Posts belonging to Category nanofluids



How Yo Make Sea Water Drinkable

Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies. Now the much sought-after development of making membranes capable of sieving common salts has been achieved. New research demonstrates the real-world potential of providing clean drinking water for millions of people who struggle to access adequate clean water sources. Graphene-oxide membranes developed at the National Graphene Institute have already demonstrated the potential of filtering out small nanoparticles, organic molecules, and even large salts. Until now, however, they couldn’t be used for sieving common salts used in desalination technologies, which require even smaller sieves. Previous research at The University of Manchester found that if immersed in water, graphene-oxide membranes become slightly swollen and smaller salts flow through the membrane along with water, but larger ions or molecules are blocked.

The Manchester-based group have now further developed these graphene membranes and found a strategy to avoid the swelling of the membrane when exposed to water. The pore size in the membrane can be precisely controlled which can sieve common salts out of salty water and make it safe to drink.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Realisation of scalable membranes with uniform pore size down to atomic scale is a significant step forward and will open new possibilities for improving the efficiency of desalination technology,” says Professor Rahul Raveendran Nair.

The new findings from a group of scientists at The University of Manchester have been published in the journal Nature Nanotechnology.

Source: http://www.manchester.ac.uk/
AND
http://www.reuters.com/

Scalable Production of Conductive Graphene Inks

Conductive inks based on graphene and layered materials are key for low-cost manufacturing of flexible electronics, novel energy solutions, composites and coatings. A new method for liquid-phase exfoliation of graphite paves the way for scalable production.

Conductive inks are useful for a range of applications, including printed and flexible electronics such as radio frequency identification (RFID) antennas, transistors or photovoltaic cells. The advent of the internet of things is predicted to lead to new connectivity within everyday objects, including in food packaging. Thus, there is a clear need for cheap and efficient production of electronic devices, using stable, conductive and non-toxic components. These inks can also be used to create novel composites, coatings and energy storage devices.

A new method for producing high quality conductive graphene inks with high concentrations has been developed by researchers working at the Cambridge Graphene Centre at the University of Cambridge, UK. The novel method uses ultrahigh shear forces in a microfluidisation process to exfoliate graphene flakes from graphite. The process converts 100% of the starting graphite material into usable flakes for conductive inks, avoiding the need for centrifugation and reducing the time taken to produce a usable ink. The research, published in ACS Nano, also describes optimisation of the inks for different printing applications, as well as giving detailed insights into the fluid dynamics of graphite exfoliation.

graphene scalable production

“This important conceptual advance will significantly help innovation and industrialization. The fact that the process is already licensed and commercialized indicates how it is feasible to cut the time from lab to market” , said Prof. Andrea Ferrari, Director of the Cambridge Graphene Centre.

Source: http://www.graphene.cam.ac.uk/

Understanding The Risks Of Nanotechnology

When radioactive materials were first introduced into society, it took a while before scientists understood the risks. The same is true of nanotechnology today, according to Dr Vladimir Baulin, from University Rovira i Virgili, in Tarragona, Spain, who together with colleagues has shown for the first time how nanoparticles can cross biological – or lipidmembranes in a paper published in the journal Science Advances
Nanotechnology is all around us, in building materials, in toothpaste and in cleaning products. Across Europe, hundreds of institutions are working together to look at how to monitor exposure, manage the risks and advise on what regulations may be needed under the EU’s NanoSafety Cluster.

nanoparticles effects on lipids

This is the first observation to show directly how tiny gold nanoparticles can cross a lipid bilayer (main part of a biological membrane). This process was quantified and the time of each step was estimated. The lipid membrane is the ultimate barrier protecting cells from the outside environment and if the nanoparticles can cross this barrier they may go into cells.’

‘Dr Jean-Baptiste Fleury (from Saarland University in Germany) designed a special set-up with two chambers separated by a lipid bilayer, which contained fluorescent lipids (fat molecules). Non-fluorescent nanoparticles were added to only one of the chambers. In this set-up, nanoparticles became visible only when they touched the fluorescent bilayer and exchanged lipids with it. If one sees the fluorescent nanoparticle in the second chamber, this means it was in contact with the bilayer and it crossed the bilayer from one chamber to another. This was the proof. In addition, the process of translocation was quantified and the time of the crossing was estimated as milliseconds.’

