Posts belonging to Category green power



Electronics Enter The Nanocomputer Age

An UAlberta research team is developing atom-scale, ultra-low-power computing devices to replace transistor circuits. In the drive to get small, Robert Wolkow and his lab at the University of Alberta are taking giant steps forward. The digital age has resulted in a succession of smaller, cleaner and less power-hungry technologies since the days the personal computer fit atop a desk, replacing mainframe models that once filled entire rooms. Desktop PCs have since given way to smaller and smaller laptops, smartphones and devices that most of us carry around in our pockets. But as Wolkow points out, this technological shrinkage can only go so far when using traditional transistor-based integrated circuits. That’s why he and his research team are aiming to build entirely new technologies at the atomic scale.
Our ultimate goal is to make ultra-low-power electronics because that’s what is most demanded by the world right now,” said Wolkow, the iCORE Chair in Nanoscale Information and Communications Technology in the Faculty of Science. “We are approaching some fundamental limits that will stop the 30-year-long drive to make things faster, cheaper, better and smaller; this will come to an end soon. “An entirely new method of computing will be necessary.”

Wolkow and his team in the U of A’s physics department and the National Institute for Nanotechnology are working to engineer atomically precise technologies that have practical, real-world applications. His lab already made its way into the Guinness Book of World Records for inventing the world’s sharpest object—a microscope tip just one atom wide at its end.

Source: http://uofa.ualberta.ca/

Electric Car: How To Produce Cheap Hydrogen

Rutgers University researchers have developed a technology that could overcome a major cost barrier to make clean-burning hydrogen fuel – a fuel that could replace expensive and environmentally harmful fossil fuels.

The new technology is a novel catalyst that performs almost as well as cost-prohibitive platinum for so-called electrolysis reactions, which use electric currents to split water molecules into hydrogen and oxygen. The Rutgers technology is also far more efficient than less-expensive catalysts investigated to-date.
Hydrogen has long been expected to play a vital role in our future energy landscapes by mitigating, if not completely eliminating, our reliance on fossil fuels,” said Tewodros (Teddy) Asefa, associate professor of chemistry and chemical biology in the School of Arts and Sciences. “We have developed a sustainable chemical catalyst that, we hope with the right industry partner, can bring this vision to life”. He and his colleagues based their new catalyst on carbon nanotubesone-atom-thick sheets of carbon rolled into tubes 10,000 times thinner than a human hair.
carbon nanotubes to produce hydrogen

A new technology based on carbon nanotubes promises commercially viable hydrogen production from water

Finding ways to make electrolysis reactions commercially viable is important because processes that make hydrogen today start with methane – itself a fossil fuel. The need to consume fossil fuel therefore negates current claims that hydrogen is a “green” fuel.
Source: http://news.rutgers.edu

Ninety Nine Percent Of Sunlight May Be Source To Electricity

Rice University scientists have created a one-step process for producing highly efficient materials that let the maximum amount of sunlight reach a solar cell. The Rice lab of chemist Andrew Barron found a simple way to etch nanoscale spikes into silicon that allows more than 99 percent of sunlight to reach the cells’ active elements, where it can be turned into electricity. The more light absorbed by a solar panel’s active elements, the more power it will produce. But the light has to get there. Coatings in current use that protect the active elements let most light pass but reflect some as well. Various strategies have cut reflectance down to about 6 percent, Barron said, but the anti-reflection is limited to a specific range of light, incident angle and wavelength.

Enter black silicon, so named because it reflects almost no light. Black silicon is simply silicon with a highly textured surface of nanoscale spikes or pores that are smaller than the wavelength of light. The texture allows the efficient collection of light from any angle — from sunrise to sunset

Barron and Lu have replaced a two-step process that involved metal deposition and electroless chemical etching with a single step that works at room temperature.

The research by Barron and Rice graduate student and lead author Yen-Tien Lu appears in the Royal Society of Chemistry’s Journal of Materials Chemistry A.
Source: http://news.rice.edu/

Sand-based Lithium Ion Batteries That Outperform Standard by 3 times

Researchers at the University of California, Riverside’s Bourns College of Engineering have created a lithium ion battery that outperforms the current industry standard by three times. The key material: sand. Yes, sand.

This is the holy grail – a low cost, non-toxic, environmentally friendly way to produce high performance lithium ion battery anodes,” said Zachary Favors, a graduate student working with Cengiz and Mihri Ozkan, both engineering professors at UC Riverside.
The idea came to Favors six months ago. He was relaxing on the beach after surfing in San Clemente, Calif. when he picked up some sand, took a close look at it and saw it was made up primarily of quartz, or silicon dioxide.

