Posts belonging to Category green power



Water Repellent Spray Coating

Scientists at The Australian National University (ANU) have developed a new spray-on material with a remarkable ability to repel water. The new protective coating could eventually be used to waterproof mobile phones, prevent ice from forming on aeroplanes or protect boat hulls from corroding.

water-repellent-coating-2

The surface is a layer of nanoparticles, which water slides off as if it’s on a hot barbecue,” said PhD student William Wong, from the Nanotechnology Research Laboratory at the ANU Research School of Engineering. The team created a much more robust coating than previous materials by combining two plastics, one tough and one flexible.

It’s like two interwoven fishing nets, made of different materials,” Mr Wong said. The water-repellent or superhydrophobic coating is also transparent and extremely resistant to ultraviolet radiation. Lead researcher and head of the Nanotechnology Research Laboratory, Associate Professor Antonio Tricoli, said the new material could change how we interact with liquids“It will keep skyscraper windows clean and prevent the mirror in the bathroom from fogging up,” Associate Professor Tricoli said. “The key innovation is that this transparent coating is able to stabilise very fragile nanomaterials resulting in ultra-durable nanotextures with numerous real-world applications.”

The team developed two ways of creating the material, both of which are cheaper and easier than current manufacturing processes. One method uses a flame to generate the nanoparticle constituents of the material. For lower temperature applications, the team dissolved the two components in a sprayable form. In addition to waterproofing, the new ability to control the properties of materials could be applied to a wide range of other coatings, said Mr Wong. “A lot of the functional coatings today are very weak, but we will be able to apply the same principles to make robust coatings that are, for example, anti-corrosive, self-cleaning or oil-repellent,” he said.

The research is published in ACS Appl. Mater. Interfaces 2016, 8, 13615−13623.

Source: http://www.anu.edu.au/

Solar Tents in Malawi Boost Sources Of Nutrition

Traders in southern Malawi could soon have bigger fish to fry. A low-tech solar tent made from polythene stretched over a wooden frame is being used to dry fish more efficiently. Fish traders say it helps prolong the shelf life of the catch and fetches a higher price at market.

solar tentsCLICK ON THE IMAGE TO ENJOY THE VIDEO

I can tell you that I am a very happy and thankful woman because of this solar dryer project“, says Jennifer Mussa, fish trader.
Agricultural innovation fund Cultivate Africa’s Future is encouraging traders to improve processing methods. Fishing employs over 50,000 and is a crucial source of nutrition in Malawi, but 40 percent of fish is lost during processing.

So it reduces the amount of time that the fish processors would take to dry it. It also prevents loss of the fish due to predation… some birds and what have you and dust. And ideally it does increase the quality of fish“, comments fisheries expert Dr. Mangani Katundu. Fish here is mostly processed through solar drying, frying or smoking. The Australian-Canadian fund is also encouraging the use of energy saving kilns for smoking.

This method is effective and is a simpler way to smoke fish. We are using very little wood and it takes a short time to smoke lots of fish as you can see here“, adds Loveness Mphongo, fish trader.  The new methods are expected to help reduce the losses and boost incomes for fish sellers. It’s hoped the project can be extended to other fishing communities across Africa.

Source: http://www.reuters.com/

Electric Bus Service Without Driver Open Next Week

A self shuttle service, electric and driverless but with passengers, was launched Friday in Lyon (France)  to be tested for a year in the new district of Confluence, “a world first” according to officials of the operation. Two “Armashuttles of the French company Navya, a prototype was tested in 2013 on the hill of the Croix-Rousse, must serve a 10-minute rotations five stops on route commissioning between the Hotel de Region and the tip of the peninsula of the city, Saône side.

Long of 1.3 kilometers and baptized Navly, the service will be open this weekend from 10:00 then at 17:00 from Monday to Friday, 7:30 a.m. to 7:00 p.m., from September 5. Fifteen people in total can be carried in each vehicle. Developed by Keolis, the network operator of the Lyon public transport (TCL) and Navya, a specialist in innovative mobility solutions, the project “meets the challenges of serving the last kilometer,” said Pascal Jacquesson, CEO of Keolis Lyon. Supported by the Metropolis of Lyon and approved in July by the Ministry of Ecology, the “fine service” must supplement the local tram and bus provides TCL, attention including “employees of large companies and administrative and cultural institutions of the district,” he said.

