Posts belonging to Category quantglass



Ultra-fast Data Processing At Nanoscale

Advancement in nanoelectronics, which is the use of nanotechnology in electronic components, has been fueled by the ever-increasing need to shrink the size of electronic devices like nanocomputers in a bid to produce smaller, faster and smarter gadgets such as computers, memory storage devices, displays and medical diagnostic tools.

While most advanced electronic devices are powered by photonics – which involves the use of photons to transmit informationphotonic elements are usually large in size and this greatly limits their use in many advanced nanoelectronics systems. Plasmons, which are waves of electrons that move along the surface of a metal after it is struck by photons, holds great promise for disruptive technologies in nanoelectronics. They are comparable to photons in terms of speed (they also travel with the speed of light), and they are much smaller. This unique property of plasmons makes them ideal for integration with nanoelectronics. However, earlier attempts to harness plasmons as information carriers had little success.

Addressing this technological gap, a research team from the National University of Singapore (NUS) has recently invented a novel “converter” that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

This innovative transducer can directly convert electrical signals into plasmonic signals, and vice versa, in a single step. By bridging plasmonics and nanoscale electronics, we can potentially make chips run faster and reduce power losses. Our plasmonic-electronic transducer is about 10,000 times smaller than optical elements. We believe it can be readily integrated into existing technologies and can potentially be used in a wide range of applications in the future,” explained Associate Professor Christian Nijhuis from the Department of Chemistry at the NUS Faculty of Science, who is the leader of the research team behind this breakthrough.

This novel discovery was first reported in the journal Nature Photonics.

Source: http://news.nus.edu.sg/

Graphene, Not Glass, Is The Key To Better Optics

A lens just a billionth of a metre thick could transform phone cameras. Researchers at Swinburne University in Melbourne, Australia, have created ultra-thin lenses that cap an optical fibre, and can produce images with the quality and sharpness of much larger glass lenses.

Compared with current lenses, our graphene lens only needs one film to achieve the same resolution,” says Professor Baohua Jia, a research leader at Swinburne’s Centre for Micro-Photonics. “In the future, mobile phones could be much thinner, without having to sacrifice the quality of their cameras. Our lens also allows infrared light to pass through, which glass lenses don’t.”

Producing graphene can be costly and challenging, so Baohua and her colleagues used a laser to pattern layers of graphene oxide (graphene combined with oxygen). By then removing the oxygen, they produced low-cost, patterned films of graphene, a thousand times thinner than a human hair. “By patterning the graphene oxide film in this way, its optical and electrical properties can be altered, which allowed us to place them in different devices,” she says.

Warm objects give off infrared light, so mobile phones with graphene lenses could be used to scan for hotspots in the human body and help in the early identification of diseases like breast cancer. By attaching the lens to a fibre optic tip, endoscopes — instruments that are currently several millimetres wide—could be made a million times smaller. The team is also investigating graphene’s amazing properties for their potential use as supercapacitors, capable of storing very large amounts of energy, which could replace conventional batteries.

Baohua’s work on graphene lenses was published in Nature Communications.

Source: https://cosmosmagazine.com/

Optical Computer

Researchers at the University of Sydney (Australia) have dramatically slowed digital information carried as light waves by transferring the data into sound waves in an integrated circuit, or microchipTransferring information from the optical to acoustic domain and back again inside a chip is critical for the development of photonic integrated circuits: microchips that use light instead of electrons to manage data.

These chips are being developed for use in telecommunications, optical fibre networks and cloud computing data centers where traditional electronic devices are susceptible to electromagnetic interference, produce too much heat or use too much energy.

The information in our chip in acoustic form travels at a velocity five orders of magnitude slower than in the optical domain,” said Dr Birgit Stiller, research fellow at the University of Sydney and supervisor of the project.

It is like the difference between thunder and lightning,” she said.

This delay allows for the data to be briefly stored and managed inside the chip for processing, retrieval and further transmission as light wavesLight is an excellent carrier of information and is useful for taking data over long distances between continents through fibre-optic cables.

