Posts belonging to Category quantum



New Quantum Computer Uses 10,000 Times Less Power

Japan has unveiled its first quantum computer prototype, amid a global race to build ever-more powerful machines with faster speeds and larger brute force that are key towards realising the full potential of artificial intelligence. Japan’s machine can theoretically make complex calculations 100 times faster than even a conventional supercomputer, but use just 1 kilowatt of power – about what is required by a large microwave oven – for every 10,000 kilowatts consumed by a supercomputer. Launched recently, the creators – the National Institute of Informatics, telecom giant NTT and the University of Tokyo – said they are building a cloud system to house their “quantum neural network” technology.

In a bid to spur further innovation, this will be made available for free to the public and fellow researchers for trials at https://qnncloud.com
The creators, who aim to commercialise their system by March 2020, touted its vast potential to help ease massive urban traffic congestion, connect tens of thousands of smartphones to different base stations for optimal use in a crowded area, and even develop innovative new drugs by finding the right combination of chemical compounds.

Quantum computers differ from conventional supercomputers in that they rely on theoretical particle physics and run on subatomic particles such as electrons in sub-zero temperatures. Most quantum computers, for this reason, destabilise easily and are error-prone, thereby limiting their functions.

We will seek to further improve the prototype so that the quantum computer can tackle problems with near-infinite combinations that are difficult to solve, even by modern computers at high speed,” said Stanford University Professor Emeritus Yoshihisa Yamamoto, who is heading the project.
Japan’s prototype taps into a 1km-long optical fibre cable packed with photons, and exploits the properties of light to make super-quick calculations. Its researchers said they deemed the prototype ready for public use, after tests showed that it was capable of operating stably around the clock at room temperature.

Source: http://www.straitstimes.com/

Invisible Glass

If you have ever watched television in anything but total darkness, used a computer while sitting underneath overhead lighting or near a window, or taken a photo outside on a sunny day with your smartphone, you have experienced a major nuisance of modern display screens: glare. Most of today’s electronics devices are equipped with glass or plastic covers for protection against dust, moisture, and other environmental contaminants, but light reflection from these surfaces can make information displayed on the screens difficult to see. Now, scientists at the Center for Functional Nanomaterials (CFN) — a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory — have demonstrated a method for reducing the surface reflections from glass surfaces to nearly zero by etching tiny nanoscale features into them.

Whenever light encounters an abrupt change in refractive index (how much a ray of light bends as it crosses from one material to another, such as between air and glass), a portion of the light is reflected. The nanoscale features have the effect of making the refractive index change gradually from that of air to that of glass, thereby avoiding reflections. The ultra-transparent nanotextured glass is antireflective over a broad wavelength range (the entire visible and near-infrared spectrum) and across a wide range of viewing angles. Reflections are reduced so much that the glass essentially becomes invisible.

This “invisible glass” could do more than improve the user experience for consumer electronic displays. It could enhance the energy-conversion efficiency of solar cells by minimizing the amount of sunlight lost to refection. It could also be a promising alternative to the damage-prone antireflective coatings conventionally used in lasers that emit powerful pulses of light, such as those applied to the manufacture of medical devices and aerospace components.

We’re excited about the possibilities,” said CFN Director Charles Black, corresponding author on the paper published online on October 30 in Applied Physics Letters. “Not only is the performance of these nanostructured materials extremely high, but we’re also implementing ideas from nanoscience in a manner that we believe is conducive to large-scale manufacturing.”

Our role in the CFN is to demonstrate how nanoscience can facilitate the design of new materials with improved properties,” concluded Black. “This work is a great example of that–we’d love to find a partner to help advance these remarkable materials toward technology.”

Source: https://www.eurekalert.org/

One-Two Knockout Punch To Eradicate Super Bugs

Light-activated nanoparticles, also known as quantum dots, can provide a crucial boost in effectiveness for antibiotic treatments used to combat drug-resistant superbugs such as E. coli and Salmonella, new CU Boulder research shows. Multi-drug resistant pathogens, which evolve their defenses faster than new antibiotic treatments can be developed to treat them, cost the United States an estimated $20 billion in direct healthcare costs and an additional $35 billion in lost productivity in 2013. Rather than attacking the infecting bacteria conventionally, the dots release superoxide, a chemical species that interferes with the bacteria’s metabolic and cellular processes, triggering a fight response that makes it more susceptible to the original antibiotic.

We’ve developed a one-two knockout punch,” said Prashant Nagpal, an assistant professor in CU Boulder’s Department of Chemical and Biological Engineering (CHBE) and the co-lead author of the study. “The bacteria’s natural fight reaction [to the dots] actually leaves it more vulnerable.”

