Posts belonging to Category Life extension



Gene Researchers Have Created Green Mice

These are no Frankenstein mice. Their green feet come courtesy of a fluorescent green jelly fish gene added to their own genome. This allows a team of British scientists to test out gene editing using CRISPR-Cas9 technology.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

“We take what were or would have been green embryos and we make them into non-green embryos, so it’s a really great way of demonstrating the method“, said Dr. Anthony Perry, reproductive biologist at the University of Bath.

The technique uses the ribonucleic acid molecule CRISPR together with the Cas9 protein enzyme. CRISPR guides the Cas9 protein to a defective part of a genome where it acts like molecular scissors to cut out a specific part of the DNA. This could revolutionise how we treat diseases with a genetic component, like sickle cell anaemia. The technique is being pioneered in the U.S.
We now have a technology that allows correction of a sequence that would lead to normally functioning cells. And I think you know the opportunities with this are really exciting and really profound. There are many diseases that are have known genetic causes that we now have in principle a way to cure,“explains Jennifer Doudna, Professor of cell biology at the University of Berkeley.
Last year two teams of U.S. based scientists used CRISPR-Cas9 technology in mice to correct the genetic mutation that causes sickle cell disease. Although researchers aren’t yet close to using CRISPR-Cas9 to edit human embryos for implantation into the womb – some are already warning against it.

Dr David King, Director of  Human Genetics Alert, comments: “It will immediately create this new form of what we call consumer eugenics, that’s to say eugenics driven by the free market and consumer preferences in which people choose the cosmetic characteristics and the abilities of their children and try to basically enhance their children to perform better than other people’s children.” Other potential applications of the technology could be to make food crops and livestock animal species disease-resistant. The British team say CRISPR-Cas9 presents a golden opportunity to prevent genetic disease.

Source: http://www.reuters.com/
A
ND
http://www.bath.ac.uk/

How To Track Blood Flow In Tiny Vessels

Scientists have designed gold nanoparticles, no bigger than 100 nanometres, which can be coated and used to track blood flow in the smallest blood vessels in the body. By improving our understanding of blood flow in vivo the nanoprobes represent an opportunity to help in the early diagnosis of diseaseLight microscopy is a rapidly evolving field for understanding in vivo systems where high resolution is required. It is particularly crucial for cardiovascular research, where clinical studies are based on ultrasound technologies which inherently have lower resolution and provide limited information.

The ability to monitor blood flow in the sophisticated vascular tree (notably in the smallest elements of the microvasculaturecapillaries) can provide invaluable information to understand disease processes such as thrombosis and vascular inflammation. There are further applications for the improved delivery of therapeutics, such as targeting tumours.

Currently, blood flow in the microvasculature is poorly understood. Nanoscience is uniquely placed to help understand the processes happening in the micron-dimensioned vessels. Designing probes to monitor blood flow is challenging because of the environment; the high protein levels in plasma and the high red blood cell concentrations are detrimental to optical imaging. Conventional techniques rely on staining red blood cells, using organic dyes with short-lived usage due to photobleaching, as the tracking motif. The relatively large size of the red blood cells (7-8 micrometres), which are effectively the probes, limits the resolution in imaging and analysis of flow dynamics of the smallest vessels which are of a similar width. Therefore, to have more detailed resolution and information about the blood flow in the microvasculature, even smaller probes are required.

The key to these iridium-coated nanoparticles lies in both their small size, and in the characteristic luminescent properties. The iridium gives a luminescent signal in the visible spectrum, providing an optical window which can be detected in blood. It is also long-lived compared to organic fluorophores, while the tiny gold particles are shown to be ideal for tracking flow and detect clearly in tissues“, explains Professor Zoe Pikramenou, from the School of Chemistry at  the University of Birmingham.

The findings have been published in the journal Nanomedicine.

Source: https://www.birmingham.ac.uk/

How To Fix Duchenne Muscular Dystrophy

Scientists at the University of California, Berkeley, have engineered a new way to deliver CRISPR-Cas9 gene-editing technology inside cells and have demonstrated in mice that the technology can repair the mutation that causes Duchenne muscular dystrophy, a severe muscle-wasting disease. A new study shows that a single injection of CRISPR-Gold, as the new delivery system is called, into mice with Duchenne muscular dystrophy led to an 18-times-higher correction rate and a two-fold increase in a strength and agility test compared to control groups.

