Posts belonging to Category molecular electronics



Nanotechnology Spacecraft

Renowned physicist Stephen Hawking is proposing a nanotechnology spacecraft that can travel at a fifth of the speed of light. At that speed, it could reach the nearest star in 20 years and send back images of a suspected “Second Earth” within 5 years. That means if we launched it today, we would have our first look at an Earth-like planet within 25 years.

Hawking proposed a nano-spacecraft, termed “Star Chip,” at the Starmus Festival IV: Life And The Universe, Trondheim, Norway, June 18 – 23, 2017. Hawking told attendees that every time intelligent life evolves it annihilates itself with “war, disease and weapons of mass destruction.” He asserted this as the primary reason why advanced civilizations from another part of the Universe are not contacting Earth and the primary reason we need to leave the Earth. His advocates we colonize a “Second Earth.”

Scientific evidence appears to support Hawking’s claim. The SETI Institute has been listening for evidence of extraterrestrial radio signals, a sign of advanced extraterrestrial life, since 1984. To date, their efforts have been futile. SETI claims, rightly, that the universe is vast, and they are listening to only small sectors, which is much like finding a needle in a haystack.

Source: http://www.huffingtonpost.com/

Quantum Satellite Secures Communications

A Chinese quantum satellite has dispatched transmissions over a distance of 1,200 km (746 miles), a dozen times further than the previous record, a breakthrough in a technology that could be used to deliver secure messages, state media said on Friday.

China launched the world’s first quantum satellite last August, to help establish “hack proof” communications between space and the ground, state media said at the time.

The feat opens up “bright prospects” for quantum communications, said Pan Jianwei, the lead scientist of the Chinese team, Quantum Experiments at Space Scale (QUESS), according to the official Xinhua news agency.

The scientists exploited the phenomenon of quantum entanglement, in which a particle can affect a far-off twin instantly, somehow overcoming the long distance separating them, a situation termed “spooky action at a distance” by the Nobel-prize winning physicist Albert Einstein, Xinhua added.

The team had successfully distributed entangled photon pairs over 1,200 km, it said, outstripping the distance of up to 100 km (62 miles) at which entanglement had previously been achieved.

The technology so far is “the only way to establish secure keys between two distant locations on earth without relying on trustful relay,” Pan told Xinhua, referring to encrypted messages.

The new development “illustrates the possibility of a future global quantum communication network” the journal Science, which published the results of the Chinese team, said on its website.

Source: http://www.reuters.com/

Artificial Intelligence At The Hospital

Diagnosing cancer is a slow and laborious process. Here researchers at University Hospital Zurich painstakingly make up biopsy slides – up to 50 for each patient – for the pathologist to examine for signs of prostate cancer. A pathologist takes around an hour and a half per patient – a task IBMs Watson supercomputer is now doing in fractions of a second.

CLICK ON THE IMAGE TO ENJOY THE VIDEO
“If the pathologist becomes faster by using such a system I think it will pay off. Because my time is also worth something. If I sit here one and a half hours looking at slides, screening all these slides, instead of just signing out the two or three positive ones, and taking into account that there may be a .1 error rate, percent error rate. this will pay off, because I can do in one and a half hours at the end five patients,” says Dr. Peter Wild, University Hospital Zürich.

The hospital’s archive of biopsy images is being slowly fed into Watson – a process that will take years. But maybe one day pathologists won’t have to view slides through a microscope at all. Diagnosis is not the only area benefiting from AI. The technology is helping this University of Sheffield team design a new drug that could slow down the progress of motor neurone disease. A system built by British start-up BenevolentAI is identifying new areas for further exploration far faster than a person could ever hope to.

Benevolent basically uses their artificial intelligence system to scan the whole medical and biomedical literature. It’s not really easy for us to stay on top of millions of publications that come out every year. So they can interrogate that information, using artificial intelligence and come up with ideas for new drugs that might be used in a completely different disease, but may be applicable on motor neurone disease. So that’s the real benefit in their system, the kind of novel ideas that they come up with,” explains Dr. Richard Mead, Sitran, University of Sheffield. BenevolentAI has raised one hundred million dollars in investment to develop its AI system, and help revolutionise the pharmaceutical industry.

Source: http://www.reuters.com/

Nano-based Material Is 60 Times More Efficient To Produce Hydrogen

Global climate change and the energy crisis mean that alternatives to fossil fuels are urgently needed. Among the cleanest low-carbon fuels is hydrogen, which can react with oxygen to release energy, emitting nothing more harmful than water (H2O) as the product. However, most hydrogen on earth is already locked into H2O (or other molecules), and cannot be used for power.