We are thinking more like the bug,” explains Anushree Chatterjee, an assistant professor in CHBE and the co-lead author of the study. “This is a novel strategy that plays against the infection’s normal strength and catalyzes the antibiotic instead.” The dots reduced the effective antibiotic resistance of the clinical isolate infections by a factor of 1,000 without producing adverse side effects.

The findings have been published today in the journal Science Advances.

Source: http://www.colorado.edu/

Optical Computer

Researchers at the University of Sydney (Australia) have dramatically slowed digital information carried as light waves by transferring the data into sound waves in an integrated circuit, or microchipTransferring information from the optical to acoustic domain and back again inside a chip is critical for the development of photonic integrated circuits: microchips that use light instead of electrons to manage data.

These chips are being developed for use in telecommunications, optical fibre networks and cloud computing data centers where traditional electronic devices are susceptible to electromagnetic interference, produce too much heat or use too much energy.

The information in our chip in acoustic form travels at a velocity five orders of magnitude slower than in the optical domain,” said Dr Birgit Stiller, research fellow at the University of Sydney and supervisor of the project.

It is like the difference between thunder and lightning,” she said.

This delay allows for the data to be briefly stored and managed inside the chip for processing, retrieval and further transmission as light wavesLight is an excellent carrier of information and is useful for taking data over long distances between continents through fibre-optic cables.

But this speed advantage can become a nuisance when information is being processed in computers and telecommunication systems.

Source: https://sydney.universty.au/

Chinese Quantum Satellite Sends ‘Unbreakable’ Code

China has sent an “unbreakablecode from a satellite to the Earth, marking the first time space-to-ground quantum key distribution technology has been realized, state media said. China launched the world’s first quantum satellite last August, to help establish “hack proofcommunications, a development the Pentagon has called a “notable advance“. The official Xinhua news agency said the latest experiment was published in the journal Nature, where reviewers called it a “milestone“.

The satellite sent quantum keys to ground stations in China between 645 km (400 miles) and 1,200 km (745 miles) away at a transmission rate up to 20 orders of magnitude more efficient than an optical fiber, Xinhua cited Pan Jianwei, lead scientist on the experiment from the state-run Chinese Academy of Sciences, as saying.

That, for instance, can meet the demand of making an absolute safe phone call or transmitting a large amount of bank data,” Pan said. Any attempt to eavesdrop on the quantum channel would introduce detectable disturbances to the system, Pan said. “Once intercepted or measured, the quantum state of the key will change, and the information being intercepted will self-destruct,” Xinhua said.

The news agency said there were “enormous prospects” for applying this new generation of communications in defense and finance.

Source: http://www.reuters.com/

New WIFI Speeds Up To 300 Times Faster

Researchers at the Eindhoven University of Technology (Netherlands) say their new wireless network that uses harmless infrared rays will make wifi speeds up to 300 times faster.


 CLICK ON THE IMAGE TO ENJOY THE VIDEO

“What we are doing actually is using rays of light which convey the information in a wireless way, and each ray is acting as a very high capacity channel. It’s actually the same as an optical fibre without needing the fibre, and what we achieved up to this moment is 112 gigabits per second,” says Professor Ton Koonen, Eindhoven University of Technology.

That’s the equivalent data of three full-length movies being downloaded per second. Light antennas radiate multiple invisible wavelengths at various angles. If a user’s smartphone or tablet moves out of one antenna’s sightline, another takes over. Infrared wavelengths don’t go into your eyes, making them safe to use. The lack of moving parts makes the system maintenance and power-free. While each user gets their own antenna.

The big benefits we see of our technique is that you offer unshared capacity to each individual user, so you get a guaranteed capacity. Next to that you only get a beam if you need the traffic. So we’re not illuminating the whole place where maybe a single user is there. That means it’s much more power efficient. Another efficiency, another advantage, is that light doesn’t go through walls. So that means your communication is really confined to the particular room. Nobody can listen in from outside, so it offers you a lot of security,” explains rofessor Ton Koonen.
The team is seeking funding to help make the technology widespread within five years.

Source: http://www.reuters.com/

Perovskite Solar Cells Conversion Efficiency Rises Up To 20%

A new low-temperature solution printing technique allows fabrication of high-efficiency perovskite solar cells with large crystals intended to minimize current-robbing grain boundaries. The meniscus-assisted solution printing (MASP) technique boosts power conversion efficiencies to nearly 20 percent by controlling crystal size and orientation.

The process, which uses parallel plates to create a meniscus of ink containing the metal halide perovskite precursors, could be scaled up to rapidly generate large areas of dense crystalline film on a variety of substrates, including flexible polymers. Operating parameters for the fabrication process were chosen by using a detailed kinetics study of perovskite crystals observed throughout their formation and growth cycle.

