Posts belonging to Category Internet of things



Memristors Retain Data 10 Years Without Power

The internet of things ( IoT) is coming, that much we know. But still it won’t; not until we have components and chips that can handle the explosion of data that comes with IoT. In 2020, there will already be 50 billion industrial internet sensors in place all around us. A single autonomous device – a smart watch, a cleaning robot, or a driverless car – can produce gigabytes of data each day, whereas an airbus may have over 10 000 sensors in one wing alone.

Two hurdles need to be overcome. First, current transistors in computer chips must be miniaturized to the size of only few nanometres; the problem is they won’t work anymore then. Second, analysing and storing unprecedented amounts of data will require equally huge amounts of energy. Sayani Majumdar, Academy Fellow at Aalto University (Finland), along with her colleagues, is designing technology to tackle both issues.

Majumdar has with her colleagues designed and fabricated the basic building blocks of future components in what are called “neuromorphiccomputers inspired by the human brain. It’s a field of research on which the largest ICT companies in the world and also the EU are investing heavily. Still, no one has yet come up with a nano-scale hardware architecture that could be scaled to industrial manufacture and use.

The probe-station device (the full instrument, left, and a closer view of the device connection, right) which measures the electrical responses of the basic components for computers mimicking the human brain. The tunnel junctions are on a thin film on the substrate plate.

The technology and design of neuromorphic computing is advancing more rapidly than its rival revolution, quantum computing. There is already wide speculation both in academia and company R&D about ways to inscribe heavy computing capabilities in the hardware of smart phones, tablets and laptops. The key is to achieve the extreme energy-efficiency of a biological brain and mimic the way neural networks process information through electric impulses,” explains Majumdar.

In their recent article in Advanced Functional Materials, Majumdar and her team show how they have fabricated a new breed of “ferroelectric tunnel junctions”, that is, few-nanometre-thick ferroelectric thin films sandwiched between two electrodes. They have abilities beyond existing technologies and bode well for energy-efficient and stable neuromorphic computing.

The junctions work in low voltages of less than five volts and with a variety of electrode materials – including silicon used in chips in most of our electronics. They also can retain data for more than 10 years without power and be manufactured in normal conditions.

Tunnel junctions have up to this point mostly been made of metal oxides and require 700 degree Celsius temperatures and high vacuums to manufacture. Ferroelectric materials also contain lead which makes them – and all our computers – a serious environmental hazard.

Our junctions are made out of organic hydro-carbon materials and they would reduce the amount of toxic heavy metal waste in electronics. We can also make thousands of junctions a day in room temperature without them suffering from the water or oxygen in the air”, explains Majumdar.

What makes ferroelectric thin film components great for neuromorphic computers is their ability to switch between not only binary states – 0 and 1 – but a large number of intermediate states as well. This allows them to ‘memoriseinformation not unlike the brain: to store it for a long time with minute amounts of energy and to retain the information they have once received – even after being switched off and on again.

We are no longer talking of transistors, but ‘memristors’. They are ideal for computation similar to that in biological brains.  Take for example the Mars 2020 Rover about to go chart the composition of another planet. For the Rover to work and process data on its own using only a single solar panel as an energy source, the unsupervised algorithms in it will need to use an artificial brain in the hardware.

What we are striving for now, is to integrate millions of our tunnel junction memristors into a network on a one square centimetre area. We can expect to pack so many in such a small space because we have now achieved a record-high difference in the current between on and off-states in the junctions and that provides functional stability. The memristors could then perform complex tasks like image and pattern recognition and make decisions autonomously,” says Majumdar.

Source: http://www.aalto.fi/

Flat Lens Boost Virtual Reality

Metalensesflat surfaces that use nanostructures to focus light — promise to revolutionize optics by replacing the bulky, curved lenses currently used in optical devices with a simple, flat surface.  But, these metalenses have remained limited in the spectrum of light they can focus well Now a team of researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has developed the first single lens that can focus the entire visible spectrum of light — including white light — in the same spot and in high resolution. This has only ever been achieved in conventional lenses by stacking multiple lenses.

Focusing the entire visible spectrum and white light – combination of all the colors of the spectrum — is so challenging because each wavelength moves through materials at different speeds. Red wavelengths, for example, will move through glass faster than the blue, so the two colors will reach the same location at different times resulting in different foci. This creates image distortions known as chromatic aberrations.