But this speed advantage can become a nuisance when information is being processed in computers and telecommunication systems.

Source: https://sydney.universty.au/

China, Global Leader In NanoScience

Mobile phones, computers, cosmetics, bicyclesnanoscience is hiding in so many everyday items, wielding a huge influence on our lives at a microscale level. Scientists and engineers from around the world exchanged new findings and perceptions on nanotechnology at the recent 7th International Conference on Nanoscience and Technology (ChinaNANO 2017) in Beijing last week. China has become a nanotechnology powerhouse, according to a report released at the conference. China’s applied nanoscience research and the industrialization of nanotechnology have been developing steadily, with the number of nano-related patent applications ranking among the top in the world.

According to Bai Chunli, president of the Chinese Academy of Sciences (CAS), China faces new opportunities for nanoscience research and development as it builds the National Center for Nanoscience and Technology  (NCNST) and globally influential national science centers.

We will strengthen the strategic landscape and top-down design for developing nanoscience, which will contribute greatly to the country’s economy and society,” said Bai.

Nanoscience can be defined as the study of the interaction, composition, properties and manufacturing methods of materials at a nanometer scale. At such tiny scales, the physical, chemical and biological properties of materials are different from those at larger scales — often profoundly so.

For example, alloys that are weak or brittle become strong and ductile; compounds that are chemically inert become powerful catalysts. It is estimated that there are more than 1,600 nanotechnology-based consumer products on the market, including lightweight but sturdy tennis rackets, bicycles, suitcases, automobile parts and rechargeable batteries. Nanomaterials are used in hairdryers or straighteners to make them lighter and more durable. The secret of how sunscreens protect skin from sunburn lies in the nanometer-scale titanium dioxide or zinc oxide they contain.

In 2016, the world’s first one-nanometer transistor was created. It was made from carbon nanotubes and molybdenum disulphide, rather than silicon.
Carbon nanotubes or silver nanowires enable touch screens on computers and televisions to be flexible, said Zhu Xing, chief scientist (CNST). Nanotechnology is also having an increasing impact on healthcare, with progress in drug delivery, biomaterials, imaging, diagnostics, active implants and other therapeutic applications. The biggest current concern is the health threats of nanoparticles, which can easily enter body via airways or skin. Construction workers exposed to nanopollutants face increased health risks.

The report was co-produced by Springer Nature, National Center for Nanoscience and Technology (NCNST) and the National Science Library of the Chinese Academy of Sciences (CAS).

Source: http://www.shanghaidaily.com/

AR Smart Glasses, Next Frontier Of FaceBook

Facebook is hard at work on the technical breakthroughs needed to ship futuristic smart glasses that can let you see virtual objects in the real world. A patent application for a “waveguide display with two-dimensional scanner” was published on Thursday by three members from the advanced research division of Facebook’s virtual-reality subsidiary, Oculus.

The smart glasses being developed by Oculus will use a waveguide display to project light onto the wearer’s eyes instead of a more traditional display. The smart glasses would be able to display images, video, and work with connected speakers or headphones to play audio when worn.The display “may augment views of a physical, real-world environment with computer-generated elements” and “may be included in an eye-wear comprising a frame and a display assembly that presents media to a user’s eyes,” according to the filing.

By using waveguide technology, Facebook is taking a similar approach to Microsoft‘s HoloLens AR headset and the mysterious glasses being developed by the Google-backed startup Magic Leap.

One of the authors of the patent is, in fact, lead Oculus optical scientist Pasi Saarikko, who joined Facebook in 2015 after leading the optical design of the HoloLens at Microsoft.

While work is clearly being done on the underlying technology for Facebook‘s smart glasses now, don’t expect to see the device anytime soon. Michael Abrash, the chief scientist of Oculus, recently said that AR glasses won’t start replacing smartphones until as early as 2022.

Facebook CEO Mark Zuckerberg has called virtual and augmented reality the next major computing platform capable of replacing smartphones and traditional PCs. Facebook purchased Oculus for $2 billion in 2014 and plans to spend billions more on developing the technology.