His research is centered on building better lithium ion batteries, primarily for personal electronics and electric vehicles. He is focused on the anode, or negative side of the battery. Graphite is the current standard material for the anode, but as electronics have become more powerful graphite’s ability to be improved has been virtually tapped out.
Researchers are now focused on using silicon at the nanoscale, or billionths of a meter, level as a replacement for graphite. The problem with nanoscale silicon is that it degrades quickly and is hard to produce in large quantities.
Findings have been published in in the journal Nature Scientific Reports.
Source: http://ucrtoday.ucr.edu/

Nanotechnology: Food And Drug Administration Rules

Today, 3 final guidances and one draft guidance were issued by the U.S. Food and Drug Administration (FDA) providing greater regulatory clarity for industry on the use of nanotechnology in FDA-regulated products.
One final guidance addresses the agency’s overall approach for all products that it regulates, while the two additional final guidances and the new draft guidance provide specific guidance for the areas of foods, cosmetics and food for animals, respectively.

Nanotechnology is an emerging technology that allows scientists to create, explore and manipulate materials on a scale measured in nanometers—particles so small that they cannot be seen with a regular microscope. The technology has a broad range of potential applications, such as improving the packaging of food and altering the look and feel of cosmetics.

SILVER NANOPARTICLES

Our goal remains to ensure transparent and predictable regulatory pathways, grounded in the best available science, in support of the responsible development of nanotechnology products,” said FDA Commissioner Margaret A. Hamburg, M.D. “We are taking a prudent scientific approach to assess each product on its own merits and are not making broad, general assumptions about the safety of nanotechnology products.”

The 3 final guidance documents reflect the FDA’s current thinking on these issues after taking into account public comment received on the corresponding draft guidance documents previously issued (draft agency guidance in 2011; and draft cosmetics and foods guidances in 2012).

The FDA does not make a categorical judgment that nanotechnology is inherently safe or harmful, and will continue to consider the specific characteristics of individual products.
All 4 guidance documents encourage manufacturers to consult with the agency before taking their products to market. Consultations with the FDA, early in the product development process help to facilitate a mutual understanding about specific scientific and regulatory issues relevant to the nanotechnology product, and help address questions related to safety, effectiveness, public health impact and/or regulatory status of the product.
Source: http://www.fda.gov/

Ninety Nine Percent Of Sunlight May Be Source To Electricity

Rice University scientists have created a one-step process for producing highly efficient materials that let the maximum amount of sunlight reach a solar cell. The Rice lab of chemist Andrew Barron found a simple way to etch nanoscale spikes into silicon that allows more than 99 percent of sunlight to reach the cells’ active elements, where it can be turned into electricity. The more light absorbed by a solar panel’s active elements, the more power it will produce. But the light has to get there. Coatings in current use that protect the active elements let most light pass but reflect some as well. Various strategies have cut reflectance down to about 6 percent, Barron said, but the anti-reflection is limited to a specific range of light, incident angle and wavelength.

Enter black silicon, so named because it reflects almost no light. Black silicon is simply silicon with a highly textured surface of nanoscale spikes or pores that are smaller than the wavelength of light. The texture allows the efficient collection of light from any angle — from sunrise to sunset

Barron and Lu have replaced a two-step process that involved metal deposition and electroless chemical etching with a single step that works at room temperature.

The research by Barron and Rice graduate student and lead author Yen-Tien Lu appears in the Royal Society of Chemistry’s Journal of Materials Chemistry A.
Source: http://news.rice.edu/

A Glass Of Milk So White…

The Project on Emerging Nanotechnologies (PEN) revealed a few weeks ago that there are over 1,600 nanotechnology-based products on the market today — and that the United States Food and Drug Administration (FDA) lacks the authority to regulate them.Some of these nanotechnological innovations — which refer to particles less than 100 nanometers wide, or approximately 1/800th the diameter of a strand of human hair — are likely harmless, such as embedded silver particles in athletic socks and underwear. According to SmartSilver Anti-Odor Nanotechnology Underwear, the microscopic silver particles are “strongly antibacterial to a wide range of pathogens, absorb sweat, and by killing bacteria help eliminate unpleasant foot odor.”

However, the PEN database also includes 96 nanotechnology-infused items currently stocked on grocery store shelves, and none of these items listed their nanotechnology among their ingredients. Included on the list are Dannon Greek Plain Yogurt, Hershey’s Bliss Dark Chocolate, Kraft’s American Cheese Singles, and Rice Dream Rice Drink, all of which contain nanoparticles of titanium dioxide.

Titanium dioxide — often referred to as “the perfect white” or “the whitest white” — is used as a pigment because its refractive index is extremely high. It has long been present in paints, plastics, paper, toothpaste, and pearlescent cosmetics, but researchers recently discovered the benefits of adding it to skim milk.