All biological objects, biomolecules, proteins that exist in living organisms evolved over billions of years to adapt to each other. Nanoparticles which are synthesised in the laboratory are thus considered by a living organism as something foreign. It is a big challenge to make them compatible and not toxic.’ ‘I would count the applications of nanoparticles as starting from the 1985 Nobel Prize for the discovery of fullerenes (molecules of hollow football-shaped carbon). This was the start of the nanoparticle boom.’

This is becoming urgent because nanoparticles and nanotechnology in general are entering our lives. Now it is possible to synthesise nanomaterials with precise control, fabricate nanostructures on surfaces and do precise tailoring of the properties of nanoparticles.

‘It is becoming quite urgent to understand the exact mechanisms of nanotoxicity and make a classification depending on the mechanism. Radioactivity or X-rays entered our lives the same way. It took time until researchers understood the mechanisms of action on living organisms and the regulations evolved with our understanding.’

gold nanoparticles cross the membrane

This is the first observation to show directly how tiny gold nanoparticles can cross a lipid bilayer.

An empirical test of toxicity is that you put nanoparticles into the cells and you see the cells are dead, but you don’t understand what has happened, this is empirical. This is a legitimate tool, but it is not enough to address toxicity. Instead, one could start from the properties of nanoparticles and think about classifying nano-objects based on their physical or chemical properties by trying to predict the effect of a given nanoparticle on a cell or tissue beforehand.

I understand, it may look too ambitious, since there are a lot of tiny details that are not considered at the moment in theoretical models or any classification. However, even if it may not be exact, it can give some guidance and it would be possible to make predictions on how nanoparticles and polymers interact with lipid membranes. For example, in this study we used theoretical modelling to suggest the size and surface properties of the nanoparticle that is able to cross the lipid membrane through a certain pathway and it was observed experimentally.’

Source: https://horizon-magazine.eu/

Robotic Sommelier Blends The Wine That Matches Your Personal Taste

It’s a device that may have wine aficionados spluttering into their claret. Vinfusion is a robotic sommelier that helps you blend a glass of wine to your specific taste. It’s pre-loaded with four distinct base wines that can be mixed together into hundreds of new flavour combinations.

wineCLICK ON THE IMAGE TO ENJOY THE VIDEO

We took about 30-odd wines into the lab and analysed the chemical profile of those individual wines… we narrowed it down to four base wines; these are a Chilean Pinot Noir, a Chilean Merlot, an Australian Shiraz and a French sweet wine which is a Muscat. And we chose these wines to represent the extremes of the flavour space that we developed,” says Sajith Wimalaratne, Manager at Cambridge Consultants. Using simple terms like full-bodied or light, and dry or sweet the user simply adjusts the parameters on a sliding scale. Vinfusion also makes recommendations based on the wine you’ve created.

I’m going to blend my own wine. So I’m going to have quite a full-bodied wine, pretty soft and fairly sweet. And it says that this wine is similar to a ruby port. And now I’m going to blend this wine; so you can see we’ve got four wines blending in the chamber here, they’re coming in the top and they’re also being aerated to open up the bouquet of the wine, just as you would open a red wine for a while before you drink it.” adds Andrew Stratton, fluids engineer at Cambridge Consultants.

The wine dispensed – while certainly quaffable – would be unlikely to pass muster with serious wine lovers. The makers deliberately chose base wines priced around the 10-dollars the average consumer spend on a bottle.  “Wine is a complex beverage. And a lot of people just tend to stick to one or two that they know. But what we wanted to do was actually make this amazing range of wines out there, and make it more accessible to the consumer,” comments Sajith Wimalaratne.   Winemaking is steeped in history, largely defying technological interference. Vinfusion could, in theory, be loaded with finer wines producing a higher quality beverage. For wine snobs, however, any Vinfusion vintage might just be too unpalatable.