Cameras and optical instruments use multiple curved lenses of different thicknesses and materials to correct these aberrations, which, of course, adds to the bulk of the device.

Metalenses have advantages over traditional lenses,” says Federico Capasso, Professor of Applied Physics at SEAS and senior author of the research. “Metalenses are thin, easy to fabricate and cost effective. This breakthrough extends those advantages across the whole visible range of light. This is the next big step. Using our achromatic lens, we are able to perform high quality, white light imaging. This brings us one step closer to the goal of incorporating them into common optical devices such as cameras“.

The research is published in Nature Nanotechnology.

Source: https://www.seas.harvard.edu/

Fabric Made Of Nanofibers With Embedded OLED

In South Korea, Professor Kyung Cheol Choi from the School of Electrical Engineering (KAIST)  and his team succeeded in fabricating highly efficient Organic Light-Emitting Diodes (OLEDs) on an ultra-thin fiber. The team expects the technology, which produces high-efficiency, long-lasting OLEDs, can be widely utilized in wearable displays. Existing fiber-based wearable displays’ OLEDs show much lower performance compared to those fabricated on planar substrates. This low performance caused a limitation for applying it to actual wearable displays.

In order to solve this problem, the team designed a structure of OLEDs compatible to fiber and used a dip-coating method in a three-dimensional structure of fibers. Through this method, the team successfully developed efficient OLEDs that are designed to last a lifetime and are still equivalent to those on planar substrates.
The team identified that solution process planar OLEDs can be applied to fibers without any reduction in performance through the technology. This fiber OLEDs exhibited luminance and current efficiency values of over 10,000 cd/m^2(candela/square meter) and 11 cd/A (candela/ampere).
The team also verified that the fiber OLEDs withstood tensile strains of up to 4.3% while retaining more than 90% of their current efficiency. In addition, they could be woven into textiles and knitted clothes without causing any problems.Moreover, the technology allows for fabricating OLEDs on fibers with diameters ranging from 300㎛ down to 90㎛, thinner than a human hair, which attests to the scalability of the proposed fabrication scheme.
Noting that every process is carried out at a low temperature (~105℃), fibers vulnerable to high temperatures can also employ this fabrication scheme.
Professor Choi said, “Existing fiber-based wearable displays had limitations for applicability due to their low performance. However, this technology can fabricate OLEDs with high performance on fibers. This simple, low-cost process opens a way to commercialize fiber-based wearable displays.”
Source: http://www.kaist.edu/

AI Machine Beats Champion Chess Program


AlphaZero
, the game-playing AI created by Google sibling DeepMind, has beaten the world’s best chess-playing computer program, having taught itself how to play in under four hours. The repurposed AI, which has repeatedly beaten the world’s best Go players as AlphaGo, has been generalised so that it can now learn other games. It took just four hours to learn the rules to chess before beating the world champion chess program, Stockfish 8, in a 100-game match up. AlphaZero won or drew all 100 games, according to a non-peer-reviewed research paper published with Cornell University Library’s arXiv.

CLICK ON THE IMAGE AND SEE ALPHA ZERO DEVOURING  STOCKFISH

Starting from random play, and given no domain knowledge except the game rules, AlphaZero achieved within 24 hours a superhuman level of play in the games of chess and shogi [a similar Japanese board game] as well as Go, and convincingly defeated a world-champion program in each case,” said the paper’s authors that include DeepMind founder Demis Hassabis, who was a child chess prodigy reaching master standard at the age of 13.

“It’s a remarkable achievement, even if we should have expected it after AlphaGo,” former world chess champion Garry Kasparov told Chess.com. “We have always assumed that chess required too much empirical knowledge for a machine to play so well from scratch, with no human knowledge added at all.

Computer programs have been able to beat the best human chess players ever since IBM’s Deep Blue supercomputer defeated Kasparov on 12 May 1997DeepMind said the difference between AlphaZero and its competitors is that its machine-learning approach is given no human input apart from the basic rules of chess. The rest it works out by playing itself over and over with self-reinforced knowledge. The result, according to DeepMind, is that AlphaZero took an “arguably more human-like approach” to the search for moves, processing around 80,000 positions per second in chess compared to Stockfish 8’s 70m.