Hydrogen can be generated by splitting H2O, but this uses more energy than the produced hydrogen can give back. Water splitting is often driven by solar power, so-called “solar-to-hydrogenconversion. Materials like titanium oxide, known as semiconductors with the wide band-gap, are traditionally used to convert sunlight to chemical energy for the photocatalytic reaction. However, these materials are inefficient because only the ultraviolet (UV) part of light is absorbed—the rest spectrum of sunlight is wasted.

Now, a team in Osaka University has developed a material to harvest a broader spectrum of sunlight. The three-part composites of this material maximize both absorbing light and its efficiency for water splitting. The core is a traditional semiconductor, lanthanum titanium oxide (LTO). The LTO surface is partly coated with tiny specks of gold, known as nanoparticles. Finally, the gold-covered LTO is mixed with ultrathin sheets of the element black phosphorus (BP), which acts as a light absorber.

BP is a wonderful material for solar applications, because we can tune the frequency of light just by varying its thickness, from ultrathin to bulk,” the team leader Tetsuro Majima says. “This allows our new material to absorb visible and even near infrared light, which we could never achieve with LTO alone.”

By absorbing this broad sweep of energy, BP is stimulated to release electrons, which are then conducted to the gold nanoparticles coating the LTO. Gold nanoparticles also absorb visible light, causing some of its own electrons to be jolted out. The free electrons in both BP and gold nanoparticles are then transferred into the LTO semiconductor, where they act as an electric current for water splitting.

Hydrogen production using this material is enhanced not only by the broader spectrum of light absorption, but by the more efficient electron conduction, caused by the unique interface between two dimensional materials of BP and LTO. As a result, the material is 60 times more active than pure LTO.

Source: http://resou.osaka-u.ac.jp/

30 Billion Switches Onto The New IBM Nano-based Chip

IBM is clearly not buying into the idea that Moore’s Law is dead after it unveiled a tiny new transistor that could revolutionise the design, and size, of future devices. Along with Samsung and Globalfoundries, the tech firm has created a ‘breakthrough’ semiconducting unit made using stacks of nanosheets. The companies say they intend to use the transistors on new five nanometer (nm) chips that feature 30 billion switches on an area the size of a fingernail. When fully developed, the new chip will help with artificial intelligence, the Internet of Things, and cloud computing.

For business and society to meet the demands of cognitive and cloud computing in the coming years, advancement in semiconductor technology is essential,” said Arvind Krishna, senior vice president, Hybrid Cloud, and director, IBM Research.

IBM has been developing nanometer sheets for the past 10 years and combined stacks of these tiny sheets using a process called Extreme Ultraviolet (EUV) lithography to build the structure of the transistor.

Using EUV lithography, the width of the nanosheets can be adjusted continuously, all within a single manufacturing process or chip design,” IBM and the other firms said. This allows the transistors to be adjusted for the specific circuits they are to be used in.

Source: http://www.wired.co.uk/

Super Efficient Nanowires shape the future of electronics

A group of researchers at the Basque Excellence Research Center into Polymers (POLYMAT), the University of the Basque Country (UPV/EHU), the University of Barcelona, the Institute of Bioengineering of Barcelona (IBEC), and the University of Aveiro, and led by Aurelio Mateo-Alonso, the Ikerbasque research professor at POLYMAT, have developed a new suite of molecular wires or nanowires that are opening up new horizons in molecular electronics.

The growing demand for increasingly smaller electronic devices is prompting the need to produce circuits whose components are also as small as possible, and this is calling for fresh approaches in their design.

Molecular electronics has sparked great interest because the manufacture of electronic circuits using molecules would entail a reduction in their size. Nanowires are conducting wires on a molecular scale that carry the current inside these circuits. That is why the efficiency of these wires is crucially important.

In fact, one of the main novelties in this new suite of nanowires developed by the group led by Aurelio Mateo lies in their high efficiency, which constitutes a step forward in miniaturizing electronic circuits.
The findings have been published today in the journal Nature Communications.

