Posts belonging to Category molecular electronics



Chinese Quantum Satellite Sends ‘Unbreakable’ Code

China has sent an “unbreakablecode from a satellite to the Earth, marking the first time space-to-ground quantum key distribution technology has been realized, state media said. China launched the world’s first quantum satellite last August, to help establish “hack proofcommunications, a development the Pentagon has called a “notable advance“. The official Xinhua news agency said the latest experiment was published in the journal Nature, where reviewers called it a “milestone“.

The satellite sent quantum keys to ground stations in China between 645 km (400 miles) and 1,200 km (745 miles) away at a transmission rate up to 20 orders of magnitude more efficient than an optical fiber, Xinhua cited Pan Jianwei, lead scientist on the experiment from the state-run Chinese Academy of Sciences, as saying.

That, for instance, can meet the demand of making an absolute safe phone call or transmitting a large amount of bank data,” Pan said. Any attempt to eavesdrop on the quantum channel would introduce detectable disturbances to the system, Pan said. “Once intercepted or measured, the quantum state of the key will change, and the information being intercepted will self-destruct,” Xinhua said.

The news agency said there were “enormous prospects” for applying this new generation of communications in defense and finance.

Source: http://www.reuters.com/

New WIFI Speeds Up To 300 Times Faster

Researchers at the Eindhoven University of Technology (Netherlands) say their new wireless network that uses harmless infrared rays will make wifi speeds up to 300 times faster.


 CLICK ON THE IMAGE TO ENJOY THE VIDEO

“What we are doing actually is using rays of light which convey the information in a wireless way, and each ray is acting as a very high capacity channel. It’s actually the same as an optical fibre without needing the fibre, and what we achieved up to this moment is 112 gigabits per second,” says Professor Ton Koonen, Eindhoven University of Technology.

That’s the equivalent data of three full-length movies being downloaded per second. Light antennas radiate multiple invisible wavelengths at various angles. If a user’s smartphone or tablet moves out of one antenna’s sightline, another takes over. Infrared wavelengths don’t go into your eyes, making them safe to use. The lack of moving parts makes the system maintenance and power-free. While each user gets their own antenna.

The big benefits we see of our technique is that you offer unshared capacity to each individual user, so you get a guaranteed capacity. Next to that you only get a beam if you need the traffic. So we’re not illuminating the whole place where maybe a single user is there. That means it’s much more power efficient. Another efficiency, another advantage, is that light doesn’t go through walls. So that means your communication is really confined to the particular room. Nobody can listen in from outside, so it offers you a lot of security,” explains rofessor Ton Koonen.
The team is seeking funding to help make the technology widespread within five years.

Source: http://www.reuters.com/

Biodegradable Car

TU/Ecomotive (Netherlands) says ‘Lina‘ is the world’s first car with a fully biocomposite body structure. The 4-seat e-car‘s chassis uses a combination of bio-composite and bio-plastic made from sugarbeet.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

It’s made of flax, the outside is made of flax fibres, together with polypropylene. It’s pressed and heated to make flat panels. In the middle you can see polylactic acid, the honeycomb structure of that material, which adds to the strength and weight savings of the sandwich panel. All structural parts of the car are made of this material,” says Yanic Van Riel, TU/Ecomotive.

The biocomposite has a similar strength-weight ratio to fibreglass, making the car light, greatly reducing battery size.

The car weighs only 310 kilograms which is really light for a car. That’s why we only need 30 kilograms of batteries. And on those 30 kilograms of battery packs we can drive around 100 kilometres, which is about four times more efficient than a BMW i3 right now and that’s in real city driving, so braking, stopping, accelerating, not just like the most optimal driving,” explains Yanic Van Riel.

Lina has a top speed of around 50 miles per hour. Electronic features include NFCnearfield communication technology.  “We can open our doors with NFC technology and a car will immediately recognise who is driving it. So if I’m opening it, it will save all the data from me and if someone else opens it, it will save his data. In that way we can use this car for carsharing apps, which other companies are creating. Also we have a hood system which projects the speed and all the information of the car into the front window, so we can see it through the window and still see the road, so it’s more safe,” adds Noud Van De Gevel, TU/Ecomotive.

The team hopes the prototype will soon be declared roadworthy, allowing it to be tested on Eindhoven city streets.