According to David Barbano, a professor at Cornell University’s Department of Food Science, “suspension of titanium dioxide in skim milk made the milk whiter, which resulted in improved sensory scores for appearance, creamy aroma, and texture… There is clearly a need to develop a whitener for fat-free milk other than titanium dioxide to provide processors with an ingredient option that would improve sensory properties and provide a nutritional benefit.”

Source: http://www.nanotechproject.org/

Cheaper, Lighter Solar Cells

Think those flat, glassy solar panels on your neighbour’s roof are the pinnacle of solar technology? Think again.
Researchers in the University of Toronto’s Edward S. Rogers Sr. Department of Electrical & Computer Engineering have designed and tested a new class of solar-sensitive nanoparticle that outshines the current state of the art employing this new class of technology. This new form of solid, stable light-sensitive nanoparticles, called colloidal quantum dots, could lead to cheaper and more flexible solar cells, as well as better gas sensors, infrared lasers, infrared light emitting diodes and more.

The field of colloidal quantum dot photovoltaics requires continued improvement in absolute performance, or power conversion efficiency,” said Sargent. “The field has moved fast, and keeps moving fast, but we need to work toward bringing performance to commercially compelling levels.”.

This research was conducted in collaboration with Dalhousie University, King Abdullah University of Science and Technology and Huazhong University of Science and Technology.
The work, led by post-doctoral researcher Zhijun Ning and Professor Ted Sargent, was published this week in Nature Materials.
Source: http://media.utoronto.ca/

Your Jacket Will Be The Power Source

Imagine being able to carry all the juice you needed to power your MP3 player, smartphone and electric car in the fabric of your jacket? Sounds like science fiction, but it may become a reality thanks to breakthrough technology developed at a University of Central Florida research lab. So far electrical cables are used only to transmit electricity. However, nanotechnology scientist and professor Jayan Thomas and his Ph.D. student Zenan Yu have developed a way to both transmit and store electricity in a single lightweight copper wire.

It’s an interesting idea,” Thomas said. “When we did it and started talking about it, everyone we talked to said, Hmm, never thought of that. It’s unique.’” Copper wire is the starting point but eventually, Thomas said, as the technology improves, special fibers could also be developed with nanostructures to conduct and store energy.

More immediate applications could be seen in the design and development of electrical vehicles, space-launch vehicles and portable electronic devices. By being able to store and conduct energy on the same wire, heavy, space-consuming batteries could become a thing of the past. It is possible to further miniaturize the electronic devices or the space that has been previously used for batteries could be used for other purposes. In the case of launch vehicles, that could potentially lighten the load, making launches less costly, Thomas said.

In other words, Thomas and his team created a supercapacitor on the outside of the copper wire. Supercapcitors store powerful energy, like that needed to start a vehicle or heavy-construction equipment.

Although more work needs to be done, Thomas said the technique should be transferable to other types of materials. That could lead to specially treated clothing fibers being able to hold enough power for big tasks. For example, if flexible solar cells and these fibers were used in tandem to make a jacket, it could be used independently to power electronic gadgets and other devices.

Source: http://today.ucf.edu/

Mimic Nature To Build Man-made Molecular Systems

Using molecules of DNA like an architectural scaffold, Arizona State University (ASU) scientists, in collaboration with colleagues at the University of Michigan, have developed a 3-D artificial enzyme cascade that mimics an important biochemical pathway, a major breakthrough for future biomedical and energy applications.


Remaking an artificial enzyme pair in the test tube and having it work outside the cell is a big challenge for DNA nanotechnology. To meet the challenge, they first made a DNA scaffold that looks like several paper towel rolls glued together. Using a computer program, they were able to customize the chemical building blocks of the DNA sequence so that the scaffold would self-assemble. Next, the two enzymes were attached to the ends of the DNA tubes. In the middle of the DNA scaffold, a research team led by ASU professor Hao Yan affixed a single strand of DNA, with the molecule called NAD+ tethered to the end like a ball and string. Yan refers to this as a swinging arm, which is long, flexible and dexterous enough to rock back and forth between the enzymes to carry out a chemical reaction

We look to Nature for inspiration to build man-made molecular systems that mimic the sophisticated nanoscale machineries developed in living biological systems, and we rationally design molecular nanoscaffolds to achieve biomimicry at the molecular level,” Yan said, who holds the Milton Glick Chair in the ASU Department of Chemistry and Biochemistry.
An even loftier and more valuable goal is to engineer highly programmed cascading enzyme pathways on DNA nanostructure platforms with control of input and output sequences. Achieving this goal would not only allow researchers to mimic the elegant enzyme cascades found in nature and attempt to understand their underlying mechanisms of action, but would facilitate the construction of artificial cascades that do not exist in nature,” said Yan.
The findings were published in the journal Nature Nanotechnology.
Source: https://asunews.asu.edu/