Posts belonging to Category triboelectricity

Artificial Blowhole Generates Electricity From Ocean Waves

Renewable energy companies want to tap the potential of waves. It’s proved tough to commercialise. But Australian firm Wave Swell Energy thinks it’s turned the tide on wave energy. Its device harnesses wave power like an artificial blowhole.


The waves pass by and it causes the water level inside this artificial chamber, which is open underneath the water, to rise and fall and as it does so it compresses air, and then creates a partial vacuum as it’s falling and we use that motion to drive an air turbine,” says Tom Deniss, CEO of the company Wave Swell Energy.

The oscillating water column concept has been used before, but the Wave Swell model comes with a difference.  “We use uni-directional flow, in other hands, air-flow simply coming in one direction past the turbine, whereas all other attempts have used bidirectional flow. Independent tests found the model was at least twice as efficient as a conventional device. When fully constructed, the device will measure 20 metres by 20 metres, with the air turbine sitting above the water. It will operate off the coast of King Island – in Bass Strait – in May next year, adds Tom Deniss.  “The excellent wave climate there and the support of the local community meant that it was just an ideal location for us to use as a demonstration of the commercial viability of our technology.”
The company hopes to rival the cost of the cheapest global energy sources in five years….finally untapping the power of the ocean.


How To Turn Sunlight, Heat and Movement Into Electricity — All at Once

Many forms of energy surround you: sunlight, the heat in your room and even your own movements. All that energy — normally wasted — can potentially help power your portable and wearable gadgets, from biometric sensors to smart watches. Now, researchers from the University of Oulu in Finland have found that a mineral with the perovskite crystal structure has the right properties to extract energy from multiple sources at the same time.

perovskite solar panel

Perovskites are a family of minerals, many of which have shown promise for harvesting one or two types of energy at a time — but not simultaneously. One family member may be good for solar cells, with the right properties for efficiently converting solar energy into electricity. Meanwhile, another is adept at harnessing energy from changes in temperature and pressure, which can arise from motion, making them so-called pyroelectric and piezoelectric materials, respectively.

Sometimes, however, just one type of energy isn’t enough. A given form of energy isn’t always available — maybe it’s cloudy or you’re in a meeting and can’t get up to move around. Other researchers have developed devices that can harness multiple forms of energy, but they require multiple materials, adding bulk to what’s supposed to be a small and portable device.

This week in Applied Physics Letters, Yang Bai and his colleagues at the University of Oulu explain their research on a specific type of perovskite called KBNNO, which may be able to harness many forms of energy. Like all perovskites, KBNNO is a ferroelectric material, filled with tiny electric dipoles analogous to tiny compass needles in a magnet. Within the next year, Bai said, he hopes to build a prototype multi-energy-harvesting device. The fabrication process is straightforward, so commercialization could come in just a few years once researchers identify the best material. “This will push the development of the Internet of Things and smart cities, where power-consuming sensors and devices can be energy sustainable,” he said.

This kind of material would likely supplement the batteries on your devices, improving energy efficiency and reducing how often you need to recharge. One day, Bai said, multi-energy harvesting may mean you won’t have to plug in your gadgets anymore. Batteries for small devices may even become obsolete.


How To Capture Energy From Human Motion

The day of charging cellphones with finger swipes and powering Bluetooth headsets simply by walking is now much closer. Michigan State University engineering researchers have created a new way to harvest energy from human motion, using a film-like device that actually can be folded to create more power. With the low-cost device, known as a nanogenerator, the scientists successfully operated an LCD touch screen, a bank of 20 LED lights and a flexible keyboard, all with a simple touching or pressing motion and without the aid of a battery.

energy-from-human-motionThe foldable keyboard, created by Michigan State University engineer Nelson Sepulveda and his research team, operates by touch; no battery is needed. Sepulveda developed a new way to harvest energy from human motion using a pioneering device called a biocompatible ferroelectret nanogenerator, or FENG.

We’re on the path toward wearable devices powered by human motion,” said Nelson Sepulveda, associate professor of electrical and computer engineering and lead investigator of the project. “What I foresee, relatively soon, is the capability of not having to charge your cell phone for an entire week, for example, because that energy will be produced by your movement,” said Sepulveda,.

The innovative process starts with a silicone wafer, which is then fabricated with several layers, or thin sheets, of environmentally friendly substances including silver, polyimide and polypropylene ferroelectret. Ions are added so that each layer in the device contains charged particles. Electrical energy is created when the device is compressed by human motion, or mechanical energy. The completed device is called a biocompatible ferroelectret nanogenerator, or FENG. The device is as thin as a sheet of paper and can be adapted to many applications and sizes. The device used to power the LED lights was palm-sized, for example, while the device used to power the touch screen was as small as a finger.

Advantages such as being lightweight, flexible, biocompatible, scalable, low-cost and robust could make FENGa promising and alternative method in the field of mechanical-energy harvesting” for many autonomous electronics such as wireless headsets, cell phones and other touch-screen devices, the study says. Remarkably, the device also becomes more powerful when folded.

