Posts belonging to Category molecular electronics



3D-Printed Plastic Objects Connect To The Internet Without Any Electronics

Researchers from the University of Washington (UW) have developed 3D-printed plastic objects that can connect to the internet without any electronics or batteries. The researchers found a way to 3D-print plastic objects that can absorb or reflect ambient WiFi signals and send data wirelessly to any WiFi receiver like a smartphone or router.

Possible use cases include an attachment for laundry detergent that can sense when soap is running low, or a water sensor that notifies your smartphone when there is a leak.

As the UW explains in its news release, the researchers “replaced some functions normally performed by electrical components with mechanical motion activated by springs, gears, switches and other parts that can be 3-D printed — borrowing from principles that allow battery-free watches to keep time.” The scientists found that those mechanical motions can trigger gears and springs that connect to an antenna, all within the object.
The team opens new approach: “Can objects made of plastic materials be connected to smartphones and other Wi-Fi devices, without the need for batteries or electronics? A positive answer would enable a rich ecosystem of ‘talking objects3D printed with commodity plastic filaments that have the ability to sense and interact with their surroundings. Imagine plastic sliders or knobs that can enable rich physical interaction by dynamically sending information to a nearby Wi-Fi receiver to control music volume and lights in a room. This can also transform inventory management where for instance a plastic detergent bottle can self-monitor usage and re-order supplies via a nearby Wi-Fi device.
Such a capability democratizes the vision of ubiquitous connectivity by enabling designers to download and use our computational modules, without requiring the engineering expertise to integrate radio chips and other electronics in their physical creations. Further, as the commoditization of 3D printers continues, such a communication capability opens up the potential for individuals to print highly customized wireless sensors, widgets and objects that are tailored to their individual needs and connected to the Internet ecosystem
.”

Source: http://printedwifi.cs.washington.edu/
https://www.geekwire.com/

How To Trap DNA molecules With Your Smartphone

Researchers from the University of Minnesota College of Science and Engineering have found yet another remarkable use for the wonder material graphenetiny electronictweezers” that can grab biomolecules floating in water with incredible efficiency. This capability could lead to a revolutionary handheld disease diagnostic system that could be run on a smart phoneGraphene, a material made of a single layer of carbon atoms, was discovered more than a decade ago and has enthralled researchers with its range of amazing properties that have found uses in many new applications from microelectronics to solar cells. The graphene tweezers developed at the University of Minnesota are vastly more effective at trapping particles compared to other techniques used in the past due to the fact that graphene is a single atom thick, less than 1 billionth of a meter.

The physical principle of tweezing or trapping nanometer-scale objects, known as dielectrophoresis, has been known for a long time and is typically practiced by using a pair of metal electrodes. From the viewpoint of grabbing molecules, however, metal electrodes are very blunt. They simply lack the “sharpness” to pick up and control nanometer-scale objects.

Graphene is the thinnest material ever discovered, and it is this property that allows us to make these tweezers so efficient. No other material can come close,” said research team leader Sang-Hyun Oh, a Professor at the University of Minnesota. “To build efficient electronic tweezers to grab biomolecules, basically we need to create miniaturized lightning rods and concentrate huge amount of electrical flux on the sharp tip. The edges of graphene are the sharpest lightning rods.

The team also showed that the graphene tweezers could be used for a wide range of physical and biological applications by trapping semiconductor nanocrystals, nanodiamond particles, and even DNA molecules. Normally this type of trapping would require high voltages, restricting it to a laboratory environment, but graphene tweezers can trap small DNA molecules at around 1 Volt, meaning that this could work on portable devices such as mobile phones.

The research study has been published  in Nature Communications.

Source: https://cse.umn.edu/

Copycat Robot

Introducing T-HR3, third generation humanoid robot designed to explore how clever joints can improve brilliant balance and real remote controlToyota says its 29 joints allow it to copy the most complex of moves – safely bringing friendly, helpful robots one step closer.


CLICK ON THE IMAGE TO ENJOY THE VIDEO

Humanoid robots are very popular among Japanese people…creating one like this has always been our dream and that’s why we pursued it,” says Akifumi Tamaoki, manager of Partner robot division at Toyota.

The robot is controlled by a remote operator sitting in an exoskeletonmirroring its master’s moves, a headset giving the operator a realtime robot point of view.

