Posts belonging to Category h mobil

Nano-based Material Is 60 Times More Efficient To Produce Hydrogen

Global climate change and the energy crisis mean that alternatives to fossil fuels are urgently needed. Among the cleanest low-carbon fuels is hydrogen, which can react with oxygen to release energy, emitting nothing more harmful than water (H2O) as the product. However, most hydrogen on earth is already locked into H2O (or other molecules), and cannot be used for power.

Hydrogen can be generated by splitting H2O, but this uses more energy than the produced hydrogen can give back. Water splitting is often driven by solar power, so-called “solar-to-hydrogenconversion. Materials like titanium oxide, known as semiconductors with the wide band-gap, are traditionally used to convert sunlight to chemical energy for the photocatalytic reaction. However, these materials are inefficient because only the ultraviolet (UV) part of light is absorbed—the rest spectrum of sunlight is wasted.

Now, a team in Osaka University has developed a material to harvest a broader spectrum of sunlight. The three-part composites of this material maximize both absorbing light and its efficiency for water splitting. The core is a traditional semiconductor, lanthanum titanium oxide (LTO). The LTO surface is partly coated with tiny specks of gold, known as nanoparticles. Finally, the gold-covered LTO is mixed with ultrathin sheets of the element black phosphorus (BP), which acts as a light absorber.

BP is a wonderful material for solar applications, because we can tune the frequency of light just by varying its thickness, from ultrathin to bulk,” the team leader Tetsuro Majima says. “This allows our new material to absorb visible and even near infrared light, which we could never achieve with LTO alone.”

By absorbing this broad sweep of energy, BP is stimulated to release electrons, which are then conducted to the gold nanoparticles coating the LTO. Gold nanoparticles also absorb visible light, causing some of its own electrons to be jolted out. The free electrons in both BP and gold nanoparticles are then transferred into the LTO semiconductor, where they act as an electric current for water splitting.

Hydrogen production using this material is enhanced not only by the broader spectrum of light absorption, but by the more efficient electron conduction, caused by the unique interface between two dimensional materials of BP and LTO. As a result, the material is 60 times more active than pure LTO.


Scalable Catalyst Produces Cheap Pure Hydrogen

The “clean-energy economy” always seems a few steps away but never quite here. Fossil fuels still power transportation, heating and cooling, and manufacturing, but a team of scientists from Penn State and Florida State University have come one step closer to inexpensive, clean hydrogen fuel with a lower cost and industrially scalable catalyst that produces pure hydrogen through a low-energy water-splitting process.

Hydrogen fuel cells can boost a clean-energy economy not only in the transportation sector, where fast fueling and vehicle range outpace battery-powered vehicles, but also to store electrical energy produced by solar and wind. This research is another step forward to reaching that goal.
Energy is the most important issue of our time, and for energy, fuel cells are crucially important, and then for fuel cells, hydrogen is most important,” said Yu Lei, Penn State doctoral student and first author of an ACS Nano paper describing the water-splitting catalyst she and her colleagues theoretically predicted and then synthesized in the lab. “People have been searching for a good catalyst that can efficiently split water into hydrogen and oxygen. During this process, there will be no side products that are not environmentally friendly.”

The current industrial method of producing hydrogen — steam reforming of methane — results in the release of carbon dioxide into the atmosphere. Other methods use waste heat, from sources such as advanced nuclear power plants or concentrated solar power, both of which face technical challenges for commercial feasibility. Another industrial process uses platinum as the catalyst to drive the water-splitting process. Although platinum is a near-perfect catalyst, it is also expensive. A cheaper catalyst could make hydrogen a reasonable alternative to fossil fuels in transportation, and power fuel cells for energy storage applications.

Molybdenum disulfide has been predicted as a possible replacement for platinum, because the Gibbs free energy for hydrogen absorption is close to zero,” said Mauricio Terrones, professor of physics, materials science and engineering, and chemistry, Penn State. The lower the Gibbs free energy, the less external energy has to be applied to produce a chemical reaction.