Driverless yellow bus

This period of one year is intended to test everything from technology to economic model” to be determined, for its part, Christophe Sapet, Chairman of Navya headquartered in Villeurbanne. Limited at a speed of 20 km / h for the service, the Arma shuttle is a jewel of technology to 200,000 euros each, equipped with guiding cameras in stereovision, laser sensors, GPS and a battery life of six to eight hours.

Already tested in many other cities of the Hexagon, but without passengers, Navya shuttles also run abroad as in Sion, Switzerland. other electric minibus without drivers have already been tested for several months in La Rochelle (Charente-Maritime), as part of European experience.

Source: http://archyworldys.com

Smart Windows Control Light and Heat, Save Energy

View, previously Soladigm, is a Californian company working on the development of energy-saving smart windows based on electrochromism that can control light and heat while maintaining view and reducing glareView smart nanotechnology glass is now installed  in 250 commercial buildings.

VIEW smart glassCLICK ON THE IMAGE TO ENJOY THE VIDEO

Solar radiation and glare are reduced when the View glass is tinted, creating a comfortable indoor climate for occupants. By admitting natural daylight and rejecting unwanted solar glare, View Dynamic Glass significantly reduces annual energy costs. Control View Dynamic Glass from anywhere, create schedules, track energy efficiency and manage entire buildings with our mobile app.
View Dynamic Glass uses a proprietary electrochromic process to create smart glass in a world-class manufacturing facility. The best talent, equipment, and processes from the semiconductor, flat panel and solar industries produce dynamic glass in sizes up to 6 feet by 10 feet in many custom configurations. The factory combines leading-edge glass manufacturing with high technology processes and controls to deliver products that save energy, minimize heat and glare and allow occupants to enjoy the view to the outdoors. View Dynamic Glass is specified by architects for product performance, durability and energy savings.

Source: http://www.nextbigfuture.com/

Very Cheap Long-Lasting Batteries

Chemists at the University of Waterloo (Canada) have developed a long-lasting zinc-ion battery that costs half the price of current lithium-ion batteries and could help enable communities to shift away from traditional power plants and into renewable solar and wind energy production. Professor Linda Nazar and her colleagues from the Faculty of Science at Waterloo made the important discovery, which appears in the journal, Nature Energy.

The battery uses safe, non-flammable, non-toxic materials and a pH-neutral, water-based salt. It consists of a water-based electrolyte, a pillared vanadium oxide positive electrode and an inexpensive metallic zinc negative electrode. The battery generates electricity through a reversible process called intercalation, where positively-charged zinc ions are oxidized from the zinc metal negative electrode, travel through the electrolyte and insert between the layers of vanadium oxide nanosheets in the positive electrode. This drives the flow of electrons in the external circuit, creating an electrical current. The reverse process occurs on charge.

The cell represents the first demonstration of zinc ion intercalation in a solid state material that satisfies four vital criteria: high reversibility, rate and capacity and no zinc dendrite formation. It provides more than 1,000 cycles with 80 per cent capacity retention and an estimated energy density of 450 watt-hours per litre. Lithium-ion batteries also operate by intercalation—of lithium ions—but they typically use expensive, flammable, organic electrolytes.

zinc-ion batteries

The worldwide demand for sustainable energy has triggered a search for a reliable, low-cost way to store it,” said Nazar, a University Research Professor in the Department of Chemistry. “The aqueous zinc-ion battery we’ve developed is ideal for this type of application because it’s relatively inexpensive and it’s inherently safe.”

 

Source: https://uwaterloo.ca/

Electric Car: Nanofiber Electrodes Boost Fuel Cells By 30 Percent

At the same time Honda and Toyota are introducing fuel cell cars to the U.S. market, a team of researchers from Vanderbilt University, Nissan North America and Georgia Institute of Technology have teamed up to create a new technology designed to give fuel cells more oomph. The project is part of a $13 million Department of Energy program to advance fuel cell performance and durability and hydrogen storage technologies announced last month.

hydrogen fuel cells

Fuel cells were invented back in 1839 but their first real world application wasn’t until the 1960’s when NASA used them to power the Apollo spacecraft. Fuel cells need fuel and air to run, like a gasoline engine, but they produce electricity, like a battery. In hydrogen/air fuel cells, hydrogen flows into one side of the device. Air is pumped into the other side. At the anode, the hydrogen is oxidized into protons. The protons flow to the cathode where the air is channeled, reducing the oxygen to form water. Special catalysts in the anode and cathode allow these reactions to occur spontaneously, producing electricity in the process. Fuel cells convert fuel to electricity with efficiencies ranging from 40 percent to 60 percent. They have no moving parts so they are very quiet. With the only waste product being water, they are environmentally friendly.The $2.5 million collaboration is based on a new nanofiber mat technology developed by Peter Pintauro, Professor of Chemical Engineering at Vanderbilt, that replaces the conventional electrodes used in fuel cells. The nanofiber electrodes boost the power output of fuel cells by 30 percent while being less expensive and more durable than conventional catalyst layers. The technology has been patented by Vanderbilt and licensed to Merck KGaA in Germany, which is working with major auto manufacturers in applying it to the next generation of automotive fuel cells.