Source: http://tuecomotive.nl/

No More Batteries For Cellphones

University of Washington (UW) researchers have invented a cellphone that requires no batteries — a major leap forward in moving beyond chargers, cords and dying phones. Instead, the phone harvests the few microwatts of power it requires from either ambient radio signals or light.

The team also made Skype calls using its battery-free phone, demonstrating that the prototype made of commercial, off-the-shelf components can receive and transmit speech and communicate with a base station.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We’ve built what we believe is the first functioning cellphone that consumes almost zero power,” said co-author Shyam Gollakota, an associate professor in the Paul G. Allen School of Computer Science & Engineering at the UW. “To achieve the really, really low power consumption that you need to run a phone by harvesting energy from the environment, we had to fundamentally rethink how these devices are designed.”

The team of UW computer scientists and electrical engineers eliminated a power-hungry step in most modern cellular transmissionsconverting analog signals that convey sound into digital data that a phone can understand. This process consumes so much energy that it’s been impossible to design a phone that can rely on ambient power sources. Instead, the battery-free cellphone takes advantage of tiny vibrations in a phone’s microphone or speaker that occur when a person is talking into a phone or listening to a call.

An antenna connected to those components converts that motion into changes in standard analog radio signal emitted by a cellular base station. This process essentially encodes speech patterns in reflected radio signals in a way that uses almost no power. To transmit speech, the phone uses vibrations from the device’s microphone to encode speech patterns in the reflected signals. To receive speech, it converts encoded radio signals into sound vibrations that that are picked up by the phone’s speaker. In the prototype device, the user presses a button to switch between these two “transmitting” and “listening” modes.

The new technology is detailed in a paper published July 1 in the Proceedings of the Association for Computing Machinery on Interactive, Mobile, Wearable and Ubiquitous Technologies.

Source: http://www.washington.edu/
AND
http://www.reuters.com/

Cheap, Robust Catalyst Splits Water Into Hydrogen And Oxygen

Splitting water into hydrogen and oxygen to produce clean energy can be simplified with a single catalyst developed by scientists at Rice University and the University of Houston. The electrolytic film produced at Rice and tested at Houston is a three-layer structure of nickel, graphene and a compound of iron, manganese and phosphorus. The foamy nickel gives the film a large surface, the conductive graphene protects the nickel from degrading and the metal phosphide carries out the reactionRice chemist Kenton Whitmire and Houston electrical and computer engineer Jiming Bao and their labs developed the film to overcome barriers that usually make a catalyst good for producing either oxygen or hydrogen, but not both simultaneously.

A catalyst developed by Rice University and the University of Houston splits water into hydrogen and oxygen without the need for expensive metals like platinum. This electron microscope image shows nickel foam coated with graphene and then the catalytic surface of iron, manganese and phosphorus

Regular metals sometimes oxidize during catalysis,” Whitmire said. “Normally, a hydrogen evolution reaction is done in acid and an oxygen evolution reaction is done in base. We have one material that is stable whether it’s in an acidic or basic solution.

The discovery builds upon the researchers’ creation of a simple oxygen-evolution catalyst revealed earlier this year. In that work, the team grew a catalyst directly on a semiconducting nanorod array that turned sunlight into energy for solar water splittingElectrocatalysis requires two catalysts, a cathode and an anode. When placed in water and charged, hydrogen will form at one electrode and oxygen at the other, and these gases are captured. But the process generally requires costly metals to operate as efficiently as the Rice team’s catalyst.

The standard for hydrogen evolution is platinum,” Whitmire explained. “We’re using Earth-abundant materials — iron, manganese and phosphorus — as opposed to noble metals that are much more expensive.

The robust material is the subject of a paper in Nano Energy.

Source: http://news.rice.edu/

SuperPowerful Tiny Device Converts Light Into Electricity

In today’s increasingly powerful electronics, tiny materials are a must as manufacturers seek to increase performance without adding bulk. Smaller also is better for optoelectronic devices — like camera sensors or solar cells —which collect light and convert it to electrical energy. Think, for example, about reducing the size and weight of a series of solar panels, producing a higher-quality photo in low lighting conditions, or even transmitting data more quickly.

However, two major challenges have stood in the way: First, shrinking the size of conventionally used “amorphousthin-film materials also reduces their quality. And second, when ultrathin materials become too thin, they are almost transparent — and actually lose some ability to gather or absorb light.

