Posts belonging to Category nanoelectronics



TriboElectricity, The Green Energy Source

Researchers from Clemson’s Nanomaterials Institute (CNI) are one step closer to wirelessly powering the world using triboelectricity, a green energy source. In March 2017, a group of physicists at CNI invented the ultra-simple triboelectric nanogenerator or U-TENG, a small device made of plastic and tape that generates electricity from motion and vibrations. When the two materials are brought together — through such actions as clapping the hands or tapping feet — they generate voltage that is detected by a wired, external circuit. Electrical energy, by way of the circuit, is then stored in a capacitor or a battery until it’s needed.

Nine months later, in a paper published in the journal Advanced Energy Materials, the researchers reported that they had created a wireless TENG, called the W-TENG, which greatly expands the applications of the technology. The W-TENG was engineered under the same premise as the U-TENG using materials that are so opposite in their affinity for electrons that they generate a voltage when brought in contact with each other.

In the W-TENG, plastic was swapped for a multipart fiber made of graphene — a single layer of graphite, or pencil lead — and a biodegradable polymer known as polylactic acid (PLA). PLA on its own is great for separating positive and negative charges, but not so great at conducting electricity, which is why the researchers paired it with graphene. Kapton tape, the electron-grabbing material of the U-TENG, was replaced with Teflon, a compound known for coating nonstick cooking pans.

After assembling the graphene-PLA fiber, the researchers pulled it into a 3-D printer and the W-TENG was born. The end result is a device that generates a maximum of 3,000 volts — enough to power 25 standard electrical outlets or, on a grander scale, smart-tinted windows or a liquid crystal display (LCD) monitor. Because the voltage is so high, the W-TENG generates an electric field around itself that can be sensed wirelessly. Its electrical energy, too, can be stored wirelessly in capacitors and batteries.

It cannot only give you energy, but you can use the electric field also as an actuated remote. For example, you can tap the W-TENG and use its electric field as a ‘button’ to open your garage door, or you could activate a security system — all without a battery, passively and wirelessly,” said Sai Sunil Mallineni, the first author of the study and a Ph.D. student in physics and astronomy.

Source: http://newsstand.clemson.edu
/

Flexible, Low-Cost, Water-Repellent Gaphene Circuits

New graphene printing technology can produce electronic circuits that are low-cost, flexible, highly conductive and water repellent. The nanotechnology “would lend enormous value to self-cleaning wearable/washable electronics that are resistant to stains, or ice and biofilm formation,” according to a recent paper describing the discovery.

“We’re taking low-cost, inkjet-printed graphene and tuning it with a laser to make functional materials,” said Jonathan Claussen, an Iowa State University assistant professor of mechanical engineering, an associate of the U.S. Department of Energy’s and the corresponding author of the paper recently featured on the cover of the journal Nanoscale. The paper describes how Claussen and the nanoengineers in his research group use to create electric circuits on flexible materials. In this case, the ink is flakes of graphene – the wonder material can be a great conductor of electricity and heat, plus it’s strong, stable and biocompatible.

And now they’ve found another application of their laser processing technology: taking graphene-printed circuits that can hold water droplets (they’re hydrophilic) and turning them into circuits that repel water (they’re superhydrophobic).

We’re micro-patterning the surface of the inkjet-printed graphene,” Claussen said. “The laser aligns the graphene flakes vertically – like little pyramids stacking up. And that’s what induces the hydrophobicity.” Claussen said the energy density of the laser processing can be adjusted to tune the degree of hydrophobicity and conductivity of the printed graphene circuits. And that opens up all kinds of possibilities for new electronics and sensors, according to the paper. “One of the things we’d be interested in developing is anti-biofouling materials,” said Loreen Stromberg, a paper co-author and an Iowa State postdoctoral research associate in mechanical engineering and for the Virtual Reality Applications Center. “This could eliminate the buildup of biological materials on the surface that would inhibit the optimal performance of devices such as chemical or biological sensors.”

The technology could also have applications in flexible electronics, washable sensors in textiles, microfluidic technologies, drag reduction, de-icing, electrochemical sensors and technology that uses graphene structures and electrical simulation to produce stem cells for nerve regeneration. The researchers wrote that further studies should be done to better understand how the nano– and microsurfaces of the printed graphene creates the water-repelling capabilities. .