Source: http://pdfaiw.uspto.gov/
A
ND
http://www.businessinsider.com

Use The Phone And See 3D Content Without 3D Glasses

RED, the company known for making some truly outstanding high-end cinema cameras, is set to release a smartphone in Q1 of 2018 called the HYDROGEN ONE. RED says that it is a standalone, unlocked and fully-featured smartphone “operating on Android OS that just happens to add a few additional features that shatter the mold of conventional thinking.” Yes, you read that right. This phone will blow your mind, or something – and it will even make phone calls.

In a press release riddled with buzzwords broken up by linking verbs, RED praises their yet-to-be smartphone with some serious adjectives. If we were just shown this press release outside of living on RED‘s actual server, we would swear it was satire. Here are a smattering of phrases found in the release.

Incredible retina-riveting display
Nanotechnology
Holographic multi-view content
RED Hydrogen 4-View content
Assault your senses
Proprietary H3O algorithm
Multi-dimentional audio

  • There are two models of the phone, which run at different prices. The Aluminum model will cost $1,195, but anyone worth their salt is going to go for the $1,595 Titanium version. Gotta shed that extra weight, you know?

Those are snippets from just the first three sections, of which there are nine. I get hyping a product, but this reads like a catalog seen in the background of a science-fiction comedy, meant to sound ridiculous – especially in the context of a ficticious universe.

Except that this is real life.

After spending a few minutes removing all the glitter words from this release, it looks like it will be a phone using a display similar to what you get with the Nintendo 3DS, or what The Verge points out as perhaps better than the flopped Amazon Fire Phone. Essentially, you should be able to use the phone and see 3D content without 3D glasses. Nintendo has already proven that can work, however it can really tire out your eyes. As an owner of three different Nintendo 3DS consoles, I can say that I rarely use the 3D feature because of how it makes my eyes hurt. It’s an odd sensation. It is probalby why Nintendo has released a new handheld that has the same power as the 3DS, but dropping the 3D feature altogether.

Anyway, back to the HYDROGEN ONE, RED says that it will work in tandem with their cameras as a user interface and monitor. It will also display what RED is calling “holographic content,” which isn’t well-described by RED in this release. We can assume it is some sort of mixed-dimensional view that makes certain parts of a video or image stand out over the others.

Source: http://www.red.com/
AND
http://www.imaging-resource.com/

Building Brain-Inspired AI Supercomputing System

IBM (NYSE: IBM) and the U.S. Air Force Research Laboratory (AFRL) today announced they are collaborating on a first-of-a-kind brain-inspired supercomputing system powered by a 64-chip array of the IBM TrueNorth Neurosynaptic System. The scalable platform IBM is building for AFRL will feature an end-to-end software ecosystem designed to enable deep neural-network learning and information discovery. The system’s advanced pattern recognition and sensory processing power will be the equivalent of 64 million neurons and 16 billion synapses, while the processor component will consume the energy equivalent of a dim light bulb – a mere 10 watts to power.
IBM researchers believe the brain-inspired, neural network design of TrueNorth will be far more efficient for pattern recognition and integrated sensory processing than systems powered by conventional chips. AFRL is investigating applications of the system in embedded, mobile, autonomous settings where, today, size, weight and power (SWaP) are key limiting factors. The IBM TrueNorth Neurosynaptic System can efficiently convert data (such as images, video, audio and text) from multiple, distributed sensors into symbols in real time. AFRL will combine this “right-brain perception capability of the system with the “left-brain” symbol processing capabilities of conventional computer systems. The large scale of the system will enable both “data parallelism” where multiple data sources can be run in parallel against the same neural network and “model parallelism” where independent neural networks form an ensemble that can be run in parallel on the same data.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

AFRL was the earliest adopter of TrueNorth for converting data into decisions,” said Daniel S. Goddard, director, information directorate, U.S. Air Force Research Lab. “The new neurosynaptic system will be used to enable new computing capabilities important to AFRL’s mission to explore, prototype and demonstrate high-impact, game-changing technologies that enable the Air Force and the nation to maintain its superior technical advantage.”