Conventional fuel cells use thin sheets of catalyst particles mixed with a polymer binder for the electrodes. The catalyst is typically platinum on carbon powder. The Vanderbilt approach replaces these solid sheets with mats made from a tangle of polymer fibers that are each a fraction of the thickness of a human hair made by a process called electrospinning. Particles of catalyst are bonded to the fibers. The very small diameter of the fibers means that there is a larger surface area of catalyst available for hydrogen and oxygen gas reactions during fuel cell operation. The pores between fibers in the mat electrode also facilitate the removal of the waste water. The unique fiber electrode structure results in higher fuel cell power, with less expensive platinum.
Source: http://news.vanderbilt.edu/

The Rise Of The Electric Trucks

Nikola Motor, a company based in Salt Lake City, has announced that its  advanced R&D team has achieved 100% zero emissions on the Nikola One commercial class 8 truck. Working electric truck prototype will be unveiled on December 2 in Salt Lake City.

Nikola-One-Electric-Semi-Truck-Concept

While other companies have recently announced battery-powered semi-trucks, those trucks are restricted to a range of only a couple hundred miles and four to eight hours of charging between stops,” said Founder and CEO Trevor Milton. “Nikola has engineered the holy grail of the trucking industry. We are not aware of any zero emission truck in the world that can haul 80,000 pounds more than 1,000 miles and do it without stopping. The Nikola One requires only 15 minutes of downtime before heading out for the next 1,000 miles.” “Imagine what this could do for the air in every city in America. We knew our emissions would be low, but to have the ability to achieve true zero emissions is revolutionary for the worldwide trucking industry,” Milton added.

When asked why no one had accomplished this before, Milton said, “It requires a specific zero emission refinement process of fuel and gutsy engineering and product execution. A traditional manufacturer would have to partner with an oil company, environmental group, electric vehicle engineering firm, a broad spectrum of suppliers and a world-class consulting firm to have figured it out. At Nikola, all of our development and talent is under one roof”.

In addition to the zero emission semi-truck, Nikola has initiated the first steps to manufacture emission-free power plants that range from 50 kilowatts to 50 megawatts, cutting power generation costs in half. Nikola believes this technology not only has the ability to transform America’s roadways, but how the world will migrate towards zero-emission energy going forward.

Two months ago, Nikola announced more than $2.3 billion in reservations, totaling more than 7,000 truck reservations with deposits. The Nikola One truck leasing program costs $4000 to $5000 per month, depending on which truck configuration and options the customer chooses. The first million miles of fuel under the lease is included with each truck sale, potentially offsetting 100% of the monthly cost. An average diesel burns approximately $400,000 in fuel and can rack up over $100,000 in maintenance costs over 1,000,000 miles. These costs are eliminated with the Nikola One lease. Now companies can have a zero emission truck with a return on their investment in the first month.

Source: https://www.trucks.com/
AND
https://nikolamotor.com/

 

Nanotechnology To Save Polluted Lakes

Peruvian scientist Marino Morikawa, known for his work revitalizing polluted wetlands in the North of Lima using nanotechnology, now plans to try to clean up Lake Titicaca and the Huacachina lagoon, an oasis south of Lima. El Cascajo, an ecosystem of 123 acres in Chancay district, located north of Lima, began its recovery process in 2010 with two inventions that Morikawa came up with using his own resources and money..The project started after he got a call from Morikawa’s father, who informed him that El Cascajo, where he had gone fishing in so many occasion as a child, was “in very bad shape,” Morikawa explains.

The scientist set out to find a way to decontaminate the wetlands without using chemicals. His first invention was a micro nanobubbling system, consisting of bubbles10,000 times smaller than those in soda – which help trap and paralyze viruses and bacteria, causing them to evaporate. He also designed biological filters to retain inorganic pollutants, such as heavy metals and minerals that adhere to surfaces and are decomposed by bacteriaIn just 15 days, the effort led to a revival of the wetlands, a process that in the laboratory had taken six months.

nanobubbles

Nature does its job. All I do is give it a boost to speed up the process,” Morikawa adds.