After winning 25 games of chess versus Stockfish 8 starting as white, with first-mover advantage, a further three starting with black and drawing a further 72 games, AlphaZero also learned shogi in two hours before beating the leading program Elmo in a 100-game matchup. AlphaZero won 90 games, lost eight and drew 2. The new generalised AlphaZero was also able to beat the “super human” former version of itself AlphaGo at the Chinese game of Go after only eight-hours of self-training, winning 60 games and losing 40 games.

While experts said the results are impressive, and have potential across a wide-range of applications to complement human knowledge, professor Joanna Bryson, a computer scientist and AI researcher at the University of Bath, warned that it was “still a discrete task“.

Source: https://www.theguardian.com/

3D-Printed Plastic Objects Connect To The Internet Without Any Electronics

Researchers from the University of Washington (UW) have developed 3D-printed plastic objects that can connect to the internet without any electronics or batteries. The researchers found a way to 3D-print plastic objects that can absorb or reflect ambient WiFi signals and send data wirelessly to any WiFi receiver like a smartphone or router.

Possible use cases include an attachment for laundry detergent that can sense when soap is running low, or a water sensor that notifies your smartphone when there is a leak.

As the UW explains in its news release, the researchers “replaced some functions normally performed by electrical components with mechanical motion activated by springs, gears, switches and other parts that can be 3-D printed — borrowing from principles that allow battery-free watches to keep time.” The scientists found that those mechanical motions can trigger gears and springs that connect to an antenna, all within the object.
The team opens new approach: “Can objects made of plastic materials be connected to smartphones and other Wi-Fi devices, without the need for batteries or electronics? A positive answer would enable a rich ecosystem of ‘talking objects3D printed with commodity plastic filaments that have the ability to sense and interact with their surroundings. Imagine plastic sliders or knobs that can enable rich physical interaction by dynamically sending information to a nearby Wi-Fi receiver to control music volume and lights in a room. This can also transform inventory management where for instance a plastic detergent bottle can self-monitor usage and re-order supplies via a nearby Wi-Fi device.
Such a capability democratizes the vision of ubiquitous connectivity by enabling designers to download and use our computational modules, without requiring the engineering expertise to integrate radio chips and other electronics in their physical creations. Further, as the commoditization of 3D printers continues, such a communication capability opens up the potential for individuals to print highly customized wireless sensors, widgets and objects that are tailored to their individual needs and connected to the Internet ecosystem
.”

Source: http://printedwifi.cs.washington.edu/
https://www.geekwire.com/

Printed 3D Nanostructures Against Counterfeiting

Security features are to protect bank notes, documents, and branded products against counterfeiting. Losses caused by product forgery and counterfeiting may be enormous. According to the German Engineering Association, the damage caused in 2016 in its branch alone amounted to EUR 7.3 billion. In the Advanced Materials Technologies journal, researchers of Karlsruhe Institute of Technology (KIT) and the ZEISS company now propose to use printed 3D microstructures instead of 2D structures, such as holograms, to improve counterfeit protection.

Today, optical security features, such as holograms, are frequently based on two-dimensional microstructures,” says Professor Martin Wegener, expert for 3D printing of microstructures at the Institute of Nanotechnology of KIT. “By using 3D-printed fluorescent microstructures, counterfeit protection can be increased.” The new security features have a side length of about 100 µm and are barely visible with the eye or a conventional microscope. For their production and application, Wegener and his team have developed an innovative method that covers all processes from microstructure fabrication to the readout of information.

The microstructures consist of a 3D cross-grid scaffold and dots that fluoresce in different colors and can be arranged variably in three dimensions within this grid. To produce and print such microstructures, the experts use a rapid and precise laser lithography device developed and commercialized by the Nanoscribe company, a spinoff of KIT. It enables highly precise manufacture of voluminous structures of a few millimeters edge length or of microstructured surfaces of several cm² in dimension. The special 3D printer produces the structures layer by layer from non-fluorescent and two fluorescent photoresists. A laser beam very precisely passes certain points of the liquid photoresist. The material is exposed and hardened at the focus point of the laser beam. The resulting filigree structure is then embedded in a transparent polymer in order to protect it against damage.