Source: http://www.reuters.com/

Lab-grown Bones Transplanted With Success

A lab-grown, semi-liquid bone graft has been successfully injected into 11 patients’ jaws to repair bone loss. Israeli biotech firm Bonus Biogroup announced the early stage clinical trial results.

bones

CLICK ON THE IMAGE TO ENJOY THE VIDEO
What we are announcing to the world is that real success in our clinical study in regenerating new bone in maxillofacial site in the jaws, it was 100 percent successful in all 11 patients,” says Ora Burger, Vice President of Regulations Affairs at Bonus BioGroup.

The injectable bone grafts are made in the company’s Haifa plant, using cells extracted from patients’ fat tissue. They’re grown in sterile clean rooms, on biodegradable 3D scaffolds, before being injected into the voids in the jawbones.

We inject our semi-solid product inside of this defect and here we can see 12 weeks later that the bone is functional, we can see a full bone, a whole bone which is strong and hard and functional” comments Atara Novaks , Head of Research at Bonus BioGroup.

What we inject is a live bone. This is the first time ever that it’s been done,” adds Ora Burger. A clinical study into longer – so-called extremity – bones is now planned.

Source: http://www.bonus-bio.com/

Nanotechnology To Save Polluted Lakes

Peruvian scientist Marino Morikawa, known for his work revitalizing polluted wetlands in the North of Lima using nanotechnology, now plans to try to clean up Lake Titicaca and the Huacachina lagoon, an oasis south of Lima. El Cascajo, an ecosystem of 123 acres in Chancay district, located north of Lima, began its recovery process in 2010 with two inventions that Morikawa came up with using his own resources and money..The project started after he got a call from Morikawa’s father, who informed him that El Cascajo, where he had gone fishing in so many occasion as a child, was “in very bad shape,” Morikawa explains.

The scientist set out to find a way to decontaminate the wetlands without using chemicals. His first invention was a micro nanobubbling system, consisting of bubbles10,000 times smaller than those in soda – which help trap and paralyze viruses and bacteria, causing them to evaporate. He also designed biological filters to retain inorganic pollutants, such as heavy metals and minerals that adhere to surfaces and are decomposed by bacteriaIn just 15 days, the effort led to a revival of the wetlands, a process that in the laboratory had taken six months.

nanobubbles

Nature does its job. All I do is give it a boost to speed up the process,” Morikawa adds.

By 2013, about 60 percent of the wetlands was repopulated by migratory birds, that use El Cascajo as a layover on their route from Canada to Patagonia. Now, Morikawa has helped recover 30 habitats around the world, but has his sights on two ecosystems that are emblematic in Peru.

The first, scheduled for 2018, is the recovery of Lake Titicaca, the largest lake in South America, located 4,000 meters (13,115 feet) above sea level between Peru and Bolivia. The second project aims to restore the Huacachina lagoon near the southern city of Ica, where water stopped seeping in naturally in the 1980s.

Source: http://www.peruthisweek.com

Nanotechnology Boosts Oil Recovery

As oil producers struggle to adapt to , getting as much oil as possible out of every well has become even more important, despite concerns from nearby residents that some chemicals used to boost production may pollute underground water resources.

Researchers from the University of Houston have reported the discovery of a nanotechnology-based solution that could address both issues – achieving 15 percent tertiary oil recovery at low cost, without the large volume of chemicals used in most commercial fluids. The solution – graphene-based Janus amphiphilic nanosheets – is effective at a concentration of just 0.01 percent, meeting or exceeding the performance of both conventional and other nanotechnology-based fluids, said Zhifeng Ren, MD Anderson Chair professor of physics. Janus nanoparticles have at least two physical properties, allowing different chemical reactions on the same particle.

The low concentration and the high efficiency in boosting tertiary oil recovery make the nanofluid both more environmentally friendly and less expensive than options now on the market, said Ren, who also is a principal investigator at the Texas Center for Superconductivity at UH. He is lead author on a paper describing the work, published June 27 in the Proceedings of the National Academy of Sciences.

oil well

Our results provide a novel nanofluid flooding method for tertiary oil recovery that is comparable to the sophisticated chemical methods,” they wrote. “We anticipate that this work will bring simple nanofluid flooding at low concentration to the stage of oilfield practice, which could result in oil being recovered in a more environmentally friendly and cost-effective manner.