By 2013, about 60 percent of the wetlands was repopulated by migratory birds, that use El Cascajo as a layover on their route from Canada to Patagonia. Now, Morikawa has helped recover 30 habitats around the world, but has his sights on two ecosystems that are emblematic in Peru.

The first, scheduled for 2018, is the recovery of Lake Titicaca, the largest lake in South America, located 4,000 meters (13,115 feet) above sea level between Peru and Bolivia. The second project aims to restore the Huacachina lagoon near the southern city of Ica, where water stopped seeping in naturally in the 1980s.

Source: http://www.peruthisweek.com

Tiny High-Performance Solar Cells

University of Wisconsin—Madison engineers have created high-performance, micro-scale solar cells that outshine comparable devices in key performance measures. The miniature solar panels could power myriad personal deviceswearable medical sensors, smartwatches, even autofocusing contact lenses. Large, rooftop photovoltaic arrays generate electricity from charges moving vertically. The new, small cells, described today (Aug. 3, 2016) in the journal Advanced Materials Technologies, capture current from charges moving side-to-side, or laterally. And they generate significantly more energy than other sideways solar systems.

New-generation lateral solar cells promise to be the next big thing for compact devices because arranging electrodes horizontally allows engineers to sidestep a traditional solar cell fabrication process: the arduous task of perfectly aligning multiple layers of the cell’s material atop one another.

solar cells

From a fabrication point of view, it is always going to be easier to make side-by-side structures,” says Hongrui Jiang, a UW–Madison professor of electrical and computer engineering and corresponding author on the paper. “Top-down structures need to be made in multiple steps and then aligned, which is very challenging at small scales.

Lateral solar cells also offer engineers greater flexibility in materials selection.

Top-down photovoltaic cells are made up of two electrodes surrounding a semiconducting material like slices of bread around the meat in a sandwich. When light hits the top slice, charge travels through the filling to the bottom layer and creates electric current.

In the top-down arrangement, one layer needs to do two jobs: It must let in light and transmit charge. Therefore, the material for one electrode in a typical solar cell must be not only highly transparent, but also electrically conductive. And very few substances perform both tasks well.

Source: http://news.wisc.edu/

How To Increase By Six Times The Capacity Of Lithium-Ion Batteries

The capacity of lithium-ion batteries might be increased by six times by using anodes made of silicon instead of graphite. A team from the Helmholtz-Zentrum Berlin (HZB) Institute of Soft Matter and Functional Materials has observed for the first time in detail how lithium ions migrate into thin films of silicon. It was shown that extremely thin layers of silicon would be sufficient to achieve the maximal load of lithium.

The team was able to show through neutron measurements made at the Institut Laue-Langevin in Grenoble, France, that lithium ions do not penetrate deeply into the silicon. During the charge cycle, a 20-nm anode layer develops containing an extremely high proportion of lithium. This means extremely thin layers of silicon would be sufficient to achieve the maximal load of lithium.
lithium-ion battery

Lithium-ion batteries provide laptops, smart phones, and tablet computers with reliable energy. However, electric vehicles have not gotten as far along with conventional lithium-ion batteries. This is due to currently utilised electrode materials such as graphite only being able to stably adsorb a limited number of lithium ions, restricting the capacity of these batteries. Semiconductor materials like silicon are therefore receiving attention as alternative electrodes for lithium batteries. Bulk silicon is able to absorb enormous quantities of lithium. However, the migration of the lithium ions destroys the crystal structure of silicon. This can swell the volume by a factor of three, which leads to major mechanical stresses. Now a team from the HZB Institute for Soft Matter and Functional Materials headed by Prof. Matthias Ballauff has directly observed for the first time a lithium-silicon half-cell during its charging and discharge cycles. “We were able to precisely track where the lithium ions adsorb in the silicon electrode using neutron reflectometry methods, and also how fast they were moving”, comments Dr. Beatrix-Kamelia Seidlhofer, who carried out the experiments using the neutron source located at the Institute Laue-Langevin.

She discovered two different zones during her investigations. Near the boundary to the electrolytes, a roughly 20-nm layer formed having extremely high lithium content: 25 lithium atoms were lodged among 10 silicon atoms. A second adjacent layer contained only one lithium atom for ten silicon atoms. Both layers together are less than 100 nm thick after the second charging cycle.

After discharge, about one lithium ion per silicon node in the electrode remained in the silicon boundary layer exposed to the electrolytes. Seidlhofer calculates from this that the theoretical maximum capacity of these types of silicon-lithium batteries lies at about 2300 mAh/g. This is more than six times the theoretical maximum attainable capacity for a lithium-ion battery constructed with graphite (372 mAh/g).