Since 2012, when study co-author Jennifer Doudna, a professor of molecular and cell biology and of chemistry at UC Berkeley, and colleague Emmanuelle Charpentier, of the Max Planck Institute for Infection Biology, repurposed the Cas9 protein to create a cheap, precise and easy-to-use gene editor, researchers have hoped that therapies based on CRISPR-Cas9 would one day revolutionize the treatment of genetic diseases. Yet developing treatments for genetic diseases remains a big challenge in medicine. This is because most genetic diseases can be cured only if the disease-causing gene mutation is corrected back to the normal sequence, and this is impossible to do with conventional therapeutics.

CRISPR/Cas9, however, can correct gene mutations by cutting the mutated DNA and triggering homology-directed DNA repair. However, strategies for safely delivering the necessary components (Cas9, guide RNA that directs Cas9 to a specific gene, and donor DNA) into cells need to be developed before the potential of CRISPR-Cas9-based therapeutics can be realized. A common technique to deliver CRISPR-Cas9 into cells employs viruses, but that technique has a number of complications. CRISPR-Gold does not need viruses.

In the new study, research lead by the laboratories of Berkeley bioengineering professors Niren Murthy and Irina Conboy demonstrated that their novel approach, called CRISPR-Gold because gold nanoparticles are a key component, can deliver Cas9 – the protein that binds and cuts DNA – along with guide RNA and donor DNA into the cells of a living organism to fix a gene mutation.

CRISPR-Gold is the first example of a delivery vehicle that can deliver all of the CRISPR components needed to correct gene mutations, without the use of viruses,” Murthy said.

The study was published in the journal Nature Biomedical Engineering.

Source: http://news.berkeley.edu/

Paper Supercapacitor

By coating ordinary paper with layers of gold nanoparticles and other materials, researchers have fabricated flexible paper supercapacitors that exhibit the best performance of any textile-type supercapacitor to date. In particular, the paper supercapacitors address one of the biggest challenges in this area, which is to achieve a high energy density in addition to an already high power density, since both properties are essential for realizing high-performance energy-storage devices. In the future, flexible paper supercapacitors could be used in wearable electronics for biomedical, consumer, and military applications. The researchers, led by Seung Woo Lee at the Georgia Institute of Technology and Jinhan Cho at Korea University, have published a paper on the flexible paper supercapacitor electrodes in a recent issue of Nature Communications. As energy-storage devices, supercapacitors have several advantages over batteries, such as a higher power density, rapid charge/discharge rate, and longer lifetime, yet they lag behind batteries in energy density (the amount of energy that can be stored in a given amount of space). Although several methods have been attempted to improve the energy density of paper supercapacitors by coating them with various conductive materials, often these methods have the drawback of reducing the power density.

The paper electrodes based on layer-by-layer-assembled metal nanoparticles exhibit metal-like electric conductivity, paper-like mechanical properties, and a large surface area without any thermal treatment and/or mechanical pressing,” explains coauthor Yongmin Ko at Korea University. “The periodic insertion of metal nanoparticles within high-energy nanoparticle-based paper electrodes could resolve the critical tradeoff in which an increase in the loading amount of materials to enhance the energy density of supercapacitors decreases the power density.”
Tests  showed that the flexible paper supercapacitors had a maximum capacitance that is higher than any previously reported textile-based supercapacitor. In addition, the new devices exhibits an excellent capacity retention, demonstrated by a 90% capacity retention after 5,000 bending cycles.

Source: http://me.gatech.edu/

One-Two Knockout Punch To Eradicate Super Bugs

Light-activated nanoparticles, also known as quantum dots, can provide a crucial boost in effectiveness for antibiotic treatments used to combat drug-resistant superbugs such as E. coli and Salmonella, new CU Boulder research shows. Multi-drug resistant pathogens, which evolve their defenses faster than new antibiotic treatments can be developed to treat them, cost the United States an estimated $20 billion in direct healthcare costs and an additional $35 billion in lost productivity in 2013. Rather than attacking the infecting bacteria conventionally, the dots release superoxide, a chemical species that interferes with the bacteria’s metabolic and cellular processes, triggering a fight response that makes it more susceptible to the original antibiotic.