Source: http://www.kit.edu/

AI, “worst event in the history of our civilisation” says Stephen Hawking

Stephen Hawking has sent a stark warning out to the world, stating that the invention of artificial intelligence (AI) could be the “worst event in the history of our civilisation”. Speaking at the Web Summit technology conference in Lisbon, Portugal, the theoretical physicist reiterated his warning against the rise of powerful, conscious machines.
While Prof Hawking admitted that AI could be used for good, he also stated that humans need to find a way to control it so that it does not become more powerful than us as “computers can, in theory, emulate human intelligence, and exceed it.” Looking at the positives, the 75-year old said AI could help undo some of the damage that humans have inflicted on the natural world, help beat disease and “transform” every aspect of society. But, there are negatives that come with it.
CLICK ON THE IMAGE TO ENJOY THE VIDEO

Success in creating effective AI, could be the biggest event in the history of our civilisation. Or the worst. We just don’t know. “So we cannot know if we will be infinitely helped by AI, or ignored by it and side-lined, or conceivably destroyed by it. “Unless we learn how to prepare for, and avoid, the potential risks, AI could be the worst event in the history of our civilisation. It brings dangers, like powerful autonomous weapons, or new ways for the few to oppress the many. It could bring great disruption to our economy,” explains the University of Cambridge alumni.

Prof Hawking added that to make sure AI is in line with our goals, creators need to “employ best practice and effective management.” But he still has hope: “I am an optimist and I believe that we can create AI for the good of the world. “That it can work in harmony with us. We simply need to be aware of the dangers, identify them, employ the best possible practice and management, and prepare for its consequences well in advance.”

Just last week, Prof Hawking warned that AI will replace us as the dominant being on the planet.

Source: http://www.express.co.uk/

Sophia The Robot Says: ‘I have feelings too’

Until recently, the most famous thing that Sophia the robot had ever done was beat Jimmy Fallon a little too easily in a nationally televised game of rock-paper-scissors.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

But now, the advanced artificial intelligence robot — which looks like Audrey Hepburn, mimics human expressions and may be the grandmother of robots that solve the world’s most complex problems — has a new feather in her cap:

Citizenship.

The kingdom of Saudi Arabia officially granted citizenship to the humanoid robot last week during a program at the Future Investment Initiative, a summit that links deep-pocketed Saudis with inventors hoping to shape the future.

Sophia’s recognition made international headlines — and sparked an outcry against a country with a shoddy human rights record that has been accused of making women second-class citizens.

Source: https://www.washingtonpost.com/

Thin Films Power Electronics Mixed In Fabrics

Scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) reported significant advances in the thermoelectric performance of organic semiconductors based on carbon nanotube thin films that could be integrated into fabrics to convert waste heat into electricity or serve as a small power source.

The research demonstrates significant potential for semiconducting single-walled carbon nanotubes (SWCNTs) as the primary material for efficient thermoelectric generators, rather than being used as a component in a “compositethermoelectric material containing, for example, carbon nanotubes and a polymer. The discovery is outlined in the new Energy & Environmental Science paper, Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films.

There are some inherent advantages to doing things this way,” said Jeffrey Blackburn, a senior scientist in NREL’s Chemical and Materials Science and Technology center and co-lead author of the paper with Andrew Ferguson. These advantages include the promise of solution-processed semiconductors that are lightweight and flexible and inexpensive to manufacture. Other NREL authors are Bradley MacLeod, Rachelle Ihly, Zbyslaw Owczarczyk, and Katherine Hurst. The NREL authors also teamed with collaborators from the University of Denver and partners at International Thermodyne, Inc., based in Charlotte, N.C.

Ferguson, also a senior scientist in the Chemical and Materials Science and Technology center, said the introduction of SWCNT into fabrics could serve an important function for “wearable” personal electronics. By capturing body heat and converting it into electricity, the semiconductor could power portable electronics or sensors embedded in clothing.

Source: https://www.nrel.gov/

How To Detect Lead In Water

Gitanjali Rao, 11-year-old girl, is “America’s Top Young Scientist” of this year, with her invention of Tethys, a device that detects lead in water.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Tethys, the Greek goddess of fresh water, is a lead detection tool. What you do is first dip a disposable cartridge, which can easily be removed and attached to the core device in the water you wish to test. Once you do that, that’s basically the manual part. Then you just pull out an app on your phone and check your status and it looks like the water in this container is safe. So that’s just very simple, about like a 10 to 15 second process,” says Gitanjali Rao . The young girl was affected by the Flint, Michigan water catastrophe when the city started using the Flint River for water in 2014, sparking a crisis that was linked to an outbreak of Legionnaires’ disease, at least 12 deaths and dangerously high lead levels in children.