The Iowa State University Research Foundation is working to patent the technology and has optioned it to an Ames-based startup, NanoSpy Inc., for possible commercialization. NanoSpy, located at the Iowa State University Research Park, is developing sensors to detect salmonella and other pathogens in food processing plants. Claussen and Stromberg are part of the company.

Source: https://www.news.iastate.edu/

Adding Graphene To Silicon Electrodes Double Lithium Batteries Life

New research led by WMG (academic department), at the University of Warwick (UK) has found an effective approach to replacing graphite in the anodes of lithium-ion batteries using silicon, by reinforcing the anode’s structure with graphene girders. This could more than double the life of rechargeable lithium-ion based batteries by greatly extending the operating lifetime of the electrode, and also increase the capacity delivered by those batteries.

Graphite has been the default choice of active material for anodes in lithium—ion batteries since their original launch by Sony but researchers and manufacturers have long sought a way to replace graphite with silicon, as it is an abundantly available element with ten times the gravimetric energy density of graphite. Unfortunately, silicon has several other performance issues that continue to limit its commercial exploitation.

Due to its volume expansion upon lithiation silicon particles can electrochemically agglomerate in ways that impede further charge-discharge efficiency over time. Silicon is also not intrinsically elastic enough to cope with the strain of lithiation when it is repeatedly charged, leading to cracking, pulverisation and rapid physical degradation of the anode’s composite microstructure. This contributes significantly to capacity fade, along with degradation events that occur on the counter electrode – the cathode. To use the mobile phones as an example, this is why we have to charge our phones for a longer and longer time, and it is also why they don’t hold their charge for as long as when they are new.

However new research, led by Dr Melanie Loveridge in WMG at the University of Warwick, has discovered, and tested, a new anode mixture of silicon and a form of chemically modified graphene which could resolve these issues and create viable silicon anode lithium-ion batteries. Such an approach could be practically manufactured on an industrial scale and without the need to resort to nano sizing of silicon and its associated problems.

The new research has been published in Nature Scientific Reports.

Source: https://warwick.ac.uk/

Ultra-Thin Memory Storage For Nanocomputer

Engineers worldwide have been developing alternative ways to provide greater memory storage capacity on even smaller computer chips. Previous research into two-dimensional atomic sheets for memory storage has failed to uncover their potential — until now. A team of electrical engineers at The University of Texas at Austin, in collaboration with Peking University scientists, has developed the thinnest memory storage device with dense memory capacity, paving the way for faster, smaller and smarter computer chips for everything from consumer electronics to big data to brain-inspired computing.

For a long time, the consensus was that it wasn’t possible to make memory devices from materials that were only one atomic layer thick,” said Deji Akinwande, associate professor in the Cockrell School of Engineering’s Department of Electrical and Computer Engineering. “With our new ‘atomristors,’ we have shown it is indeed possible.”

Made from 2-D nanomaterials, the “atomristors” — a term Akinwande coined — improve upon memristors, an emerging memory storage technology with lower memory scalability. He and his team published their findings in the January issue of Nano Letters.

Atomristors will allow for the advancement of Moore’s Law at the system level by enabling the 3-D integration of nanoscale memory with nanoscale transistors on the same chip for advanced computing systems,” Akinwande said.

Memory storage and transistors have, to date, always been separate components on a microchip, but atomristors combine both functions on a single, more efficient computer system. By using metallic atomic sheets (graphene) as electrodes and semiconducting atomic sheets (molybdenum sulfide) as the active layer, the entire memory cell is a sandwich about 1.5 nanometers thick, which makes it possible to densely pack atomristors layer by layer in a plane. This is a substantial advantage over conventional flash memory, which occupies far larger space. In addition, the thinness allows for faster and more efficient electric current flow.

Given their size, capacity and integration flexibility, atomristors can be packed together to make advanced 3-D chips that are crucial to the successful development of brain-inspired computing. One of the greatest challenges in this burgeoning field of engineering is how to make a memory architecture with 3-D connections akin to those found in the human brain.

The sheer density of memory storage that can be made possible by layering these synthetic atomic sheets onto each other, coupled with integrated transistor design, means we can potentially make computers that learn and remember the same way our brains do,” Akinwande said.