Super-Efficient Production Of Hydrogen From Solar Energy

Hydrogen is an alternative source of energy that can be produced from renewable sources of sunlight and water. A group of Japanese researchers has developed a photocatalyst that increases hydrogen production tenfold.

When light is applied to photocatalysts, electrons and holes are produced on the surface of the catalyst, and hydrogen is obtained when these electrons reduce the hydrogen ions in water. However, in traditional photocatalysts the holes that are produced at the same time as the electrons mostly recombine on the surface of the catalyst and disappear, making it difficult to increase conversion efficiency.

Professor Tachikawa’s research group from the Kobe University developed a photocatalyst made of mesocrystal, deliberately creating a lack of uniformity in size and arrangement of the crystals. This new photocatalyst is able to spatially separate the electrons and electron holes to prevent them recombining. As a result, it has a far more efficient conversion rate for producing hydrogen than conventional nanoparticulate photocatalysts (approximately 7%).

The team developed a new method called “Topotactic Epitaxial Growth” that uses the nanometer-sized spaces in mesocrystals.
Using these findings, the research group plans to apply mesocrystal technology to realizing the super-efficient production of hydrogen from solar energy. The perovskite metal oxides, including strontium titanate, the target of this study, are the fundamental materials of electronic elements, so their results could be applied to a wide range of fields.

The discovery was made by a joint research team led by Associate Professor Tachikawa Takashi (Molecular Photoscience Research Center, Kobe University) and Professor Majima Tetsuro (Institute of Scientific and Industrial Research, Osaka University). Their findings were published  in the online version of Angewandte Chemie International Edition.


Self-Healing Lithium-Ion Batteries

Researchers at the University of Illinois have found a way to apply self-healing technology to lithium-ion batteries to make them more reliable and last longer.

The group developed a battery that uses a silicon nanoparticle composite material on the negatively charged side of the battery and a novel way to hold the composite together – a known problem with batteries that contain silicon.

Materials science and engineering professor Nancy Sottos and aerospace engineering professor Scott White led the study published in the journal Advanced Energy Materials.

“This work is particularly new to self-healing materials research because it is applied to materials that store energy,” White said. “It’s a different type of objective altogether. Instead of recovering structural performance, we’re healing the ability to store energy.”

The negatively charged electrode, or anode, inside the lithium-ion batteries that power our portable devices and electric cars are typically made of a graphite particle composite. These batteries work well, but it takes a long time for them to power up, and over time, the charge does not last as long as it did when the batteries were new.

Silicon has such a high capacity, and with that high capacity, you get more energy out of your battery, except it also undergoes a huge volume expansion as it cycles and self-pulverizes,” Sottos explained.

Past research found that battery anodes made from nanosized silicon particles are less likely to break down, but suffer from other problems.

You go through the charge-discharge cycle once, twice, three times, and eventually you lose capacity because the silicon particles start to break away from the binder,” White said.

To combat this problem, the group further refined the silicon anode by giving it the ability to fix itself on the fly. This self-healing happens through a reversible chemical bond at the interface between the silicon nanoparticles and polymer binder.


Bubbles And The Future Of Electric Cars

With about three times the energy capacity by weight of today’s lithium-ion batteries, lithium-air batteries could one day enable electric cars to drive farther on a single charge. But the technology has several holdups, including losing energy as it stores and releases its charge. If researchers could better understand the basic reactions that occur as the battery charges and discharges electricity, the battery’s performance could be improved. One reaction that hasn’t been fully explained is how oxygen blows bubbles inside a lithium-air battery when it discharges. The bubbles expand the battery and create wear and tear that can cause it to fail.

A paper in Nature Nanotechnology provides the first step-by-step explanation of how lithium-air batteries form bubbles. The research was aided by a first-of-a-kind video that shows bubbles inflating and later deflating inside a nanobattery. Researchers had previously only seen the bubbles, but not how they were created.

If we fully understand the bubble formation process, we could build better lithium-air batteries that create fewer bubbles,” noted the paper’s corresponding author, Chongmin Wang, of the Department of Energy’s Pacific Northwest National Laboratory (PNNL). “The result could be more compact and stable batteries that hold onto their charge longer.”