We’re primarily focused on making this robot a very family-oriented one, so that it can help people including services such as carer” explains Tamaoki.
Toyota said T-HR3 could help around the homes or medical facilities in Japan or construction sites, a humanoid helping hand – designed for a population ageing faster than anywhere else on earth.

Source: http://toyota.com/

Nanotechnology Boosts CyberSecurity Against Hackers

The next generation of electronic hardware security may be at hand as researchers at New York University Tandon School of Engineering  (NYU Tandon) introduce a new class of unclonable cybersecurity security primitives made of a low-cost nanomaterial with the highest possible level of structural randomness. Randomness is highly desirable for constructing the security primitives that encrypt and thereby secure computer hardware and data physically, rather than by programming.

In a paper published in the journal ACS Nano, Assistant Professor of Electrical and Computer Engineering Davood Shahrjerdi and his team at NYU Tandon offer the first proof of complete spatial randomness in atomically thin molybdenum disulfide (MoS2). The researchers grew the nanomaterial in layers, each roughly one million times thinner than a human hair. By varying the thickness of each layer, Shahrjerdi explained, they tuned the size and type of energy band structure, which in turn affects the properties of the material.

(a) At monolayer thickness, this material has the optical properties of a semiconductor that emits light. At multilayer, the properties change and the material doesn’t emit light. (b) Varying the thickness of each layer results in a thin film speckled with randomly occurring regions that alternately emit or block light. (c) Upon exposure to light, this pattern can be translated into a one-of-a-kind authentication key that could secure hardware components at minimal cost.

This property is unique to this material,” underscores Shahrjerdi. By tuning the material growth process, the resulting thin film is speckled with randomly occurring regions that alternately emit or do not emit light. When exposed to light, this pattern translates into a one-of-a-kind authentication key that could secure hardware components at minimal cost.

Source: http://engineering.nyu.edu/

Glass Blocks Generate Electricity Using Solar Energy

Buildings consume more than forty percent of global electricity and reportedly cause at least a third of carbon emissions. Scientists want to cut this drastically – and create a net-zero energy future for new buildings. Build Solar want to help. The firm has created a glass brick containing small solar cells.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

On top of this we have placed in some intelligent optics which are able to focus the incoming sunlight onto these solar cells almost throughout the day. When we do that we are able to generate a higher amount of electrical output from each solar cell that we are using,” says Dr Hasan Baig, founder of Build Solar.
As well as converting the sun’s power to electricity, the bricks have other abilities.
The product is aligned to provide three different things, including electricity, daylighting, and thermal insulation which is generally required by any kind of construction product. More importantly it is aesthetic in its look, so it fits in very well within the building architecture,” adds Dr Baig.
Using Building Integrated Photovoltaics, the technology would be used in addition to existing solar roof panels. The University of Exeter spin-off is fine-tuning the design, which works in many colours. The company says the product could be market ready by the end of next year.

Source: https://www.buildsolar.co.uk/

Graphene Ripples, Clean And Limitless Energy Source

Graphene is a seemingly impossible material. For years, scientists had theorized that lifting a single layer of carbon atoms from a chunk of graphite could produce the first two-dimensional material, which they called graphene. Finally, in 2004, this was accomplished by two physicists at the University of Manchester, who earned the Nobel Prize in Physics for this breakthrough. There was a problem, however: two dimensional materials violate the laws of physics. Without the support of a substrate, physics predicts they would tear apart or melt, even at a temperature of absolute zero. Physicists had to find a loophole to explain their existence.

That loophole turned out to be related to a phenomenon known as Brownian motion, small random fluctuations of the carbon atoms that make up graphene. This causes the material to ripple into the third dimension, similar to waves moving across the surface of the ocean. These movements in and out of the flat surface allow graphene to stay comfortably within the laws of physics.

Ever since Robert Brown discovered Brownian motion in 1827, scientists have wondered whether they could harvest this motion as a source of energy. The research of Paul Thibado, professor of physics at the University of Arkansas, provides strong evidence that the motion of graphene could indeed be used as a source of clean, limitless energy. Other researchers have theorized that temperature-induced curvature inversion in graphene could be used as an energy source, and even predicted the amount of energy they could produce. What sets Thibado’s work apart is his discovery that graphene has naturally occurring ripples that invert their curvature as the atoms vibrate in response to the ambient temperature.

This is the key to using the motion of 2D materials as a source of harvestable energy,” Thibado said. Unlike atoms in a liquid, which move in a random directions, atoms connected in a sheet of graphene move together. This means their energy can be collected using existing nanotechnology.