Source: https://news.utexas.edu

Memristors Retain Data 10 Years Without Power

The internet of things ( IoT) is coming, that much we know. But still it won’t; not until we have components and chips that can handle the explosion of data that comes with IoT. In 2020, there will already be 50 billion industrial internet sensors in place all around us. A single autonomous device – a smart watch, a cleaning robot, or a driverless car – can produce gigabytes of data each day, whereas an airbus may have over 10 000 sensors in one wing alone.

Two hurdles need to be overcome. First, current transistors in computer chips must be miniaturized to the size of only few nanometres; the problem is they won’t work anymore then. Second, analysing and storing unprecedented amounts of data will require equally huge amounts of energy. Sayani Majumdar, Academy Fellow at Aalto University (Finland), along with her colleagues, is designing technology to tackle both issues.

Majumdar has with her colleagues designed and fabricated the basic building blocks of future components in what are called “neuromorphiccomputers inspired by the human brain. It’s a field of research on which the largest ICT companies in the world and also the EU are investing heavily. Still, no one has yet come up with a nano-scale hardware architecture that could be scaled to industrial manufacture and use.

The probe-station device (the full instrument, left, and a closer view of the device connection, right) which measures the electrical responses of the basic components for computers mimicking the human brain. The tunnel junctions are on a thin film on the substrate plate.

The technology and design of neuromorphic computing is advancing more rapidly than its rival revolution, quantum computing. There is already wide speculation both in academia and company R&D about ways to inscribe heavy computing capabilities in the hardware of smart phones, tablets and laptops. The key is to achieve the extreme energy-efficiency of a biological brain and mimic the way neural networks process information through electric impulses,” explains Majumdar.

In their recent article in Advanced Functional Materials, Majumdar and her team show how they have fabricated a new breed of “ferroelectric tunnel junctions”, that is, few-nanometre-thick ferroelectric thin films sandwiched between two electrodes. They have abilities beyond existing technologies and bode well for energy-efficient and stable neuromorphic computing.

The junctions work in low voltages of less than five volts and with a variety of electrode materials – including silicon used in chips in most of our electronics. They also can retain data for more than 10 years without power and be manufactured in normal conditions.

Tunnel junctions have up to this point mostly been made of metal oxides and require 700 degree Celsius temperatures and high vacuums to manufacture. Ferroelectric materials also contain lead which makes them – and all our computers – a serious environmental hazard.

Our junctions are made out of organic hydro-carbon materials and they would reduce the amount of toxic heavy metal waste in electronics. We can also make thousands of junctions a day in room temperature without them suffering from the water or oxygen in the air”, explains Majumdar.

What makes ferroelectric thin film components great for neuromorphic computers is their ability to switch between not only binary states – 0 and 1 – but a large number of intermediate states as well. This allows them to ‘memoriseinformation not unlike the brain: to store it for a long time with minute amounts of energy and to retain the information they have once received – even after being switched off and on again.

We are no longer talking of transistors, but ‘memristors’. They are ideal for computation similar to that in biological brains.  Take for example the Mars 2020 Rover about to go chart the composition of another planet. For the Rover to work and process data on its own using only a single solar panel as an energy source, the unsupervised algorithms in it will need to use an artificial brain in the hardware.

What we are striving for now, is to integrate millions of our tunnel junction memristors into a network on a one square centimetre area. We can expect to pack so many in such a small space because we have now achieved a record-high difference in the current between on and off-states in the junctions and that provides functional stability. The memristors could then perform complex tasks like image and pattern recognition and make decisions autonomously,” says Majumdar.

Source: http://www.aalto.fi/

Flat Lens Boost Virtual Reality

Metalensesflat surfaces that use nanostructures to focus light — promise to revolutionize optics by replacing the bulky, curved lenses currently used in optical devices with a simple, flat surface.  But, these metalenses have remained limited in the spectrum of light they can focus well Now a team of researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has developed the first single lens that can focus the entire visible spectrum of light — including white light — in the same spot and in high resolution. This has only ever been achieved in conventional lenses by stacking multiple lenses.

Focusing the entire visible spectrum and white light – combination of all the colors of the spectrum — is so challenging because each wavelength moves through materials at different speeds. Red wavelengths, for example, will move through glass faster than the blue, so the two colors will reach the same location at different times resulting in different foci. This creates image distortions known as chromatic aberrations.