The results ar published in the journal ACSnano (DOI: 10.1021/acsnano.6b02032).

Source: https://www.helmholtz-berlin.de/

Green Electronics

A team of University of Toronto chemists has created a battery that stores energy in a biologically-derived unit, paving the way for cheaper consumer electronics that are easier on the environment.

The battery is similar to many commercially-available high-energy lithium-ion batteries with one important difference. It uses flavin from vitamin B2 as the cathode: the part that stores the electricity that is released when connected to a device.

vitamin-battery-4

We’ve been looking to nature for a while to find complex molecules for use in a number of consumer electronics applications,” says Dwight Seferos, a professor in U of T’s department of chemistry and Canada Research Chair in Polymer Nanotechnology. “When you take something made by nature that is already complex, you end up spending less time making new material,” says Seferos.

The team created the material from vitamin B2 that originates in genetically-modified fungi using a semi-synthetic process to prepare the polymer by linking two flavin units to a long-chain molecule backbone. This allows for a green battery with high capacity and high voltage – something increasingly important as the ‘Internet of Things’ continues to link us together more and more through our battery-powered portable devices.

It’s a pretty safe, natural compound,” Seferos adds. “If you wanted to, you could actually eat the source material it comes from.” B2’s ability to be reduced and oxidized makes its well-suited for a lithium ion battery.

Source: https://www.utoronto.ca/

Could Nanotechnology End Hunger?

Each year, farmers around the globe apply more than 100 million tons of fertilizer to crops, along with more than 800,000 tons of glyphosate, the most commonly used agricultural chemical and the active ingredient in Monsanto’s herbicide Roundup. It’s a quick-and-dirty approach: Plants take up less than half the phosphorus in fertilizer, leaving the rest to flow into waterways, seeding algae blooms that can release toxins and suffocate fish. An estimated 90 percent of the pesticides used on crops dissipates into the air or leaches into groundwater.

child starving

With the global population on pace to swell to more than nine billion by 2050 amid the disruptions of climate change, scientists are racing to boost food production while minimizing collateral damage to the environment. To tackle this huge problem, they’re thinking small — very small, as in nanoparticles a fraction of the diameter of a human hair. Three of the most promising developments deploy nanoparticles that boost the ability of plants to absorb nutrients in the soil, nanocapsules that release a steady supply of pesticides and nanosensors that measure and adjust moisture levels in the soil via automated irrigation systems.

It’s all part of a rise in precision agriculture, which seeks a targeted approach to the use of fertilizer, water and other resources. Recognizing the potential impact of nanotechnology, the U.S. Department of Agriculture’s National Institute of Food and Agriculture (NIFA) beefed up funding between 2011 and 2015, from $10 million to $13.5 million. India, China and Brazil are also joining the latest green revolution. Scientists led by Pratim Biswas and Ramesh Raliya at Washington University in St. Louis have harnessed fungi to synthesize nanofertilizer. When sprayed on mung bean leaves, the zinc oxide nanoparticles increase the activity of three enzymes in the plant that convert phosphorus into a more readily absorbable form. Compared to untreated plants, nanofertilized mung beans absorbed nearly 11 percent more phosphorus and showed 27 percent more growth with a 6 percent increase in yield.

Raliya and his colleagues are also developing nanoparticles that enhance plants’ absorption of sunlight and investigating how nanofertilizers fortify crops with nutrients. In a study earlier this year, they found that zinc oxide and titanium dioxide nanoparticles increased levels of the antioxidant lycopene in tomatoes by up to 113 percent. Next, they want to design nanoparticles that enhance the protein content in peanuts. Along with mung beans, peanuts are a major source of protein in many developing countries.

Others are exploring nanoparticles that protect plants against insects, fungi and weeds. The Connecticut Agricultural Experiment Station and other institutions recently began field trials that use several types of metal oxide nanoparticles on tomato, eggplant, corn, squash and sorghum plants in areas infected with fungi known to threaten crops. Researchers led by Leonardo Fernandes Fraceto, of the Institute of Science and Technology, São Paulo State University, Campus Sorocaba, are designing slow-release nanocapsules that contain two types of fungicides or herbicides to reduce the likelihood of targeted fungi and weeds developing resistance. Scientists at the University of Tehran are conducting similar research. Still others are working on nanocapsules that release plant growth hormones. Existing technology could increase average yields up to threefold in many parts of Africa.