“The evolution of the IBM TrueNorth Neurosynaptic System is a solid proof point in our quest to lead the industry in AI hardware innovation,” said Dharmendra S. Modha, IBM Fellow, chief scientist, brain-inspired computing, IBM Research – Almaden. “Over the last six years, IBM has expanded the number of neurons per system from 256 to more than 64 million – an 800 percent annual increase over six years.’’

Source: https://www-03.ibm.com/

Super Efficient Nanowires shape the future of electronics

A group of researchers at the Basque Excellence Research Center into Polymers (POLYMAT), the University of the Basque Country (UPV/EHU), the University of Barcelona, the Institute of Bioengineering of Barcelona (IBEC), and the University of Aveiro, and led by Aurelio Mateo-Alonso, the Ikerbasque research professor at POLYMAT, have developed a new suite of molecular wires or nanowires that are opening up new horizons in molecular electronics.

The growing demand for increasingly smaller electronic devices is prompting the need to produce circuits whose components are also as small as possible, and this is calling for fresh approaches in their design.

Molecular electronics has sparked great interest because the manufacture of electronic circuits using molecules would entail a reduction in their size. Nanowires are conducting wires on a molecular scale that carry the current inside these circuits. That is why the efficiency of these wires is crucially important.

In fact, one of the main novelties in this new suite of nanowires developed by the group led by Aurelio Mateo lies in their high efficiency, which constitutes a step forward in miniaturizing electronic circuits.
The findings have been published today in the journal Nature Communications.

Source: https://www.ehu.eus/

Legally Blind People Can See With A New Kind Of Glasses

A Canadian company based in Toronto has suceeded to build a kind of Google glass that is able to give back full sight to legally blind people.  The eSight is an augmented reality headset that houses a high-speed, high-definition camera that captures everything the user is looking at.

CLICK ON THE IMAGE TO ENJOY THE VIDEO


Algorithms enhance the video feed and display it on two, OLED screens in front of the user’s eyes. Full color video images are clearly seen by the eSight user with unprecedented visual clarity and virtually no lag. With eSight’s patented Bioptic Tilt capability, users can adjust the device to the precise position that, for them, presents the best view of the video while maximizing side peripheral vision. This ensures a user’s balance and prevents nausea – common problems with other immersive technologies. A blind individual can use both of their hands while they use eSight to see. It is lightweight, worn comfortably around the eyes and designed for various environments and for use throughout the day.

eSight is a comprehensive customized medical device that can replace all the many single-task assistive devices that are currently available but do not provide actual sight (e.g. white canes, magnifying devices, service animals, Braille machines, CCTV scanners, text-to-speech software). It allows a user to instantly auto-focus between short-range vision (reading a book or text on a smartphone) to mid-range vision (seeing faces or watching TV) to long-range vision (looking down a hallway or outsidea window). It is the only device for the legally blind that enables mobility without causing issues of imbalance or nausea (common with other immersive options). A legally blind individual can use eSight not just to see while sitting down but while being independently mobile (e.g. walking, exercising, commuting, travelling, etc).

According to The Wall Street Journal, the company is taking advantages of recent improvements in technology from VR headsets and smartphones that have trickled down to improve the latest version of the eSight. So far, the company has sold roughly a thousand units, but at $10,000 apiece, they’re not cheap (and most insurances apparently don’t cover the product), although eSight’s chief executive Brian Mech notes to the WSJ that getting devices to users is “a battle we are starting to wage.”

Source: https://www.esighteyewear.com/

‘Spray-On’ Memory for Paper, Fabric, Plastic

USB flash drives are already common accessories in offices and college campuses. But thanks to the rise in printable electronics, digital storage devices like these may soon be everywhere – including on our groceries, pill bottles and even clothingDuke University researchers have brought us closer to a future of low-cost, flexible electronics by creating a new “spray-on digital memory device using only an aerosol jet printer and nanoparticle inks. The device, which is analogous to a 4-bit flash drive, is the first fully-printed digital memory that would be suitable for practical use in simple electronics such as environmental sensors or RFID tags. And because it is jet-printed at relatively low temperatures, it could be used to build programmable electronic devices on bendable materials like paper, plastic or fabric.