The U.S. Department of Energy estimates as much as 75 percent of recoverable reserves may be left after producers capture hydrocarbons that naturally rise to the surface or are pumped out mechanically, followed by a secondary recovery process using water or gas injection.

Traditional “tertiaryrecovery involves injecting a chemical mix into the well and can recover between 10 percent and 20 percent, according to the authors. But the large volume of chemicals used in tertiary oil recovery has raised concerns about potential environmental damage.

Obviously simple nanofluid flooding (containing only nanoparticles) at low concentration (0.01 wt% or less) shows the greatest potential from the environmental and economic perspective,” the researchers wrote.

Previously developed simple nanofluids recover less than 5 percent of the oil when used at a 0.01 percent concentration, they reported. That forces oil producers to choose between a higher nanoparticle concentration – adding to the cost – or mixing with polymers or surfactants. In contrast, they describe recovering 15.2 percent of the oil using their new and simple nanofluid at that concentration – comparable to chemical methods and about three times more efficient than other nanofluids.

Source: http://www.uh.edu/

How To Monitor and Combat Diabetes With A Simple Patch

In the future, diabetics may be able to replace finger prick tests and injections with this non-invasive smart patch to keep their glucose levels in check.

patch against diabetesCLICK ON THE IMAGE TO ENJOY THE VIDEO

The device is a type of patch which enables diabetic patients to monitor blood sugar levels via sweat without taking blood samples and control glucose levels by injecting medication“, says Kim Dae-Hyeong, researcher at the Institute for Basic Science (IBS), Seoul National University, South Korea.

After analyzing the patient’s sweat to sense glucose, the patch’s embedded sensors constantly test pH, humidity, and temperature – important factors for accurate blood sugar readings. The graphene-based patch is studded with micro-needles coated with medication that pierce the skin painlessly. When the patch senses above normal glucose levels a tiny heating element switches on which dissolves the medication coating the microneedles and releases it into the body. The prototype worked well in mice trials.

Diabetic patients can easily use our device because it does not cause any pain or stress them out. So they can monitor and manage blood glucose levels more often to prevent increasing it. Therefore, our device can greatly contribute to helping patients avoid complications of the disease“, comments Professor Kim Dae-Hyeong. Researchers want to lower the cost of production, while figuring out how to delivery enough medication to effectively treat humans, both major hurdles towards commercialization. The research was published in the journal Nature Nanotechnology in March.

Source: http://www.ibs.re.kr/

Color Printer Uses A Colorless Ink

From dot-matrix to 3-D, printing technology has come a long way in 40 years. But all of these technologies have created hues by using dye inks, which can be taxing on the environment. Now a team reports in ACS Nano the development of a colorless, non-toxic ink for use in inkjet printers. Instead of relying on dyes, the team exploits the nanostructure of this ink to create color on a page with inkjet printing.

squirrelThis image of a squirrel was printed in color by controlling the thickness of a colorless ink deposited on a thin film

Current technologies blend dyes — think CMYK or RGB — to print in color. But these substances can harm the environment. Aleksandr V. Yakovlev, Alexandr V. Vinogradov and colleagues at ITMO University (Russia) wanted to develop a nanostructure color printing technology that is “greener” and can be printed on a wide variety of surfaces.

The team found that a colorless titanium dioxide-based colloidal ink was the best suited for the job. It does not require high temperature fixing and can be deposited on many surfaces. The researchers can control the color produced on surfaces by varying the thickness of ink deposition from a normal inkjet printer. Creating a vibrant color red with this method and this very narrow angle of coloring remains a challenge. This method, however, has generated the first reported “green” ink that is both safe for the ecosystem and does not fade from UV exposure, the researchers say.

Source: http://www.acs.org/

How To Remove All Nanomaterials From Water

Nano implies small—and that’s great for use in medical devices, beauty products and smartphones—but it’s also a problem. The tiny nanoparticles, nanowires, nanotubes and other nanomaterials that make up our technology eventually find their way into water. The Environmental Protection Agency says more 1,300 commercial products use some kind of nanomaterial. And we just don’t know the full impact on health and the environment.