Now, in a nanoscale photodetector that combines both a unique fabrication method and light-trapping structures, a team of engineers from the University at Buffalo (UB) and the University of Wisconsin-Madison (UW-Madison) has overcome both of those obstacles. The researchers — electrical engineers Qiaoqiang Gan at UB, and Zhenqiang (Jack) Ma and Zongfu Yu at UW-Madison — described their device, a single-crystalline germanium nanomembrane photodetector on a nanocavity substrate, in the July 7, 2017, issue of the journal Science Advances.

This image shows the different layers of the nanoscale photodetector, including germanium (red) in between layers of gold or aluminum (yellow) and aluminum oxide (purple). The bottom layer is a silver substrate

We’ve created an exceptionally small and extraordinarily powerful device that converts light into energy,” says Gan, associate professor of electrical engineering in UB’s School of Engineering and Applied Sciences, and one of the paper’s lead authors. “The potential applications are exciting because it could be used to produce everything from more efficient solar panels to more powerful optical fibers.”

The idea, basically, is you want to use a very thin material to realize the same function of devices in which you need to use a very thick material,” says Ma, the Lynn H. Matthias Professor and Vilas Distinguished Achievement Professor in electrical and computer engineering at UW-Madison, also a lead author. Nanocavities are made up of an orderly series of tiny, interconnected molecules that essentially reflect, or circulate, light.

The new device is an advancement of Gan’s work developing nanocavities that increase the amount of light that thin semiconducting materials like germanium can absorb. It consists of nanocavities sandwiched between a top layer of ultrathin single-crystal germanium and a bottom, reflecting layer of silver.

Source: https://www.buffalo.edu/

How To Power The U.S. With Solar

Speaking recently at the National Governors Association Summer Meeting in Rhode Island, Elon Musk told his audience — including 30 United States governors — that it’s possible to power the nation with solar energy.

If you wanted to power the entire U.S. with solar panels, it would take a fairly small corner of Nevada or Texas or Utah; you only need about 100 miles by 100 miles of solar panels to power the entire United States,” Musk said. “The batteries you need to store the energy, to make sure you have 24/7 power, is 1 mile by 1 mile. One square-mile. That’s it.”

Why solar? Well, as Musk explained, as far as energy sources go, we can count on solar to come through for us: “People talk about fusion and all that, but the sun is a giant fusion reactor in the sky. It’s really reliable. It comes up every day. If it doesn’t we’ve got bigger problems.”

At present, about 10 percent of the U.S. is powered by renewable energy sources. To achieve a complete renewable energy power, Musk thinks solar is the way to go.

To start, he suggested combining rooftop solar and utility-scale solar plants. The former would be on the rooftops of houses in the suburbs, while the latter could power other areas. As we’ve seen with Tesla’s new rooftop solar unit, and efforts in other countries, like Australia, to build large-scale solar plants, this is a goal well within reach.

Next, while in transition from fossil fuel to solar, it’d be necessary to rely on other renewables. “We’ll need to be a combination of utility-scale solar and rooftop solar, combined with wind, geothermal, hydro, probably some nuclear for a while, in order to transition to a sustainable situation,” Musk explained.

Finally, the U.S. has to build more localized power sources, like the rooftop solar setups. “People do not like transmission lines going through their neighborhood, they really don’t like that, and I agree,” Musk said. “Rooftop solar, utility solar; that’s really going to be a solution from the physics standpoint. I can really see another way to really do it.”

When this happens, the U.S. would eliminate about 1,821 million metric tons of carbon dioxide (CO2) emissions generated by the country’s current electric power sector — 35 percent of the overall CO2 energy-related emissions in the U.S.

Source: https://futurism.com/

Use The Phone And See 3D Content Without 3D Glasses

RED, the company known for making some truly outstanding high-end cinema cameras, is set to release a smartphone in Q1 of 2018 called the HYDROGEN ONE. RED says that it is a standalone, unlocked and fully-featured smartphone “operating on Android OS that just happens to add a few additional features that shatter the mold of conventional thinking.” Yes, you read that right. This phone will blow your mind, or something – and it will even make phone calls.

In a press release riddled with buzzwords broken up by linking verbs, RED praises their yet-to-be smartphone with some serious adjectives. If we were just shown this press release outside of living on RED‘s actual server, we would swear it was satire. Here are a smattering of phrases found in the release.

Incredible retina-riveting display
Nanotechnology
Holographic multi-view content
RED Hydrogen 4-View content
Assault your senses
Proprietary H3O algorithm
Multi-dimentional audio

  • There are two models of the phone, which run at different prices. The Aluminum model will cost $1,195, but anyone worth their salt is going to go for the $1,595 Titanium version. Gotta shed that extra weight, you know?