Wang works out of EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science user facility located at PNNL. His co-authors include other PNNL staff and a researcher from Tianjin Polytechnic University in China.

The team’s unique video may be a silent black-and-white film, but it provides plenty of action. Popping out from the battery’s flat surface is a grey bubble that grows bigger and bigger. Later, the bubble deflates, the top turning inside of itself until only a scrunched-up shell is left behind.

The popcorn-worthy flick was captured with an in-situ environmental transmission electron microscope at EMSL. Wang and his colleagues built their tiny battery inside the microscope’s column. This enabled them to watch as the battery charged and discharged inside.

Video evidence led the team to propose that as the battery discharges, a sphere of lithium superoxide jets out from the battery’s positive electrode and becomes coated with lithium oxide. The sphere’s superoxide interior then goes through a chemical reaction that forms lithium peroxide and oxygen. Oxygen gas is released and inflates the bubble. When the battery charges, lithium peroxide decomposes, and leaves the former bubble to look like a deflated balloon.



Clean Hydrogen Produced From Biomass

A team of scientists at the University of Cambridge has developed a way of using solar power to generate a fuel that is both sustainable and relatively cheap to produce. It’s using natural light to generate hydrogen from biomass. One of the challenges facing modern society is what it does with its waste products. As natural resources decline in abundance, using waste for energy is becoming more pressing for both governments and business. Biomass has been a source of heat and energy since the beginning of recorded history.  The planet’s oil reserves are derived from ancient biomass which has been subjected to high pressures and temperatures over millions of years. Lignocellulose is the main component of plant biomass and up to now its conversion into hydrogen has only been achieved through a gasification process which uses high temperatures to decompose it fully.

biomass can produce hydrogen

Lignocellulose is nature’s equivalent to armoured concrete. It consists of strong, highly crystalline cellulose fibres, that are interwoven with lignin and hemicellulose which act as a glue. This rigid structure has evolved to give plants and trees mechanical stability and protect them from degradation, and makes chemical utilisation of lignocellulose so challenging,” says  Dr Moritz Kuehnel, from the Department of Chemistry at the University of Cambridge and co-author of the research.

The new technology relies on a simple photocatalytic conversion process. Catalytic nanoparticles are added to alkaline water in which the biomass is suspended. This is then placed in front of a light in the lab which mimics solar light. The solution is ideal for absorbing this light and converting the biomass into gaseous hydrogen which can then be collected from the headspace. The hydrogen is free of fuel-cell inhibitors, such as carbon monoxide, which allows it to be used for power.

The findings have been  published in Nature Energy.


Clean Renewable Source Of Hydrogen Fuel For Electric Car

Rice University scientists have created an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for solar water splitting, the conversion of solar energy to chemical energy in the form of hydrogen and oxygen.

anode RiceA photo shows an array of titanium dioxide nanorods with an even coating of an iron, manganese and phosphorus catalyst. The combination developed by scientists at Rice University and the University of Houston is a highly efficient photoanode for artificial photosynthesis. Click on the image for a larger version

The lab of Kenton Whitmire, a Rice professor of chemistry, teamed up with researchers at the University of Houston and discovered that growing a layer of an active catalyst directly on the surface of a light-absorbing nanorod array produced an artificial photosynthesis material that could split water at the full theoretical potential of the light-absorbing semiconductor with sunlight. An oxygen-evolution  catalyst splits water into hydrogen and oxygen. Finding a clean renewable source of hydrogen fuel is the focus of extensive research, but the technology has not yet been commercialized.

The Rice team came up with a way to combine three of the most abundant metalsiron, manganese and phosphorus — into a precursor that can be deposited directly onto any substrate without damaging it. To demonstrate the material, the lab placed the precursor into its custom chemical vapor deposition (CVD) furnace and used it to coat an array of light-absorbing, semiconducting titanium dioxide nanorods. The combined material, called a photoanode, showed excellent stability while reaching a current density of 10 milliamps per square centimeter, the researchers reported.