I was most affected about Flint, Michigan because of the amount of people that were getting affected by the lead in water. And I also realized that it wasn’t just in Flint, Michigan and there were over 5,000 water systems in the U.S. alone. In the beginning of my final presentation at the event, I talked about a little boy named Opemipo, he’s 10 years old and lives in Flint, Michigan. And he has 1 percent elevated lead levels in his blood. And he’s among the thousands of adults and children exposed to the harmful effects of lead in water. So it’s a pretty big deal out there today,” remembers Rao. The seventh-grader said it took her five months to make Tethys from start to finish.

My first couple of times when I was doing my experimentation and test, I did fail so many times and it was frustrating, but I knew that it was just a learning experience and I could definitely develop my device further by doing even more tests and getting advice from my mentor as well. So, never be afraid to try,” explains Rao, who  won the 2017 Discovery Education 3M Young Scientist Challenge, along with a $25,000 prize.

Source: http://www.reuters.com/

Using Brain-Machine Interfaces, Mental Power Can Move Objects

A unique citizen science project in which volunteers will be trained to move a piece of steel machinery using the power of their mind begins on October 27. The Mental Work project uses brain-machine interfaces developed at EPFL (Ecole polytechnique fédérale de Lausanne) in Switzerland, a convergence of science, art, and design .

CLICK ON THE IMAGE TO ENJOY THE VIDEO

At the mental work factory the public can come and we equip them with an EEG helmet which will read the mental activity, the electrical activity, that’s in their brain. These helmets are dry, so we don’t need gel for conductivity and they’re also wireless so they can walk through the mental factory and engage with four of our machines activating them with only their mental activity,  explains Michael Mitchell , who is one of the three co-founders of Mental Work.

The data that will be collected during the mental worker’s trajectory throughout our factory floor will then be made anonymous and given to the brain machine interface community to improve the interfaces for the future. “We think that we’re on the cusp of a cognitive revolution. Now a cognitive revolution is going to be a world where our brains are intimately connected to our physical world around us. With the development of these brain machine interfaces we think that we are really at the beginning of a moment in time where man is going to become the centre of all this technology. His brain activity is going to interact with the physical world around him in ways that we can hardly imagine today. “So I think it’s understandable if people are a little apprehensive about this technology because some people may think ‘oh, it can read my thoughts and then what are we going to do with those thoughts. Where’s the privacy level here?’ But in fact we’re only asking you to modulate your brain activity according to your own will. So it’s as simple as sending a command to a computer using a mouse or a keyboard. But this time we’re using asking you to use your brain. Now we want to bring this technology to the public at a early phase of its development so that we can create a dialogue about what kind of relationship we want to have with this technology in particular but also with man’s relationship to technology in general.

Source: https://actu.epfl.ch/

The Ultra Smart Community Of The Future

Japan’s largest electronics show CEATEC – showcasing its version of our future – in a connected world with intelligent robots And cars that know when the driver is falling asleep. This is Omron‘s “Onboard Driving Monitoring Sensor,” checking its driver isn’t distracted.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We are developing sensors that help the car judge what state the driver is in, with regards to driving. For example, if the driver has his eyes open and set on things he should be looking at, if the driver is distracted or looking at smartphones, and these types of situations,” explains Masaki Suwa, Omron Corp. Chief Technologist.

After 18 years of consumer electronics, CEATEC is changing focus to the Internet of Things and what it calls ‘the ultra-smart community of the future‘ A future where machines take on more important roles – machines like Panasonic‘s CaloRieco – pop in your plate and know exactly what you are about to consume.

By placing freshly cooked food inside the machine, you can measure total calories and the three main nutrients: protein, fat and carbohydrate. By using this machine, you can easily manage your diet,” says Panasonic staff engineer Ryota Sato.

Even playtime will see machines more involved – like Forpheus the ping playing robot – here taking on a Olympic bronze medalist – and learning with every stroke.
Rio Olympics Table Tennis player , Jun Mizutani, Bronze Medalist, reports: “It wasn’t any different from playing with a human being. The robot kept improving and getting better as we played, and to be honest, I wanted to play with it when it had reached its maximum level, to see how good it is.”