuations which will result in thermal-comfort buildings. This will reduce dependency of building occupants to air conditioning or heating systems and electricity consumption, indirectly reducing carbon dioxide emissionNPCM can be incorporated into cement or paint as active insulation materials and apply to the ceilings or walls of the buildings,” told Dr. Mohd Zobir Hussein  at a Press Conference during 2016 ITMA Innovation Day. He also said if it is incorporated into building components, it will not give any adverse effect to the structure integrity of the buildings.


How To Save The Bees

It’s a global phenomenon that worries beekeepers and environmentalistshoney bee colonies dying at an alarming rate. Here in Poland, bee population has halved in the past 15 years. A disease called nosemosis is one cause.


Nosemosis is a very serious disease which shortens the bees’ lifespan. Infected worker bees live for a very short time in the summer, about 8 to 12 days, while they normally live 36 days. So the productivity of the whole bee family decreases and bees also have problems with passing the winter“, says Aneta Ptaszinska from the Maria-Curie Sklodowska University in Lublin (UMCS – Poland).

Nosema disease, or nosemosis is a honey bee gut disease caused by microscopic fungi that spread through food or water. When consumed it attacks the insects’ intestines, causing them to constantly search for food and eventually die in the process. Some studies blame pesticides for having a negative influence on the bees’ immune system, which then cannot fight off the fungi. But Ptaszynska says a new drug developed by her team strengthens the immune system to help beat the disease.

On one hand they decrease the level of Nosemosis, we can clearly observe a decrease in the number of spores in the intestines of bees given the extracts. On the other hand, they increase the level of enzymes responsible for the immunological reaction of the insects, enzymes which recognize pathogens, foreign bodies. We assume that in this way the extracts help the bees overcome this disease“, comments Dr. Ptaszinska.  She adds that the floral extract is safe for human consumption, and is effective in more than 90 percent of cases. Bees are vital for the world’s food supply, pollinating the vegetables and fruits we eat and those eaten by the animals we then consume. The drug is undergoing patenting procedures, and the team hopes that it creates enough buzz to find the right partners for production and distribution soon.


How To Turn CO2 Into Rock

An international team of scientists have found a potentially viable way to remove anthropogenic (caused or influenced by humans) carbon dioxide emissions from the atmosphereturn it into rock.

The study, published today in Science, has shown for the first time that the greenhouse gas carbon dioxide (CO2) can be permanently and rapidly locked away from the atmosphere, by injecting it into volcanic bedrock. The CO2 reacts with the surrounding rock, forming environmentally benign minerals.


Measures to tackle the problem of increasing greenhouse gas emissions and resultant climate change are numerous. One approach is Carbon Capture and Storage (CCS), where CO2 is physically removed from the atmosphere and trapped underground. Geoengineers have long explored the possibility of sealing CO2 gas in voids underground, such as in abandoned oil and gas reservoirs, but these are susceptible to leakage. So attention has now turned to the mineralisation of carbon to permanently dispose of CO2.

Until now it was thought that this process would take several hundreds to thousands of years and is therefore not a practical option. But the current study – led by Columbia University, University of Iceland, University of Toulouse and Reykjavik Energy – has demonstrated that it can take as little as two years.

Lead author Dr Juerg Matter, Associate Professor in Geoengineering at the University of Southampton, says: “Our results show that between 95 and 98 per cent of the injected CO2 was mineralised over the period of less than two years, which is amazingly fast.”

Carbonate minerals do not leak out of the ground, thus our newly developed method results in permanent and environmentally friendly storage of CO2 emissions,” adds Dr Matter, who is also a member of the University’s Southampton Marine and Maritime Institute and Adjunct Senior Scientist at Lamont-Doherty Earth Observatory Columbia University. “On the other hand, basalt is one of the most common rock type on Earth, potentially providing one of the largest CO2 storage capacity.