These results have been published in the journal Physical Review Letters.

Source: https://researchfrontiers.uark.edu

Tesla Electric Truck Travels 500 Miles (805 km) On A Single Charge

The main course was expected: a pair of sleek silver Tesla semi-trucks that get 500 miles per charge, go from zero to 60 mph in five seconds and — if the hype is to be believed — promise to single-handedly transform the commercial trucking industry. But dessert was a surprise: A bright red prototype of the newest Tesla Roadster, a revamped version of the company’s debut vehicle that can travel from Los Angeles to San Francisco and back on a single charge and go from zero to 60 mph in under two seconds. If true, that would make the $200,000 sports car the fastest production car ever made.

On Thursday night, Tesla chief executive Elon Musk delivered both dishes to a packed crowd at the company’s design studio in Hawthorne, Calif.

What does it feel like to drive this truck?” Musk asked the audience, shortly after his latest creations rolled onto the stage. “It’s amazing! It’s smooth, just like driving a Tesla.” “It’s unlike any truck that you’ve ever driven,” he added, noting that Tesla’s big rig puts the driver at the center of the vehicle like a race car, but surrounded with touchscreen displays like those found in the Model 3. “I can drive this thing and I have no idea how to drive a semi.”

Range anxiety has always been a key concern for anyone who is weighing the purchase of an electric vehicle. Musk sought to reassure potential buyers that the company’s big rigs can match — and surpass — the performance of a diesel engine, which he referred to as “economic suicide.” Musk did not reveal the truck’s exact price, but argued that a diesel truck would be 20 cents more expensive per mile than Tesla’s electric counterpart, which will be available for purchase in 2019.

Source: https://www.washingtonpost.com/

AI, “worst event in the history of our civilisation” says Stephen Hawking

Stephen Hawking has sent a stark warning out to the world, stating that the invention of artificial intelligence (AI) could be the “worst event in the history of our civilisation”. Speaking at the Web Summit technology conference in Lisbon, Portugal, the theoretical physicist reiterated his warning against the rise of powerful, conscious machines.
While Prof Hawking admitted that AI could be used for good, he also stated that humans need to find a way to control it so that it does not become more powerful than us as “computers can, in theory, emulate human intelligence, and exceed it.” Looking at the positives, the 75-year old said AI could help undo some of the damage that humans have inflicted on the natural world, help beat disease and “transform” every aspect of society. But, there are negatives that come with it.
CLICK ON THE IMAGE TO ENJOY THE VIDEO

Success in creating effective AI, could be the biggest event in the history of our civilisation. Or the worst. We just don’t know. “So we cannot know if we will be infinitely helped by AI, or ignored by it and side-lined, or conceivably destroyed by it. “Unless we learn how to prepare for, and avoid, the potential risks, AI could be the worst event in the history of our civilisation. It brings dangers, like powerful autonomous weapons, or new ways for the few to oppress the many. It could bring great disruption to our economy,” explains the University of Cambridge alumni.

Prof Hawking added that to make sure AI is in line with our goals, creators need to “employ best practice and effective management.” But he still has hope: “I am an optimist and I believe that we can create AI for the good of the world. “That it can work in harmony with us. We simply need to be aware of the dangers, identify them, employ the best possible practice and management, and prepare for its consequences well in advance.”

Just last week, Prof Hawking warned that AI will replace us as the dominant being on the planet.

Source: http://www.express.co.uk/

Sophia The Robot Says: ‘I have feelings too’

Until recently, the most famous thing that Sophia the robot had ever done was beat Jimmy Fallon a little too easily in a nationally televised game of rock-paper-scissors.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

But now, the advanced artificial intelligence robot — which looks like Audrey Hepburn, mimics human expressions and may be the grandmother of robots that solve the world’s most complex problems — has a new feather in her cap:

Citizenship.

The kingdom of Saudi Arabia officially granted citizenship to the humanoid robot last week during a program at the Future Investment Initiative, a summit that links deep-pocketed Saudis with inventors hoping to shape the future.

Sophia’s recognition made international headlines — and sparked an outcry against a country with a shoddy human rights record that has been accused of making women second-class citizens.

Source: https://www.washingtonpost.com/

Thin Films Power Electronics Mixed In Fabrics

Scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) reported significant advances in the thermoelectric performance of organic semiconductors based on carbon nanotube thin films that could be integrated into fabrics to convert waste heat into electricity or serve as a small power source.