We’ve developed a one-two knockout punch,” said Prashant Nagpal, an assistant professor in CU Boulder’s Department of Chemical and Biological Engineering (CHBE) and the co-lead author of the study. “The bacteria’s natural fight reaction [to the dots] actually leaves it more vulnerable.”

We are thinking more like the bug,” explains Anushree Chatterjee, an assistant professor in CHBE and the co-lead author of the study. “This is a novel strategy that plays against the infection’s normal strength and catalyzes the antibiotic instead.” The dots reduced the effective antibiotic resistance of the clinical isolate infections by a factor of 1,000 without producing adverse side effects.

The findings have been published today in the journal Science Advances.

Source: http://www.colorado.edu/

Graphene, Not Glass, Is The Key To Better Optics

A lens just a billionth of a metre thick could transform phone cameras. Researchers at Swinburne University in Melbourne, Australia, have created ultra-thin lenses that cap an optical fibre, and can produce images with the quality and sharpness of much larger glass lenses.

Compared with current lenses, our graphene lens only needs one film to achieve the same resolution,” says Professor Baohua Jia, a research leader at Swinburne’s Centre for Micro-Photonics. “In the future, mobile phones could be much thinner, without having to sacrifice the quality of their cameras. Our lens also allows infrared light to pass through, which glass lenses don’t.”

Producing graphene can be costly and challenging, so Baohua and her colleagues used a laser to pattern layers of graphene oxide (graphene combined with oxygen). By then removing the oxygen, they produced low-cost, patterned films of graphene, a thousand times thinner than a human hair. “By patterning the graphene oxide film in this way, its optical and electrical properties can be altered, which allowed us to place them in different devices,” she says.

Warm objects give off infrared light, so mobile phones with graphene lenses could be used to scan for hotspots in the human body and help in the early identification of diseases like breast cancer. By attaching the lens to a fibre optic tip, endoscopes — instruments that are currently several millimetres wide—could be made a million times smaller. The team is also investigating graphene’s amazing properties for their potential use as supercapacitors, capable of storing very large amounts of energy, which could replace conventional batteries.

Baohua’s work on graphene lenses was published in Nature Communications.

Source: https://cosmosmagazine.com/

Nanogels For Heart Attack Patients

Heart disease and heart-related illnesses are a leading cause of death around the world, but treatment options are limited. Now, one group reports in ACS Nano that encapsulating stem cells in a nanogel could help repair damage to the heart.

Myocardial infarction, also known as a heart attack, causes damage to the muscular walls of the heart. Scientists have tried different methods to repair this damage. For example, one method involves directly implanting stem cells in the heart wall, but the cells often don’t take hold, and sometimes they trigger an immune reaction. Another treatment option being explored is injectable hydrogels, substances that are composed of water and a polymer. Naturally occurring polymers such as keratin and collagen have been used but they are expensive, and their composition can vary between batches. So Ke Cheng, Hu Zhang, Jinying Zhang and colleagues wanted to see whether placing stem cells in inexpensive hydrogels with designed tiny pores that are made in the laboratory would work.

The team encapsulated stem cells in nanogels, which are initially liquid but then turn into a soft gel when at body temperature. The nanogel didn’t adversely affect stem cell growth or function, and the encased stem cells didn’t trigger a rejection response. When these enveloped cells were injected into mouse and pig hearts, the researchers observed increased cell retention and regeneration compared to directly injecting just the stem cells. In addition, the heart walls were strengthened. Finally, the group successfully tested the encapsulated stem cells in mouse and pig models of myocardial infarction.

Source: https://www.acs.org/
A
ND
https://global.ncsu.edu/

Biomaterial To Replace Plastics And Reduce Pollution

An inexpensive biomaterial that can be used to sustainably replace plastic barrier coatings in packaging and many other applications has been developed by Penn State researchers, who predict its adoption would greatly reduce pollution. Completely compostable, the material — a polysaccharide polyelectrolyte complex — is comprised of nearly equal parts of treated cellulose pulp from wood or cotton, and chitosan, which is derived from chitin — the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is the mountains of leftover shells from lobsters, crabs and shrimp consumed by humans.