Storing CO2 as carbonate minerals significantly enhances storage security which should improve public acceptance of Carbon Capture and Storage as a climate change mitigation technology,” says Dr Matter. “The overall scale of our study was relatively small. So, the obvious next step for CarbFix is to upscale CO2 storage in basalt. This is currently happening at Reykjavik Energy’s Hellisheidi geothermal power plant, where up to 5,000 tonnes of CO2 per year are captured and stored in a basaltic reservoir.”


3D Nano-structured Porous Electrodes Boost Batteries

Battery-life is increasingly the sticking point of technological progress.The latest electric vehicles can practically drive themselve, but only for so long. Outback energy woes look like they could be solved by solar and home energy storage, if the available batteries can be improved. And what about the Pokemon GO players, cutting hunting trips short due to the battery-sapping requirements of the app?

The solution could come from Sunshine Coast nanotechnology company Nano Nouvelle, which is developing a three-dimensional, nano-structured, porous electrode that it says will help overcome the limitations of today’s batteries.The company announced today that its ‘Nanodenanomaterials were being tested and trialled by two unnamed US specialist battery manufacturers.


CEO Stephanie Moroz said she hoped the profile of the trials would lead to wider adoption.“As Tesla proved with its Roadster EV sportscar, this sort of low-volume, high-margin starting point can provide a high visibility platform to demonstrate the benefits of innovative technology, which can accelerate its adoption by mass market manufacturers.”

Nano Nouvelle’s core technology, the Nanode uses tin as the electrode material, which has a much higher energy density than the current graphite technology. However, until now tin’s commercial use had been limited due to its tendency to swell during charging and subsequently lose energy.

This issue is overcome by the Nanode’s structure, made up of thin films of active material spread over a 3D and porous network of fibres, rather than stacked on a flat copper foil.

This enables the electrode structure to deal with the volume expansion of the tin while retaining dimensional stability at the electrode level. The result is batteries that can store the same amount of energy in a smaller volume, compared to commercial lithium ion batteries.

Moroz said she believed the nanotechnology could be easily incorporated into the existing battery manufacturing process. Moroz said she believed the nanotechnology could be easily incorporated into the existing battery manufacturing process.

We’re looking to make it plug and play for battery manufacturers,” she said.


Nanotechnologies Crush the Road Construction Costs

The solution for affordable road infrastructure development could lie in the use of nanotechnology, according to a paper presented at the 35th annual Southern African Transport Conference in Pretoria. The cost of upgrading, maintaining and rehabilitating road infrastructure with limited funds makes it impossible for sub-Saharan Africa to become competitive in the world market, according to Professor Gerrit Jordaan of the University of Pretoria, a speaker at the conference. The affordability of road infrastructure depends on the materials used, the environment in which the road will be built and the traffic that will be using the road, explained Professor James Maina of the department of civil engineering at the University of Pretoria. Hauling materials to a construction site contributes hugely to costs, which planners try to minimise by getting materials closer to the site. But if there aren’t good quality materials near the site, another option is to modify poor quality materials for construction purposes. This is where nanotechnology comes in.


Nanomaterial is really small; five nanometers are equivalent to 0.05mm,” explained Maina. The materials bind with the poor quality material which needs to be modified, and can then change the behaviour of the material.

For example, if the material is clay soil, it has a high affinity to water so when it absorbs water it expands, and when it dries out it contracts. Nanotechnology can make the soil water repellent. “Essentially, nanotechnology changes the properties to work for the construction process,” he said.

These nanotechnology-based products have been used successfully in many parts of the world, including India, the USA and in the West African region.
“We need to have roads to enable mass movement of people and goods,” said Maina. Well-maintained road infrastructure ensures optimal speed of movement, opening up economic opportunities for people. Moving goods safely is also important as damaged goods translate into economic cost, he explained. “For a country to be competitive globally, we need to reduce costs as much as possible. We need well maintained and well planned road infrastructure,” comments Maina.