We used a meniscus-assisted solution printing technique at low temperature to craft high quality perovskite films with much improved optoelectronic performance,” said Zhiqun Lin, a professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. “We began by developing a detailed understanding of crystal growth kinetics that allowed us to know how the preparative parameters should be tuned to optimize fabrication of the films.”

The new technique is reported in the journal Nature Communications.

Source: http://www.news.gatech.edu/

Quantum Satellite Secures Communications

A Chinese quantum satellite has dispatched transmissions over a distance of 1,200 km (746 miles), a dozen times further than the previous record, a breakthrough in a technology that could be used to deliver secure messages, state media said on Friday.

China launched the world’s first quantum satellite last August, to help establish “hack proof” communications between space and the ground, state media said at the time.

The feat opens up “bright prospects” for quantum communications, said Pan Jianwei, the lead scientist of the Chinese team, Quantum Experiments at Space Scale (QUESS), according to the official Xinhua news agency.

The scientists exploited the phenomenon of quantum entanglement, in which a particle can affect a far-off twin instantly, somehow overcoming the long distance separating them, a situation termed “spooky action at a distance” by the Nobel-prize winning physicist Albert Einstein, Xinhua added.

The team had successfully distributed entangled photon pairs over 1,200 km, it said, outstripping the distance of up to 100 km (62 miles) at which entanglement had previously been achieved.

The technology so far is “the only way to establish secure keys between two distant locations on earth without relying on trustful relay,” Pan told Xinhua, referring to encrypted messages.

The new development “illustrates the possibility of a future global quantum communication network” the journal Science, which published the results of the Chinese team, said on its website.

Source: http://www.reuters.com/

NanoCar Race

The NanoCar Race is an event in which molecular machines compete on a nano-sized racetrack. These “NanoCars” or molecule-cars can have real wheels, an actual chassis…and are propelled by the energy of electric pulses! Nothing is visible to the naked eye, however a unique microscope located in Toulouse (France) will make it possible to follow the race. A genuine scientific prowess and international human adventure, the race is a one-off event, and will be broadcast live on the web, as well as at the Quai des Savoirs, science center in Toulouse.

nanocars

The NanoCar race takes place on a very small scale, that of molecules and atoms: the nano scale…as in nanometer! A nanometer is a billionth of a meter, or 0.000000001 meters or 10 -9 m. In short, it is 500,000 times thinner then a line drawn by a ball point pen; 30,000 times thinner than the width of a hair; 100 times smaller than a DNA molecule; 4 atoms of silicon lined up next to one another.

A very powerful microscope is necessary to observe molecules and atoms: the scanning tunneling microscope (STM) makes this possible, and it is also responsible for propelling the NanoCars. The scanning tunneling microscope was invented in 1981 by Gerd Binnig and Heinrich Rohrer, and earned them the Nobel Prize in Physics in 1986. The tunnel effect is a phenomenon in quantum mechanics: using a tip and an electric current, the microscope will use this phenomenon to determine the electric conductance between the tip and the surface, in other words the amount of current that is passing through.

nanocar in movement Screening provides an electronic map of the surface and of each atom or molecule placed on it.At the CNRS‘s Centre d’élaboration de matériaux et d’études structurales (CEMES) in Toulouse, it is the one of a kind STM microscope that makes the race possible: the equivalent of four scanning tunneling microscopes, this device is the only one able to simultaneously and independently map four sections of the track in real time, thanks to its four tungsten tips.

Source: http://nanocar-race.cnrs.fr/

Light Makes OscillatorTo Oscillate Indefinitely

Researchers have designed a device that uses light to manipulate its mechanical properties. The device, which was fabricated using a plasmomechanical metamaterial, operates through a unique mechanism that couples its optical and mechanical resonances, enabling it to oscillate indefinitely using energy absorbed from light.

metamaterialThis work demonstrates a metamaterial-based approach to develop an optically-driven mechanical oscillator. The device can potentially be used as a new frequency reference to accurately keep time in GPS, computers, wristwatches and other devices, researchers said. Other potential applications that could be derived from this metamaterial-based platform include high precision sensors and quantum transducers..

Researchers engineered the metamaterial-based device by integrating tiny light absorbing nanoantennas onto nanomechanical oscillators. The study was led by Ertugrul Cubukcu, a professor of nanoengineering and electrical engineering at the University of California San Diego. The work, which Cubukcu started as a faculty member at the University of Pennsylvania and is continuing at the Jacobs School of Engineering at UC San Diego, demonstrates how efficient light-matter interactions can be utilized for applications in novel nanoscale devices.