Those are snippets from just the first three sections, of which there are nine. I get hyping a product, but this reads like a catalog seen in the background of a science-fiction comedy, meant to sound ridiculous – especially in the context of a ficticious universe.

Except that this is real life.

After spending a few minutes removing all the glitter words from this release, it looks like it will be a phone using a display similar to what you get with the Nintendo 3DS, or what The Verge points out as perhaps better than the flopped Amazon Fire Phone. Essentially, you should be able to use the phone and see 3D content without 3D glasses. Nintendo has already proven that can work, however it can really tire out your eyes. As an owner of three different Nintendo 3DS consoles, I can say that I rarely use the 3D feature because of how it makes my eyes hurt. It’s an odd sensation. It is probalby why Nintendo has released a new handheld that has the same power as the 3DS, but dropping the 3D feature altogether.

Anyway, back to the HYDROGEN ONE, RED says that it will work in tandem with their cameras as a user interface and monitor. It will also display what RED is calling “holographic content,” which isn’t well-described by RED in this release. We can assume it is some sort of mixed-dimensional view that makes certain parts of a video or image stand out over the others.

Source: http://www.red.com/
AND
http://www.imaging-resource.com/

How To Re-Wire The Brains Of People With Depression

Doctors in California say magnetic stimulation can help ‘rewire‘ the brains of people with depression, offering hope for patients whose condition is not improved by medication or therapy. Depression is one of the most common forms of mental illness, affecting more than 350 million people worldwide. Bob Holmes is one of them.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

I struggled with that for many years, didn’t know really what to do, tried to pull myself through it. And then ultimately when I got into my forties, I wasn’t successful,” says Bob Holmes, who suffers from He has been receiving transcranial magnetic stimulation at the University of California Los Angeles (UCLA), a treatment that beams targeted magnetic pulses deep inside his brain. Doctors say the therapy can effectivelyrewire‘ the brain by changing how brain circuits are arranged.

(SOUNDBITE) (English) ANDREW LEUCHTER, DIRECTOR OF THE SEMEL INSTITUTE’S TMS CLINICAL AND RESEARCH SERVICE AT THE UNIVERSITY OF CALIFORNIA LOS ANGELES, SAYING:

By pulsing it with energy repeatedly, we’re changing the way that area works, but also changing the way the whole brain network works,” explains Andrew Leuchter,Director of the Semel Institute (UCLA).

For Holmes, the treatment has been life changing.  “I would recommend it a hundred percent. I have spoken to a number of people who have depression, given them my opinion, and I think it’s a wonderful program. It’s been a life-saver for me, and I’m very grateful that I found it, and I’m very grateful for the people here,” adds Holmes.

Doctors hope the newest generation of equipment could decrease the length of a treatment session from over 35 minutes down to three minutes, allowing a patient to complete a course in two weeks and bringing the therapy to even more people with depression.

Source: http://newsroom.ucla.edu/
A
ND
http://www.reuters.com/

Nanoweapons Against North Korea

Unless you’re working in the field, you probably never heard about U.S. nanoweapons. This is intentional. The United States, as well as Russia and China, are spending billions of dollars per year developing nanoweapons, but all development is secret. Even after Pravda.ru’s June 6, 2016 headline, “US nano weapon killed Venezuela’s Hugo Chavez, scientists say,” the U.S. offered no response.

Earlier this year, May 5, 2017, North Korea claimed the CIA plotted to kill Kim Jong Un using a radioactive nano poison, similar to the nanoweapon Venezuelan scientists claim the U.S. used to assassinate former Venezuelan President Hugo Chavez. All major media covered North Korea’s claim. These accusations are substantial, but are they true? Let’s address this question.

Unfortunately, until earlier this year, nanoweapons gleaned little media attention. However, in March 2017 that changed with the publication of the book, Nanoweapons: A Growing Threat to Humanity (2017 Potomac Books), which inspired two articles. On March 9, 2017, American Security Today published “Nanoweapons: A Growing Threat to Humanity – Louis A. Del Monte,” and on March 17, 2017, CNBC published “Mini-nukes and mosquito-like robot weapons being primed for future warfare.” Suddenly, the genie was out of the bottle. The CNBC article became the most popular on their website for two days following its publication and garnered 6.5K shares. Still compared to other classes of military weapons, nanoweapons remain obscure. Factually, most people never even heard the term. If you find this surprising, recall most people never heard of stealth aircraft until their highly publicized use during the first Iraq war in 1990. Today, almost everyone that reads the news knows about stealth aircraft. This may become the case with nanoweapons, but for now, it remains obscure to the public.