PrintingMemory

Duke University researchers have developed a new “spray-on” digital memory (upper left) that could be used to build programmable electronics on flexible materials like paper, plastic or fabric. They used LEDS to demonstrate a simple application.

We have all of the parameters that would allow this to be used for a practical application, and we’ve even done our own little demonstration using LEDs,” said Duke graduate student Matthew Catenacci, who describes the device in a paper published online in the Journal of Electronic Materials. At the core of the new device, which is about the size of a postage stamp, is a new copper-nanowire-based printable material that is capable of storing digital information.

Memory is kind of an abstract thing, but essentially it is a series of ones and zeros which you can use to encode information,” said Benjamin Wiley, an associate professor of chemistry at Duke and an author on the paper.

Source: https://today.duke.edu/

How Brain Waves Can Control VR Video Games

Virtual reality is still so new that the best way for us to interact within it is not yet clear. One startup wants you to use your head, literally: it’s tracking brain waves and using the result to control VR video games.

Boston-based startup Neurable is focused on deciphering brain activity to determine a person’s intention, particularly in virtual and augmented reality. The company uses dry electrodes to record brain activity via electroencephalography (EEG); then software analyzes the signal and determines the action that should occur.

neurons2

You don’t really have to do anything,” says cofounder and CEO Ramses Alcaide, who developed the technology as a graduate student at the University of Michigan. “It’s a subconscious response, which is really cool.”

Neurable, which raised $2 million in venture funding late last year, is still in the early stages: its demo hardware looks like a bunch of electrodes attached to straps that span a user’s head, worn along with an HTC Vive virtual-reality headset. Unlike the headset, Neurable’s contraption is wireless—it sends data to a computer via Bluetooth. The startup expects to offer software tools for game development later this year, and it isn’t planning to build its own hardware; rather, Neurable hopes companies will be making headsets with sensors to support its technology in the next several years.

Source; https://www.technologyreview.com/
AND
http://neurable.com/

Virtual Images that Blend In And Interact With The Real-World

Avegant, a Silicon Valley startup that sells a pair of headphones equipped with a VR-like portable screen, is breaking into augmented reality. The company today announced that it’s developed a new type of headset technology powered by a so-called light field display.

Avegant ARCLICK ON THE IMAGE TO ENJOY THE VIDEO

The research prototype, which Avegant eventually plans on turning into a consumer product, is based on the company’s previous work with its Glyph projector. That device was a visor of sorts that floats a virtual movie screen in front of your eyes, and developing it gave Avegant insight into how to build an AR headset of its own.

Like Microsoft’s HoloLens and the supposed prototype from secretive AR startup Magic Leap, Avegant’s new headset creates virtual images that blend in and interact with the real-world environment. In a demo, the company’s wired prototype proved to be superior in key ways to the developer version of the HoloLens. Avegant attributes this not to the power of its tethered PC, but to the device’s light field display — a technology Magic Leap also claims to have developed, yet has never been shown off to the public.

The demo I experienced featured a tour of a virtual Solar System, an immersion within an ocean environment, and a conversation with a virtual life-sized human being standing in the same room. To be fair, Avegant was using a tethered and bulky headset that wasn’t all that comfortable, while the HoloLens developer version is a refined wireless device. Yet with that said, Avegant’s prototype managed to expand the field of view, so you’re looking through a window more the size of a Moleskine notebook instead of a pack of playing cards. The images it produced also felt sharper, richer, and more realistic.

In the Solar System demo, I was able to observe a satellite orbiting an Earth no larger than a bocce ball and identify the Big Red Spot on Jupiter. Avegant constructed its demo to show off how these objects could exist at different focal lengths in a fixed environment — in this case a converted conference room at the company’s Belmont, California office. So I was able to stand behind the Sun and squint until the star went out of focus in one corner of my vision and a virtual Saturn and its rings became crystal clear in the distance.

Source: http://www.theverge.com/