The results appear in two new studies. The first, on the creation of the films, appears in Chemistry: A European Journal. The second, which details the creation of photoanodes, appears in ACS Nano.


Hydrogen Electric Car: New Storage System

Lawrence Livermore scientists have collaborated with an interdisciplinary team of researchers, including colleagues from Sandia National Laboratories, to develop an efficient hydrogen storage system that could be a boon for hydrogen-powered vehicles.

hydrogen lithiumHydrogenation forms a mixture of lithium amide and hydride (light blue) as an outer shell around a lithium nitride particle (dark blue) nanoconfined in carbon

Hydrogen is an excellent energy carrier, but the development of lightweight solid-state materials for compact, low-pressure storage is a huge challenge. Complex metal hydrides are a promising class of hydrogen storage materials, but their viability is usually limited by slow hydrogen uptake and release. Nanoconfinementinfiltrating the metal hydride within a matrix of another material such as carbon — can, in certain instances, help make this process faster by shortening diffusion pathways for hydrogen or by changing the thermodynamic stability of the material.

However, the Livermore-Sandia team, in conjunction with collaborators from Mahidol University in Thailand and the National Institute of Standards and Technology, showed that nanoconfinement can have another, potentially more important consequence. They found that the presence of internal “nano-interfaces” within nanoconfined hydrides can alter which phases appear when the material is cycled.

The key is to get rid of the undesirable intermediate phases, which slow down the material’s performance as they are formed or consumed. If you can do that, then the storage capacity kinetics dramatically improve and the thermodynamic requirements to achieve full recharge become far more reasonable,” said Brandon Wood, an LLNL materials scientist and lead author of the paper. “In this material, the nano-interfaces do just that, as long as the nanoconfined particles are small enough. It’s really a new paradigm for hydrogen storage, since it means that the reactions can be changed by engineering internal microstructures.”

The research is reported  in the journal Advanced Materials Interfaces


Car Pollution: Nanoparticles Travel Directly From The Nose To The Brain

The closer a person lives to a source of pollution, like a traffic dense highway, the more likely they are to develop Alzheimer’s or dementia, according to a study by the University of Southern California (USC) that has linked a close connection to pollution and the diseases. In a mobile lab, located just off of one of Los Angeles’ busiest freeways, USC scientists used a state-of-the-art pollution particle collector capable of gathering nano-sized particulate matter.

car pollution


We have shown that, as you would expect, the closer you get to the sources of these particles in our case the freeways, the higher the concentrations. So there is an exponential decay with distance. That means basically that, the concentration of where we are right now and if we were, let’s just say 20 or 10 or 50 yards from the freeway, those levels would be probably 10 times higher than where we are right now,” says Costas Sioutas, USC Professor of Environmental Engineering.

That means proximity to high concentrations of fossil fuel pollution, like a congested freeway, could be hazardous. Particulate matter roughly 30 times thinner than the width of a human hair, called PM2.5, is inhaled and can travel directly through the nose into the brain. Once there, the particles cause inflammatory responses and can result in the buildup of a type of plaque, which is thought to further the progression of Alzheimer’s. “Our study brought in this new evidence and I would say probably so far the most convincing evidence that the particle may increase the risk of dementia. This is really a public health problem. And I think the policy makers need to be aware of that, the public health risk associated with high level of PM2.5,” explains Jiu-Chiuan Chen, Associate Professor of Preventive Medicine.

USC researchers analyzed the data of more than 3,500 women who had the APOE4 gene, the major known risk-factor gene for Alzheimer’s disease. It showed that, over the course of a decade, the women who lived in a location with high levels of the PM2.5 pollution were 92 percent more likely to develop dementia.


Nanoparticles Trigger Dormant Viruses In Lung Cells

Nanoparticles from combustion engines can activate viruses that are dormant in lung tissue cells. This is the result of a study by researchers of Helmholtz Zentrum München, a partner in the German Center for Lung Research (DZL), which has now been published in the journal ‘Particle and Fibre Toxicology‘.