These environmentally friendly barrier coatings have numerous applications ranging from water-resistant paper, to coatings for ceiling tiles and wallboard, to food coatings to seal in freshness, according to lead researcher Jeffrey Catchmark, professor of agricultural and biological engineering, College of Agricultural Sciences.

In the research, paperboard coated with the biomaterial exhibited strong oil and water barrier properties. The coating also resisted toluene, heptane and salt solutions and exhibited improved wet and dry mechanical and water vapor barrier properties.

The material’s unexpected strong, insoluble adhesive properties are useful for packaging as well as other applications, such as better performing, fully natural wood-fiber composites for construction and even flooring,” Jeffrey Catchmark said. “And the technology has the potential to be incorporated into foods to reduce fat uptake during frying and maintain crispness. Since the coating is essentially fiber-based, it is a means of adding fiber to diets.”

Source: http://news.psu.edu/

Nano Robots Build Molecules

Scientists at The University of Manchester have created the world’s first ‘molecular robot’ that is capable of performing basic tasks including building other molecules.

The tiny robots, which are a millionth of a millimetre in size, can be programmed to move and build molecular cargo, using a tiny robotic arm.

Each individual robot is capable of manipulating a single molecule and is made up of just 150 carbon, hydrogen, oxygen and nitrogen atoms. To put that size into context, a billion billion of these robots piled on top of each other would still only be the same size as a single grain of salt. The robots operate by carrying out chemical reactions in special solutions which can then be controlled and programmed by scientists to perform the basic tasks.

In the future such robots could be used for medical purposes, advanced manufacturing processes and even building molecular factories and assembly lines.

All matter is made up of atoms and these are the basic building blocks that form molecules. Our robot is literally a molecular robot constructed of atoms just like you can build a very simple robot out of Lego bricks, explains Professor David Leigh, who led the research at University’s School of Chemistry. “The robot then responds to a series of simple commands that are programmed with chemical inputs by a scientistIt is similar to the way robots are used on a car assembly line. Those robots pick up a panel and position it so that it can be riveted in the correct way to build the bodywork of a car. So, just like the robot in the factory, our molecular version can be programmed to position and rivet components in different ways to build different products, just on a much smaller scale at a molecular level.”

The research has been published in Nature.

Source: http://www.manchester.ac.uk/

New Treatment To Kill Cancer

Raise your hand if you haven’t been touched by cancer,” says Mylisa Parette to a roomful of strangers. Parette, the research manager for Keystone Nano (KN), has occasional opportunities to present her company’s technologies to business groups and wants to emphasize the scope of the problem that still confronts society. “It’s easier to see the effects of cancer when nobody raises their hand,” she says. Despite 40 years of the War on Cancer, one in two men and one in three women will be diagnosed with the disease at some point in their lifetime. Parette and her Keystone Nano colleagues are working on a new approach to cancer treatment. The company was formed from the collaboration of two Penn State faculty members who realized that the nanoparticle research that the one was undertaking could be used to solve the drug delivery problems that the other was facing.

Mark Kester, a pharmacologist at Penn State College of Medicine in Hershey, was working with a new drug that showed real promise as a cancer therapy but that could be dangerous if injected directly into the bloodstream. Jim Adair, a materials scientist in University Park, was creating nontoxic nanoparticles that could enclose drugs that might normally be toxic or hydrophobic and were small enough to be taken up by cells.

The two combined their efforts and, licensing the resulting technology from Penn State, they joined with entrepreneur Jeff Davidson, founder of the Biotechnology Institute and the Pennsylvania Biotechnology Association, to form Keystone Nano. The new company’s first hire was Parette, whose job is to translate the lab-scale technology into something that can be ramped up to an industrial scale, and to prepare that technology for FDA approval leading to clinical trials.