Source: https://www.ehu.eus/

Startup Promises Immortality Through AI, Nanotechnology, and Cloning

One of the things humans have plotted for centuries is escaping death, with little to show for it, until now. One startup called Humai has a plan to make immortality a reality. The CEO, Josh Bocanegra says when the time comes and all the necessary advancements are in place, we’ll be able to freeze your brain, create a new, artificial body, repair any damage to your brain, and transfer it into your new body. This process could then be repeated in perpetuityHUMAI stands for: Human Resurrection through Artificial Intelligence. The technology to accomplish this isn’t here now, but on the horizon. Bocanegra says they’ll reach this Promethean feat within 30 years. 2045 is currently their target date. So how do they plan to do it?

We’re using artificial intelligence and nanotechnology to store data of conversational styles, behavioral patterns, thought processes and information about how your body functions from the inside-out. This data will be coded into multiple sensor technologies, which will be built into an artificial body with the brain of a deceased human, explains the website.

Source: https://www.facebook.com/humaitech/
AND
http://bigthink.com/

Legally Blind People Can See With A New Kind Of Glasses

A Canadian company based in Toronto has suceeded to build a kind of Google glass that is able to give back full sight to legally blind people.  The eSight is an augmented reality headset that houses a high-speed, high-definition camera that captures everything the user is looking at.

CLICK ON THE IMAGE TO ENJOY THE VIDEO


Algorithms enhance the video feed and display it on two, OLED screens in front of the user’s eyes. Full color video images are clearly seen by the eSight user with unprecedented visual clarity and virtually no lag. With eSight’s patented Bioptic Tilt capability, users can adjust the device to the precise position that, for them, presents the best view of the video while maximizing side peripheral vision. This ensures a user’s balance and prevents nausea – common problems with other immersive technologies. A blind individual can use both of their hands while they use eSight to see. It is lightweight, worn comfortably around the eyes and designed for various environments and for use throughout the day.

eSight is a comprehensive customized medical device that can replace all the many single-task assistive devices that are currently available but do not provide actual sight (e.g. white canes, magnifying devices, service animals, Braille machines, CCTV scanners, text-to-speech software). It allows a user to instantly auto-focus between short-range vision (reading a book or text on a smartphone) to mid-range vision (seeing faces or watching TV) to long-range vision (looking down a hallway or outsidea window). It is the only device for the legally blind that enables mobility without causing issues of imbalance or nausea (common with other immersive options). A legally blind individual can use eSight not just to see while sitting down but while being independently mobile (e.g. walking, exercising, commuting, travelling, etc).

According to The Wall Street Journal, the company is taking advantages of recent improvements in technology from VR headsets and smartphones that have trickled down to improve the latest version of the eSight. So far, the company has sold roughly a thousand units, but at $10,000 apiece, they’re not cheap (and most insurances apparently don’t cover the product), although eSight’s chief executive Brian Mech notes to the WSJ that getting devices to users is “a battle we are starting to wage.”

Source: https://www.esighteyewear.com/

Rechargeable Lithium Metal Battery

Rice University scientists have created a rechargeable lithium metal battery with three times the capacity of commercial lithium-ion batteries by resolving something that has long stumped researchers: the dendrite problem.

The Rice battery stores lithium in a unique anode, a seamless hybrid of graphene and carbon nanotubes. The material first created at Rice in 2012 is essentially a three-dimensional carbon surface that provides abundant area for lithium to inhabit. Lithium metal coats the hybrid graphene and carbon nanotube anode in a battery created at Rice University. The lithium metal coats the three-dimensional structure of the anode and avoids forming dendrites.

The anode itself approaches the theoretical maximum for storage of lithium metal while resisting the formation of damaging dendrites or “mossy” deposits.

Dendrites have bedeviled attempts to replace lithium-ion with advanced lithium metal batteries that last longer and charge faster. Dendrites are lithium deposits that grow into the battery’s electrolyte. If they bridge the anode and cathode and create a short circuit, the battery may fail, catch fire or even explode.

Rice researchers led by chemist James Tour found that when the new batteries are charged, lithium metal evenly coats the highly conductive carbon hybrid in which nanotubes are covalently bonded to the graphene surface. As reported in the American Chemical Society journal ACS Nano, the hybrid replaces graphite anodes in common lithium-ion batteries that trade capacity for safety.

Lithium-ion batteries have changed the world, no doubt,” Tour said, “but they’re about as good as they’re going to get. Your cellphone’s battery won’t last any longer until new technology comes along.

He said the new anode’s nanotube forest, with its low density and high surface area, has plenty of space for lithium particles to slip in and out as the battery charges and discharges. The lithium is evenly distributed, spreading out the current carried by ions in the electrolyte and suppressing the growth of dendrites.