To evade the immune system, some viruses hide in cells of their host and persist there. In medical terminology, this state is referred to as a latent infection. If the immune system becomes weakened or if certain conditions change, the viruses become active again, begin to proliferate and destroy the host cell. A team of scientists led by Dr. Tobias Stöger of the Institute of Lung Biology and Prof. Dr. Heiko Adler, deputy head of the research unit Lung Repair and Regeneration at Helmholtz Zentrum München, now report that nanoparticles can also trigger this process.

car engine nanoparticles

From previous model studies we already knew that the inhalation of nanoparticles has an inflammatory effect and alters the immune system,” said study leader Stöger. Together with his colleagues Heiko Adler and Prof. Dr. Philippe Schmitt-Kopplin, he showed that “an exposure to nanoparticles can reactivate latent herpes viruses in the lung.


The Rise Of The Hydrogen Electric Car

Right now, if you want an alternative-fuel vehicle, you have to pick from offerings that either require gasoline or an electrical outlet. The gas-electric hybrid and the battery-powered car — your Toyota Priuses, Chevy Volts, and Teslas — are staples in this space. There are drawbacks for drivers of both types. You still have to buy gas for your hybrid and you have to plug in your Tesla — sometimes under less than favorable conditions — lest you be stranded someplace far away from a suitable plug. Beyond that, automakers have been out to find the next viable energy source. Plug-in vehicles are more or less proven to be the answer, but Toyota and a handful of other carmakers are investigating hydrogen.


That’s where the Toyota Mirai comes in. The Mirai‘s interior center stack has all the technology you would expect from a car that retails for $57,500, including navigation, Bluetooth, and USB connectivity. It’s all accessible by touch screens and robust digital displays.
A fill-up on hydrogen costs just about as much as regular gasoline in San Francisco. The Mirai gets an estimated 67 MPGe (67 Miles per gallon gasoline equivalent = 28,5 kilometers per liter)), according to Toyota.
It’s an ambitious project for Toyota because the fueling infrastructure for this car is minimal. There are only 33 public hydrogen-filling stations in the US, according to the US Department of Energy. Twenty-six of those stations are in California, and there’s one each in Connecticut, Massachusetts, and South Carolina.

If you include public and private hydrogen stations, then the total climbs to 58 — nationwide. Compare that to the more than 15,100 public electric-charging stations and the 168,000 retail gas stations in the US, and you can see the obvious drawback of hydrogen-powered cars. Despite this, the Mirai is an interesting project, and you must keep in mind that Japan at the Government level seems to bet on a massively hydrogen powered economy in the near future (fuel, heating, replacement of nuclear energy, trains, electric vehicles, etc…).


Hyperloop Competition

Elon Musk’s futuristic Hyperloop concept was unveiled in 2013… …a transport system allowing people to travel at almost the speed of sound inside reduced-pressure tubes. To bring the idea closer to reality Musk launched the SpaceX Hyperloop Pod contest. 30 teams, like this one from Delft University of Technology (Netherlands), will test their pods on a mile-long track in California next month. The Delft Hyperloop uses passive magnetic bearing to allow contact-free levitation.


What’s so nice about it is that these magnets they’re not electro-magnets that require current, but they’re passive, permanent magnets, so the ones you can put on your fridge, for example – and that makes the entire system very energy efficient. You don’t need to put in any power to start levitating. You just gain speed and then the vehicle wants to go up and levitate by itself,” explains Sascha Lamme, chief engineer for Delft Hyperloop.

The half-size pod prototype weighs just 149 kilograms. It’s designed to reach Musk’s 750 mile per hour target… …though the small test track will limit competitors to around half that. The Delft team insists its pod has proved safe in tests.
It starts levitating at a height of almost two centimetres. But also our braking system really controls the vehicle very smoothly, to get to a controlled stop, so that all the passengers still feel comfortable….Even when the power is lost in the entire vehicle, the vehicle will come to a quick standstill, so everyone is safe,” adds Sascha Lamme.  January’s competition winners will hope victory brings them closer to making Elon Musk’s high-speed dream a reality.