Each time you fold it you are increasing exponentially the amount of voltage you are creating,” Sepulveda said. “You can start with a large device, but when you fold it once, and again, and again, it’s now much smaller and has more energy. Now it may be small enough to put in a specially made heel of your shoe so it creates power each time your heel strikes the ground.” Sepulveda and his team are developing technology that would transmit the power generated from the heel strike to, say, a wireless headset.

The  findings have been published in the journal Nano Energy.

Super Capacitor for NanoComputer

VTT Technical Research Centre of Finland developed an extremely efficient small-size energy storage, a micro-supercapacitor, which can be integrated directly inside a silicon microcircuit chip. The high energy and power density of the miniaturized energy storage relies on the new hybrid nanomaterial developed recently at VTT. This technology opens new possibilities for integrated mobile devices and paves the way for zero-power autonomous devices required for the future Internet of Things (IoT).

Supercapacitors resemble electrochemical batteries. However, in contrast to for example mobile phone lithium ion batteries, which utilize chemical reactions to store energy, supercapacitors store mainly electrostatic energy that is bound at the interface between liquid and solid electrodes. Similarly to batteries supercapacitors are typically discrete devices with large variety of use cases from small electronic gadgets to the large energy storages of electrical vehicles.

The energy and power density of a supercapacitor depends on the surface area and conductivity of the solid electrodes. VTT‘s research group has developed a hybrid nanomaterial electrode, which consists of porous silicon coated with a few nanometre thick titanium nitride layer by atomic layer deposition (ALD). This approach leads to a record large conductive surface in a small volume. Inclusion of ionic liquid in a micro channel formed in between two hybrid electrodes results in extremely small and efficient energy storage.
nano capacitor 2

The new supercapacitor has excellent performance. For the first time, silicon based micro-supercapacitor competes with the leading carbon and graphene based devices in power, energy and durability.

Micro-supercapacitors can be integrated directly with active microelectronic devices to store electrical energy generated by different thermal, light and vibration energy harvesters and to supply the electrical energy when needed. This is important for autonomous sensor networks, wearable electronics and mobile electronics of the IoT.

VTT‘s research group takes the integration to the extreme by integrating the new nanomaterial micro-supercapacitor energy storage directly inside a silicon chip. The demonstrated in-chip supercapacitor technology enables storing energy of as much as 0.2 joule and impressive power generation of 2 watts on a one square centimetre silicon chip. At the same time it leaves the surface of the chip available for active integrated microcircuits and sensors.

VTT is currently seeking a party interested in commercializing the technique.


How To Scavenge Simultaneously Solar And Wind Energy

To realize the sustainable energy supply in a smart city, it is essential to maximize energy scavenging from the city environments for achieving the self-powered functions of some intelligent devices and sensors.

solar and wind powered houseAlthough the solar energy can be well harvested by using existing technologies, the large amounts of wasted wind energy in the city cannot be eectively utilized since conventional wind turbine generators can only be installed in remote areas due to their large volumes and safety issues.
Here, the researchers from the Chinese Academy of Sciences rationally design a hybridized nanogenerator, including a solar cell (SC) and a triboelectric nanogenerator (TENG), that can individually/simultaneously scavenge solar and wind energies, which can be extensively installed on the roofs of the city buildings. Under the same device area of about 120 mm × 22 mm, the SC can deliver a largest outputpower of about 8 mW, while the output power of the TENG can be up to 26 mW. Impedance matching between the SC and TENG has been achieved by using a transformer to decrease the impedance of the TENG. The hybridized nanogenerator has a larger output current and a better charging performance than that of the individual SC or TENG.
This research presents a feasible approach to maximize solar and wind energies scavenging from the city environments with the aim to realize some self-powered functions in smart city.


Efficient Triboelectric Generator Embedded In A Shoe

A two-stage power management and storage system could dramatically improve the efficiency of triboelectric generators that harvest energy from irregular human motion such as walking, running or finger tapping. The system uses a small capacitor to capture alternating current generated by the biomechanical activity. When the first capacitor fills, a power management circuit then feeds the electricity into a battery or larger capacitor. This second storage device supplies DC current at voltages appropriate for powering wearable and mobile devices such as watches, heart monitors, calculators, thermometers – and even wireless remote entry devices for vehicles. By matching the impedance of the storage device to that of the triboelectric generators, the new system can boost energy efficiency from just one percent to as much as 60 percent.

Triboelectric shoes

llustration shows how a triboelectric generator embedded in a shoe would produce electricity as a person walked

With a high-output triboelectric generator and this power management circuit, we can power a range of applications from human motion,” said Simiao Niu, a graduate research assistant in the School of Materials Science and Engineering at the Georgia Institute of Technology. “The first stage of our system is matched to the triboelectric nanogenerator, and the second stage is matched to the application that it will be powering.

The research has been reported in the journal Nature Communications.