Source: http://news.rice.edu

Super-Efficient Production Of Hydrogen From Solar Energy

Hydrogen is an alternative source of energy that can be produced from renewable sources of sunlight and water. A group of Japanese researchers has developed a photocatalyst that increases hydrogen production tenfold.

When light is applied to photocatalysts, electrons and holes are produced on the surface of the catalyst, and hydrogen is obtained when these electrons reduce the hydrogen ions in water. However, in traditional photocatalysts the holes that are produced at the same time as the electrons mostly recombine on the surface of the catalyst and disappear, making it difficult to increase conversion efficiency.

Professor Tachikawa’s research group from the Kobe University developed a photocatalyst made of mesocrystal, deliberately creating a lack of uniformity in size and arrangement of the crystals. This new photocatalyst is able to spatially separate the electrons and electron holes to prevent them recombining. As a result, it has a far more efficient conversion rate for producing hydrogen than conventional nanoparticulate photocatalysts (approximately 7%).

The team developed a new method called “Topotactic Epitaxial Growth” that uses the nanometer-sized spaces in mesocrystals.
Using these findings, the research group plans to apply mesocrystal technology to realizing the super-efficient production of hydrogen from solar energy. The perovskite metal oxides, including strontium titanate, the target of this study, are the fundamental materials of electronic elements, so their results could be applied to a wide range of fields.

The discovery was made by a joint research team led by Associate Professor Tachikawa Takashi (Molecular Photoscience Research Center, Kobe University) and Professor Majima Tetsuro (Institute of Scientific and Industrial Research, Osaka University). Their findings were published  in the online version of Angewandte Chemie International Edition.

Source: http://www.kobe-u.ac.jp/

Self-Healing Lithium-Ion Batteries

Researchers at the University of Illinois have found a way to apply self-healing technology to lithium-ion batteries to make them more reliable and last longer.

The group developed a battery that uses a silicon nanoparticle composite material on the negatively charged side of the battery and a novel way to hold the composite together – a known problem with batteries that contain silicon.

Materials science and engineering professor Nancy Sottos and aerospace engineering professor Scott White led the study published in the journal Advanced Energy Materials.

“This work is particularly new to self-healing materials research because it is applied to materials that store energy,” White said. “It’s a different type of objective altogether. Instead of recovering structural performance, we’re healing the ability to store energy.”

The negatively charged electrode, or anode, inside the lithium-ion batteries that power our portable devices and electric cars are typically made of a graphite particle composite. These batteries work well, but it takes a long time for them to power up, and over time, the charge does not last as long as it did when the batteries were new.

Silicon has such a high capacity, and with that high capacity, you get more energy out of your battery, except it also undergoes a huge volume expansion as it cycles and self-pulverizes,” Sottos explained.

Past research found that battery anodes made from nanosized silicon particles are less likely to break down, but suffer from other problems.

You go through the charge-discharge cycle once, twice, three times, and eventually you lose capacity because the silicon particles start to break away from the binder,” White said.

To combat this problem, the group further refined the silicon anode by giving it the ability to fix itself on the fly. This self-healing happens through a reversible chemical bond at the interface between the silicon nanoparticles and polymer binder.

Source: https://news.illinois.edu/

Super-material Bends, Shapes And Focuses Sound Waves

These tiny 3D-printed bricks could one day allow people to create their own acoustics. That’s the plan of scientists from the universities of Bristol and Sussex. They’ve invented a metamaterial which bends and manipulates sound in any way the user wants. It’s helped scientists create what they call a ‘sonic alphabet‘.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We have discovered that you just need 16 bricks to make any type of sound that you can imagine. You can shape the sound just with 16 of them, just like you create any words with just 26 letters,” says Dr. Gianluca Memoli, researcher at Interact Lab at University of Sussex.

DIY kits like this, full of batches of the 16 aural letters, could help users create a sound library, or even help people in the same car to hear separate things.

With our device what you can have is you can strap a static piece on top of existing speakers and they can direct sound in two different directions without any overlap. So the passengers can hear completely different information from the driver,” explains Professor Sri Subramanian Interact Lab at University of Sussex. This technology is more than five years away, but smaller versions could be used to direct medical ultrasound devices far sooner.  “In a year we could have a sleeve that we can put on top of already existing projects in the market and make them just a little bit better. For example, we can have a sleeve that goes on top of ultrasound pain relieving devices that are used for therapeutic pain,” he adds.
Researchers say spatial sound modulators will one day allow us to perform audible tasks previously unheard of.

Source: http://www.sussex.ac.uk/