Cameras and optical instruments use multiple curved lenses of different thicknesses and materials to correct these aberrations, which, of course, adds to the bulk of the device.

Metalenses have advantages over traditional lenses,” says Federico Capasso, Professor of Applied Physics at SEAS and senior author of the research. “Metalenses are thin, easy to fabricate and cost effective. This breakthrough extends those advantages across the whole visible range of light. This is the next big step. Using our achromatic lens, we are able to perform high quality, white light imaging. This brings us one step closer to the goal of incorporating them into common optical devices such as cameras“.

The research is published in Nature Nanotechnology.

Source: https://www.seas.harvard.edu/

Fabric Made Of Nanofibers With Embedded OLED

In South Korea, Professor Kyung Cheol Choi from the School of Electrical Engineering (KAIST)  and his team succeeded in fabricating highly efficient Organic Light-Emitting Diodes (OLEDs) on an ultra-thin fiber. The team expects the technology, which produces high-efficiency, long-lasting OLEDs, can be widely utilized in wearable displays. Existing fiber-based wearable displays’ OLEDs show much lower performance compared to those fabricated on planar substrates. This low performance caused a limitation for applying it to actual wearable displays.

In order to solve this problem, the team designed a structure of OLEDs compatible to fiber and used a dip-coating method in a three-dimensional structure of fibers. Through this method, the team successfully developed efficient OLEDs that are designed to last a lifetime and are still equivalent to those on planar substrates.
The team identified that solution process planar OLEDs can be applied to fibers without any reduction in performance through the technology. This fiber OLEDs exhibited luminance and current efficiency values of over 10,000 cd/m^2(candela/square meter) and 11 cd/A (candela/ampere).
The team also verified that the fiber OLEDs withstood tensile strains of up to 4.3% while retaining more than 90% of their current efficiency. In addition, they could be woven into textiles and knitted clothes without causing any problems.Moreover, the technology allows for fabricating OLEDs on fibers with diameters ranging from 300㎛ down to 90㎛, thinner than a human hair, which attests to the scalability of the proposed fabrication scheme.
Noting that every process is carried out at a low temperature (~105℃), fibers vulnerable to high temperatures can also employ this fabrication scheme.
Professor Choi said, “Existing fiber-based wearable displays had limitations for applicability due to their low performance. However, this technology can fabricate OLEDs with high performance on fibers. This simple, low-cost process opens a way to commercialize fiber-based wearable displays.”
Source: http://www.kaist.edu/

Nano-based Chip Detects Explosives

Technical University of Denmark (DTU) is ready with a prototype for a chemical “sniffer system” for the detection of criminal substances like narcotics and explosivesDogs have an eminent sense of smell. Their snouts use a specific sniffing technique which almost grabs hold of scents. Elephants’ snouts are even better than those of dogs, but obviously these are attached to elephants which are difficult to carry around. Consequently, today dogs are employed to track narcotics, money and explosives. Sometimes dogs are able to sense explosives in very small doses, however, they are not always 100 percent reliable as they are also sensitive to changes in their surroundings. A technological solution is therefore to be preferred in the tracking of stocks of narcotics or explosive materials.

Researchers at DTU have developed the prototype of a chip able to sniff molecular structures from a number of known substances. A special camera visualises the results from the chip (with 24 megapixels per 15 second) and newly developed software interprets these images according to changes in colour (i.e. the difference between two pictures), caused by the impact of the scents in the air.

We have conducted experiments by sucking air from smaller containers like e.g. handbags or pieces of luggage and from large industrial sized containers typically used for smuggling. In both cases, we arrived at promising results”, says Mogens Havsteen Jakobsen, Senior Researcher at DTU Nanotech.

By using the so-called colorimetric sensing technique, the artificial nose is able to detect different substances like explosives, narcotics, the ripeness of cheese, rotten meat and fish, the quality of wine and coffee or bad indoor climate of a room.

The project has specifically targeted explosives which are a growing safety risk in our society. The Chemical Division of the Danish Emergency Management Agency has been an important collaborator because they are authorised to produce and handle explosives. “We have test laboratories which have been made available during the course of the project”, says Jesper Mogensen, civil engineer and analysis chemist at the Chemical Division and therefore used to handling explosives.