Metamaterials are artificial materials that are engineered to exhibit exotic properties not found in nature. For example, metamaterials can be designed to manipulate light, sound and heat waves in ways that can’t typically be done with conventional materials.

Metamaterials are generally considered “lossy” because their metal components absorb light very efficiently. “The lossy trait of metamaterials is considered a nuisance in photonics applications and telecommunications systems, where you have to transmit a lot of power. We’re presenting a unique metamaterials approach by taking advantage of this lossy feature,” Cubukcu said. The researchers also point out that because the plasmomechanical metamaterial can efficiently absorb light, it can function under a broad optical resonance. That means this metamaterial can potentially respond to a light source like an LED and won’t need a strong laser to provide the energy.

Using plasmonic metamaterials, we were able to design and fabricate a device that can utilize light to amplify or dampen microscopic mechanical motion more powerfully than other devices that demonstrate these effects. Even a non-laser light source could still work on this device,” said Hai Zhu, a former graduate student in Cubukcu’s lab and first author of the study.

Optical metamaterials enable the chip-level integration of functionalities such as light-focusing, spectral selectivity and polarization control that are usually performed by conventional optical components such as lenses, optical filters and polarizers. Our particular metamaterial-based approach can extend these effects across the electromagnetic spectrum,” adds Fei Yi, a postdoctoral researcher who worked in Cubukcu’s lab.

The research was published in the journal Nature Photonics.

Source: http://jacobsschool.ucsd.edu/

The First Satellite Using Quantum Cryptography Is Chinese

Congratulations are in order for China: by launching the world’s first quantum communications satellite, the country has achieved an interesting — if somewhat difficult to explain — milestone in space and cryptography.

quantum dots

Quantum Experiments at Space Scale (QUESS), nicknamed Micius after the philosopher, lifted off from Jiuquan Satellite Launch Center at 1:40 AM local time (late yesterday in the U.S.) and is currently maneuvering itself into a sun-synchronous orbit at 500 km.

So what’s in the package that’s so exciting?

QUESS is an experiment in the deployment of quantum cryptography — specifically, a prototype that will test whether it’s possible to perform this delicate science from space. Inside QUESS is a crystal that can be stimulated into producing two photons that are “entangled” at a subatomic, quantum level. Entangled photons have certain aspects — polarization, for example — that are the same for both regardless of distance; if one changes, the other changes. The trouble is that photons are rather finicky things, and tend to be bounced, absorbed, and otherwise interfered with when traveling through fibers, air, and so on. QUESS will test whether sending them through space is easier, and whether one of a pair of entangled photons can be successfully sent to the surface while the other remains aboard the satellite.

If this is possible, the entangled photons can be manipulated in order to send information; the satellite could, for example, send binary code by inverting its photon’s polarization, one way for 1, the other way for 0. The ground station would see its photon switching back and forth and record the resulting data. This process would be excruciatingly slow, but fast enough for, say, key creation and exchange — after which data can be exchanged securely by more ordinary means. The critical thing about this is that there is no transmission involved, or at least not one we understand and can intercept.

Source: https://techcrunch.com/

How To Remove Nanoparticles From Blood

Engineers at the University of California, San Diego developed a new technology that uses an oscillating electric field to easily and quickly isolate drug-delivery nanoparticles from blood. The technology could serve as a general tool to separate and recover nanoparticles from other complex fluids for medical, environmental, and industrial applications.

Nanoparticles, which are generally one thousand times smaller than the width of a human hair, are difficult to separate from plasma, the liquid component of blood, due to their small size and low density. Traditional methods to remove nanoparticles from plasma samples typically involve diluting the plasma, adding a high concentration sugar solution to the plasma and spinning it in a centrifuge, or attaching a targeting agent to the surface of the nanoparticles. These methods either alter the normal behavior of the nanoparticles or cannot be applied to some of the most common nanoparticle types.

nanoparticles in blood

Nanoparticle removal chip developed by researchers in Professor Michael Heller’s lab at the UC San Diego Jacobs School of Engineering. An oscillating electric field (purple arcs) separates drug-delivery nanoparticles (yellow spheres) from blood (red spheres) and pulls them towards rings surrounding the chip’s electrodes.

This is the first example of isolating a wide range of nanoparticles out of plasma with a minimum amount of manipulation,” said Stuart Ibsen, a postdoctoral fellow in the Department of NanoEngineering at UC San Diego and first author of the study published October in the journal Small.
We’ve designed a very versatile technique that can be used to recover nanoparticles in a lot of different processes.”

Source: http://ucsdnews.ucsd.edu/