The research demonstrates significant potential for semiconducting single-walled carbon nanotubes (SWCNTs) as the primary material for efficient thermoelectric generators, rather than being used as a component in a “compositethermoelectric material containing, for example, carbon nanotubes and a polymer. The discovery is outlined in the new Energy & Environmental Science paper, Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films.

There are some inherent advantages to doing things this way,” said Jeffrey Blackburn, a senior scientist in NREL’s Chemical and Materials Science and Technology center and co-lead author of the paper with Andrew Ferguson. These advantages include the promise of solution-processed semiconductors that are lightweight and flexible and inexpensive to manufacture. Other NREL authors are Bradley MacLeod, Rachelle Ihly, Zbyslaw Owczarczyk, and Katherine Hurst. The NREL authors also teamed with collaborators from the University of Denver and partners at International Thermodyne, Inc., based in Charlotte, N.C.

Ferguson, also a senior scientist in the Chemical and Materials Science and Technology center, said the introduction of SWCNT into fabrics could serve an important function for “wearable” personal electronics. By capturing body heat and converting it into electricity, the semiconductor could power portable electronics or sensors embedded in clothing.

Source: https://www.nrel.gov/

Robots Soon Will Share Our Private And Sex Life

Sex robot inventor Sergi Santos isn’t just changing how men pleasure themselves — he’s potentially changing society as we know it. The Spanish scientist believes it’s only a matter of time before human-and-robot marriage is commonplace, and he’s even hatched a plan for how he can have a baby with his mechanical temptress SamanthaSamantha is Santos’ 100-pound sex robot that boasts eight different programs and the ability to make “realistic” orgasm sounds.

Santos said he believes that in the next couple of decades, we won’t just be seeing these dolls hidden in a man’s closet or under the bed — they’ll be walking down the aisle to say “I do” to their human lovers.

Speaking from his home laboratory in Barcelona (Spain), he said: “People might look at Samantha as a weird thing you read about.” “But before they know it, these robots will be doing their jobs, and marrying their children, their grandchildren, and their friends.” “They need to remember that just a few years ago, mobile phones were seen as a non-essential item in society, but now we can’t function without them.” And Santos claims he will soon be able to have a baby with Samantha. He explained: “I can make them have a baby. It’s not so difficult. I would love to have a child with a robot.” His plan involves using thebrain” he has created for Samantha but upgrading it so it is functioning at full capability.

Source: http://nypost.com/
A
ND
http://syntheaamatus.com/

Using Brain-Machine Interfaces, Mental Power Can Move Objects

A unique citizen science project in which volunteers will be trained to move a piece of steel machinery using the power of their mind begins on October 27. The Mental Work project uses brain-machine interfaces developed at EPFL (Ecole polytechnique fédérale de Lausanne) in Switzerland, a convergence of science, art, and design .

CLICK ON THE IMAGE TO ENJOY THE VIDEO

At the mental work factory the public can come and we equip them with an EEG helmet which will read the mental activity, the electrical activity, that’s in their brain. These helmets are dry, so we don’t need gel for conductivity and they’re also wireless so they can walk through the mental factory and engage with four of our machines activating them with only their mental activity,  explains Michael Mitchell , who is one of the three co-founders of Mental Work.

The data that will be collected during the mental worker’s trajectory throughout our factory floor will then be made anonymous and given to the brain machine interface community to improve the interfaces for the future. “We think that we’re on the cusp of a cognitive revolution. Now a cognitive revolution is going to be a world where our brains are intimately connected to our physical world around us. With the development of these brain machine interfaces we think that we are really at the beginning of a moment in time where man is going to become the centre of all this technology. His brain activity is going to interact with the physical world around him in ways that we can hardly imagine today. “So I think it’s understandable if people are a little apprehensive about this technology because some people may think ‘oh, it can read my thoughts and then what are we going to do with those thoughts. Where’s the privacy level here?’ But in fact we’re only asking you to modulate your brain activity according to your own will. So it’s as simple as sending a command to a computer using a mouse or a keyboard. But this time we’re using asking you to use your brain. Now we want to bring this technology to the public at a early phase of its development so that we can create a dialogue about what kind of relationship we want to have with this technology in particular but also with man’s relationship to technology in general.

Source: https://actu.epfl.ch/