There will be some evident advantages in using a technology such as CRIM-TRACK, compared to the instruments available today,” Jesper Mogensen says. “Firstly, the preparation time is short in that what you largely need to do is switch on the tracker and use it. This is valuable time saved. Secondly and perhaps the most important advantage is the fact that the EOD (the Explosive Ordnance Disposal) does not need to collect a sample. Today when we are called to a ransacking if e.g. a kilo of white powder has been found and we have to analyse its chemistry by way of GC-MS (i.e. gas chromatography-mass spectrometry), a sample of the substance must be collected on a fibre. In other words, it is necessary to collect physically a sample with all the risks this entails. With DTU’s sniffer system, it is possible to collect samples in the air. It sniffs for the drug much like a dog and indicates whether there are any explosives or not. This will increase the safety of our EOD”.

Source: http://www.nanotech.dtu.dk/

In 2025 Humanity Could Benefit From A Major New Source Of Clean Power

An international project to generate energy from nuclear fusion has reached a key milestone, with half of the infrastructure required now built. Bernard Bigot, the director-general of the International Thermonuclear Experimental Reactor (Iter), the main facility of which is based in southern France, said the completion of half of the project meant the effort was back on track, after a series of difficulties. This would mean that power could be produced from the experimental site from 2025.

Nuclear fusion occurs when two atoms combine to form a new atom and a neutron. The atoms are fired into a plasma where extreme temperatures overcome their repulsion and forces them together. The fusion releases about four times the energy produced when an atom is split in conventional nuclear fission

The effort to bring nuclear fusion power closer to operation is backed by some of the world’s biggest developed and emerging economies, including the EU, the US, China, India, Japan, Korea and Russia. However, a review of the long-running project in 2013 found problems with its running and organisation. This led to the appointment of Bigot, and a reorganisation that subsequent reviews have broadly endorsed.

Fusion power is one of the most sought-after technological goals in the pursuit of clean energy. Nuclear fusion is the natural phenomenon that powers the sun, converting hydrogen into helium atoms through a process that occurs at extreme temperatures.

Replicating that process on earth at sufficient scale could unleash more energy than is likely to be needed by humanity, but the problem is creating the extreme conditions necessary for such reactions to occur, harnessing the resulting energy in a useful way, and controlling the reactions once they have been induced.

The Iter project aims to use hydrogen fusion, controlled by large superconducting magnets, to produce massive heat energy which would drive turbines – in a similar way to the coal-fired and gas-fired power stations of today – that would produce electricity. This would produce power free from carbon emissions, and potentially at low cost, if the technology can be made to work at a large scale.

For instance, according to Iter scientists, an amount of hydrogen the size of a pineapple could be used to produce as much energy as 10,000 tonnes of coal.

Source: https://www.theguardian.com/

Gilded fuel cells boost electric car efficiency

To make modern-day fuel cells less expensive and more powerful, a team led by Johns Hopkins chemical engineers has drawn inspiration from the ancient Egyptian tradition of gilding. Egyptian artists at the time of King Tutankhamun often covered cheaper metals (copper, for instance) with a thin layer of a gleaming precious metal such as gold to create extravagant masks and jewelry. In a modern-day twist, the Johns Hopkins-led researchers have applied a tiny coating of costly platinum just one nanometer thick—100,000 times thinner than a human hair—to a core of much cheaper cobalt. This microscopic marriage could become a crucial catalyst in new fuel cells that generate electric current to power cars and other machines.

The new fuel cell design would save money because it would require far less platinum, a very rare and expensive metal that is commonly used as a catalyst in present-day fuel-cell electric cars. The researchers, who published their work earlier this year in Nano Letters, say that by making electric cars more affordable, this innovation could curb the emission of carbon dioxide and other pollutants from gasoline– or diesel-powered vehicles.

This technique could accelerate our launch out of the fossil fuel era,” said Chao Wang, a Johns Hopkins assistant professor in the Department of Chemical and Biomolecular Engineering and senior author of the study. “It will not only reduce the cost of fuel cells. It will also improve the energy efficiency and power performance of clean electric vehicles powered by hydrogen.”