Davidson, Parette, and KN’s research team work out of the Zetachron building, a long, one-story science incubator a mile from Penn State’s University Park campus. Operated by the Centre County Industrial Development Corporation, the building was originally the home of the successful Penn State spin-out company that gave it its name. A second Keystone Nano lab was recently opened in the Hershey Center for Applied Research, a biotech incubator adjacent to Penn State College of Medicine.

Our excitement is that we think our technology has shown efficacy in a whole range of animal models,” Davidson, Keystone CEO, remarks during a recent meeting in the shared conference room at Zetachron. “We understand the method of action, the active ingredient. We think it has every chance of being useful in treating disease. Our question is, how do we push this forward from where we are today to determining, one way or another, that it really does work?

Keystone Nano is pioneering two approaches to cancer therapy, both of which rely on advances in nanotechnology to infiltrate tumors and deliver a therapeutic agent. The approach nearest to clinical trials is a ceramide nanoliposome, or what Davidson calls a “nano fat ball around an active ingredient.” Kester, in whose lab the approach was developed, thinks of it as a basketball with a thick bilayer coating that contains 30 percent active ceramide and a hollow interior that can hold another cancer drug.

Source: http://news.psu.edu/

Skin Patches Melt Fat

Researchers have devised a medicated skin patch that can turn energy-storing white fat into energy-burning brown fat locally while raising the body’s overall metabolism. The patch could be used to burn off pockets of unwanted fat such as “love handles” and treat metabolic disorders, such as obesity and diabetes, according to researchers at Columbia University Medical Center (CUMC) and the University of North Carolina. Humans have two types of fat. White fat stores excess energy in large triglyceride droplets. Brown fat has smaller droplets and a high number of mitochondria that burn fat to produce heat. Newborns have a relative abundance of brown fat, which protects against exposure to cold temperatures. But by adulthood, most brown fat is lost.

For years, researchers have been searching for therapies that can transform an adult’s white fat into brown fat—a process named browning—which can happen naturally when the body is exposed to cold temperatures—as a treatment for obesity and diabetes.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

There are several clinically available drugs that promote browning, but all must be given as pills or injections,” said study co-leader Li Qiang, PhD, assistant professor of pathology & cell biology at Columbia. “This exposes the whole body to the drugs, which can lead to side effects such as stomach upset, weight gain, and bone fractures. Our skin patch appears to alleviate these complications by delivering most drugs directly to fat tissue.

To apply the treatment, the drugs are first encased in nanoparticles, each roughly 250 nanometers (nm) in diameter—too small to be seen by the naked eye. (In comparison, a human hair is about 100,000 nm wide.) The nanoparticles are then loaded into a centimeter-square skin patch containing dozens of microscopic needles. When applied to skin, the needles painlessly pierce the skin and gradually release the drug from nanoparticles into underlying tissue.

The findings, from experiments in mice, were published online today in ACS Nano.

Source: http://newsroom.cumc.columbia.edu/

Robots With The Sense Of Touch

A team of researchers from the University of Houston (UH) has reported a breakthrough in stretchable electronics that can serve as an artificial skin, allowing a robotic hand to sense the difference between hot and cold, while also offering advantages for a wide range of biomedical devices.

Cunjiang Yu, Bill D. Cook Assistant Professor of mechanical engineering and lead author for the paper, said the work is the first to create a semiconductor in a rubber composite format, designed to allow the electronic components to retain functionality even after the material is stretched by 50 percent. The semiconductor in rubber composite format enables stretchability without any special mechanical structure. Yu noted that traditional semiconductors are brittle and using them in otherwise stretchable materials has required a complicated system of mechanical accommodations. “That’s both more complex and less stable than the new discovery, as well as more expensive.”

Our strategy has advantages for simple fabrication, scalable manufacturing, high-density integration, large strain tolerance and low cost,” he said.

Yu and the rest of the team – co-authors include first author Hae-Jin Kim, Kyoseung Sim and Anish Thukral, all with the UH Cullen College of Engineering – created the electronic skin and used it to demonstrate that a robotic hand could sense the temperature of hot and iced water in a cup. The skin also was able to interpret computer signals sent to the hand and reproduce the signals as .

The robotic skin can translate the gesture to readable letters that a person like me can understand and read,” Yu said.

The work is reported in the journal Science Advances.

Source: http://www.uh.edu/