Given their relative obscurity, we’ll start by defining nanoweapons. A nanoweapon is any military weapon that exploits the power of nanotechnology. This, of course, begs another question: What is nanotechnology? According to the United States National Nanotechnology Initiative’s website, nano.gov, “Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is about 1 to 100 nanometers.” To put this in simple terms, the diameter of a typical human hair equals 100,000 nanometers. This means nanotechnology is invisible to the naked eye or even under an optical microscope.

Source: http://www.huffingtonpost.com/

Artificial Intelligence Checks Identity Using Any Smartphone

Checking your identity using simulated human cognition aiThenticate say their system goes way beyond conventional facial recognition systems or the biometrics of passwords, fingerprints and eyescans.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We need to have a much greater level of a certainty who somebody actually is. In order to answer that question, we appealed to deep science, deep learning, to develop an AI method, artificial intelligence method, in other words to replicate or to mimic or to simulate the way that we as humans, intuitively and instinctively go by recognizing somebody’s head, is very different to the conventional traditional way of face recognition, finger print recognition, for that reason really represents the next generation of authentication technologies or methods,” says AiTthenticate CEO André Immelman.

aiDX uses 16 distinct tests to recognise someone – including eye prints using a standard off the shelf smart phone to access encrypted data stored in the cloud it can operate in active mode – asking the user taking a simple selfie or discreetly in the background.

André Immelman explains: “It has applications in the security sense, it has applications in a customer services sense, you know this kind of things the bank calls you up and says: this is your bank calling, please, where you live, what is your mother’s name, what’s your dog favourite hobby, whatever the case it may be. It takes that kind of guess work out of the equation completely and it answers the, “who” question to much greater levels of confidence or certainty, than what traditional or conventional biometrics have been able to do in the past.”

Billions of dollars a year are lost to identity theft globally. aiThenticate hope their new system can help stop at least some of that illegal trade.

Source: http://www.eyethenticate.za.com/
AND
http://www.reuters.com/

Building Brain-Inspired AI Supercomputing System

IBM (NYSE: IBM) and the U.S. Air Force Research Laboratory (AFRL) today announced they are collaborating on a first-of-a-kind brain-inspired supercomputing system powered by a 64-chip array of the IBM TrueNorth Neurosynaptic System. The scalable platform IBM is building for AFRL will feature an end-to-end software ecosystem designed to enable deep neural-network learning and information discovery. The system’s advanced pattern recognition and sensory processing power will be the equivalent of 64 million neurons and 16 billion synapses, while the processor component will consume the energy equivalent of a dim light bulb – a mere 10 watts to power.
IBM researchers believe the brain-inspired, neural network design of TrueNorth will be far more efficient for pattern recognition and integrated sensory processing than systems powered by conventional chips. AFRL is investigating applications of the system in embedded, mobile, autonomous settings where, today, size, weight and power (SWaP) are key limiting factors. The IBM TrueNorth Neurosynaptic System can efficiently convert data (such as images, video, audio and text) from multiple, distributed sensors into symbols in real time. AFRL will combine this “right-brain perception capability of the system with the “left-brain” symbol processing capabilities of conventional computer systems. The large scale of the system will enable both “data parallelism” where multiple data sources can be run in parallel against the same neural network and “model parallelism” where independent neural networks form an ensemble that can be run in parallel on the same data.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

AFRL was the earliest adopter of TrueNorth for converting data into decisions,” said Daniel S. Goddard, director, information directorate, U.S. Air Force Research Lab. “The new neurosynaptic system will be used to enable new computing capabilities important to AFRL’s mission to explore, prototype and demonstrate high-impact, game-changing technologies that enable the Air Force and the nation to maintain its superior technical advantage.”

“The evolution of the IBM TrueNorth Neurosynaptic System is a solid proof point in our quest to lead the industry in AI hardware innovation,” said Dharmendra S. Modha, IBM Fellow, chief scientist, brain-inspired computing, IBM Research – Almaden. “Over the last six years, IBM has expanded the number of neurons per system from 256 to more than 64 million – an 800 percent annual increase over six years.’’

Source: https://www-03.ibm.com/