In their journal article, the authors tipped their hats to the ancient Egyptian artisans who used a similar plating technique to give copper masks and other metallic works of art a lustrous final coat of silver or gold.The idea,” Wang said, “is to put a little bit of the precious treasure on top of the cheap stuff.”

He pointed out that platinum, frequently used in jewelry, also is a critical material in modern industry. It catalyzes essential reactions in activities including petroleum processing, petrochemical synthesis, and emission control in combustion vehicles, and is used in fuel cells. But, he said, platinum’s high cost and limited availability have made its use in clean energy technologies largely impractical—until now.

Source: https://hub.jhu.edu/

DNA Origami, The New Revolution To Come For Nanotechnology

For the past few decades, some scientists have known the shape of things to come in nanotechnology is tied to the molecule of life, DNA. This burgeoning field is called “DNA origami.” The moniker is borrowed from the art of conjuring up birds, flowers and other shapes by imaginatively folding a single sheet of paper. Similarly, DNA origami scientists are dreaming up a variety of shapes — at a scale one thousand times smaller than a human hair — that they hope will one day revolutionize computing, electronics and medicine. Now, a team of Arizona State University and Harvard scientists has invented a major new advance in DNA nanotechnology. Dubbed “single-stranded origami” (ssOrigami), their new strategy uses one long noodle-like strand of DNA, or its chemical cousin RNA, that can self-fold — without even a single knot — into the largest, most complex structures to date. And the strands forming these structures can be made inside living cells or using enzymes in a test tube, allowing scientists the potential to plug-and-play with new designs and functions for nanomedicine: picture tiny nanobots playing doctor and delivering drugs within cells at the site of injury.

A DNA origami with an emoji-like smiley face

I think this is an exciting breakthrough, and a great opportunity for synthetic biology as well,” said Hao Yan, a co-inventor of the technology, director of the ASU Biodesign Institute’s Center for Molecular Design and Biomimetics, and the Milton Glick Professor in the School of Molecular Sciences.

We are always inspired by nature’s designs to make information-carrying molecules that can self-fold into the nanoscale shapes we want to make,” he said.

As proof of concept, they’ve pushed the envelope to make 18 shapes, including emoji-like smiley faces, hearts and triangles, that significantly expand the design studio space and material scalability for so-called, “bottom-upnanotechnology.

Source: https://asunow.asu.edu/

Lenses Provide Nano Scale X-ray Microscopy

Scientists at DESY (Germany) have developed novel lenses that enable X-ray microscopy with record resolution in the nanometre regime. Using new materials, the research team led by DESY scientist Saša Bajt from the Center for Free-Electron Laser Science (CFEL) has perfected the design of specialised X-ray optics and achieved a focus spot size with a diameter of less than ten nanometres. A nanometre is a millionths of a millimetre and is smaller than most virus particles. They successfully used their lenses to image samples of marine plankton.

Modern particle accelerators provide ultra-bright and high-quality X-ray beams. The short wavelength and the penetrating nature of X-rays are ideal for the microscopic investigation of complex materials. However, taking full advantage of these properties requires highly efficient and almost perfect optics in the X-ray regime. Despite extensive efforts worldwide this turned out to be more difficult than expected, and achieving an X-ray microscope that can resolve features smaller than 10 nm is still a big challenge.

 

The silica shell of the diatom Actinoptychus senarius, measuring only 0.1 mm across, is revealed in fine detail in this X-ray hologram recorded at 5000-fold magnification with the new lenses. The lenses focused an X-ray beam to a spot of approximately eight nanometres diameter – smaller than a single virus – which then expanded to illuminate the diatom and form the hologram

The new lenses consist of over 10 000 alternating layers of a new material combination, tungsten carbide and silicon carbide. “The selection of the right material pair was critical for the success,” emphasises Bajt. “It does not exclude other material combinations but it is definitely the best we know now.” The resolution of the new lenses is about five times better than achievable with typical state-of-the-art lenses.

We produced the world’s smallest X-ray focus using high efficiency lenses,” says Bajt. The new lenses have an efficiency of more than 80 per cent. This high efficiency is achieved with the layered structures that make up the lens and which act like an artificial crystal to diffract X-rays in a controlled way.

The researchers have reported their work in the journal Light: Science and Applications.

Source: http://www.desy.de/