Michigan Technological

Look at plastic,” says Yoke Khin Yap, a professor of physics at Michigan Technological University. “These materials changed the world over the past decades—but can we clean up all the plastic in the ocean? We struggle to clean up meter-scale plastics, so what happens when we need to clean on the nano-scale?”

That challenge is the focus of a new study co-authored by Yap, recently published in the American Chemical Society’s journal Applied Materials and Interfaces. Yap and his team found a novel—and very simple—way to remove nearly 100 percent of nanomaterials from water.

Source: http://www.mtu.edu/

How To Remove Nanoparticles From Blood

Engineers at the University of California, San Diego developed a new technology that uses an oscillating electric field to easily and quickly isolate drug-delivery nanoparticles from blood. The technology could serve as a general tool to separate and recover nanoparticles from other complex fluids for medical, environmental, and industrial applications.

Nanoparticles, which are generally one thousand times smaller than the width of a human hair, are difficult to separate from plasma, the liquid component of blood, due to their small size and low density. Traditional methods to remove nanoparticles from plasma samples typically involve diluting the plasma, adding a high concentration sugar solution to the plasma and spinning it in a centrifuge, or attaching a targeting agent to the surface of the nanoparticles. These methods either alter the normal behavior of the nanoparticles or cannot be applied to some of the most common nanoparticle types.

nanoparticles in blood

Nanoparticle removal chip developed by researchers in Professor Michael Heller’s lab at the UC San Diego Jacobs School of Engineering. An oscillating electric field (purple arcs) separates drug-delivery nanoparticles (yellow spheres) from blood (red spheres) and pulls them towards rings surrounding the chip’s electrodes.

This is the first example of isolating a wide range of nanoparticles out of plasma with a minimum amount of manipulation,” said Stuart Ibsen, a postdoctoral fellow in the Department of NanoEngineering at UC San Diego and first author of the study published October in the journal Small.
We’ve designed a very versatile technique that can be used to recover nanoparticles in a lot of different processes.”

Source: http://ucsdnews.ucsd.edu/

Nanoparticles Activated By Solar Energy Boil Water

Young researchers created a superconducting heat ink that functions as a solar heater. It heats water up to 68 degrees Celsius and is 40 percent cheaper than commercial inks.

hot shower 2

A pipe exposed to the sun reaches a temperature of 40 C°, if we add the superconducting ink the temperature increases 70 percent and reaches 68 C°,” says Sandra Casillas Bolaños, master at the Technological Institute of the Lagoon (ITL), in north of Mexico, and head of the project.

She explains that the ink acts as a boiler that contains nanoparticles activated by solar energy and increasing the temperature.

 

The ink is made of two layers, the first is an internal magnetic titanium nanoparticle, which is responsible for trapping the heat and the second is external and consists of a coating of tungsten (filament in light bulbs) which researchers transform into a nano salt and adhere with polyvinyl alcohol, to finish with a layer of copper.

Casillas Bolaños states that by a treatment called burnishing copper blackens in order that trap and retain heat inside the particles. “Thus the center is heated more intensely: first the titanium, then tungsten and finally the copper“.

The project has been developed for two years and the product is classified as an ink because it uses a series of solvents making it fast drying and with an odor similar to hair dye. The ink is applied on the surface of a conventional pipe that carries water and to potentiate the heat, students working on the project with professor Casillas Bolaños in the nonmetallic materials field, put two layers of PET bottles over the tubes in order to create a greenhouse effect and raise the temperature faster, as well as protect the ink from outdoor wear.

The technology has been implemented in some houses, where, by flowing for five meters water at 68 C° is obtained instantly, and even in cloudy weather the ink nicely captures the heat. Sandra Casillas adds that the ink was implemented in a major sports complex of the city to heat the pool, where two million cubic meters of water are heated from 26 to 37 C°. To achieve this, the researcher and her team placed tubes covered with ink on the edge of the indoor pool and a pump pulls the liquid from seven o’clock until the sun sets. As it flows, the water is heated and reaches the ideal temperature.

The ink is in the process of patenting and is intended to be market at 600 pesos a liter (about 40 dollars); however, for house piping only 150 pesos (10 dollars) are invested because very little is needed, says Casillas Bolaños.

Source: http://www.alphagalileo.org/