Posts belonging to Category internet of NanoThings

How To Harness Heat To Power Computers

One of the biggest problems with computers, dating to the invention of the first one, has been finding ways to keep them cool so that they don’t overheat or shut down. Instead of combating the heat, two University of Nebraska–Lincoln engineers have embraced it as an alternative energy source that would allow computing at ultra-high temperatures. Sidy Ndao, assistant professor of mechanical and materials engineering, said his research group’s development of a nano-thermal-mechanical device, or thermal diode, came after flipping around the question of how to better cool computers.

thermal diode

If you think about it, whatever you do with electricity you should (also) be able to do with heat, because they are similar in many ways,” Ndao said. “In principle, they are both energy carriers. If you could control heat, you could use it to do computing and avoid the problem of overheating.”

A paper Ndao co-authored with Mahmoud Elzouka, a graduate student in mechanical and materials engineering, was published in the March edition of Scientific Reports. In it, they documented their device working in temperatures that approached 630 degrees Fahrenheit (332 degrees Celsius).



A team of scientists led by Associate Professor Yang Hyunsoo from the National University of Singapore’s (NUS) Faculty of Engineering has invented a novel ultra-thin multilayer film which could harness the properties of tiny magnetic whirls, known as skyrmions, as information carriers for storing and processing data (nanocomputer) on magnetic media. The nano-sized thin film, which was developed in collaboration with researchers from Brookhaven National Laboratory, Stony Brook University, and Louisiana State University, is a critical step towards the design of data storage devices that use less power and work faster than existing memory technologies.

The digital transformation has resulted in ever-increasing demands for better processing and storing of large amounts of data, as well as improvements in hard drive technology. Since their discovery in magnetic materials in 2009, skyrmions, which are tiny swirling magnetic textures only a few nanometres in size, have been extensively studied as possible information carriers in next-generation data storage and logic devices.

Skyrmions have been shown to exist in layered systems, with a heavy metal placed beneath a ferromagnetic material. Due to the interaction between the different materials, an interfacial symmetry breaking interaction, known as the Dzyaloshinskii-Moriya interaction (DMI), is formed, and this helps to stabilise a skyrmion. However, without an out-of-plane magnetic field present, the stability of the skyrmion is compromised. In addition, due to its tiny size, it is difficult to image the nano-sized materials. The NUS team found that a large DMI could be maintained in multilayer films composed of cobalt and palladium, and this is large enough to stabilise skyrmion spin textures.

skyrmionsThis experiment not only demonstrates the usefulness of L-TEM in studying these systems, but also opens up a completely new material in which skyrmions can be created. Without the need for a biasing field, the design and implementation of skyrmion based devices are significantly simplified. The small size of the skyrmions, combined with the incredible stability generated here, could be potentially useful for the design of next-generation spintronic devices that are energy efficient and can outperform current memory technologies,” explains Professor Yang .

The invention was reported in the journal Nature Communications.


Scalable Production of Conductive Graphene Inks

Conductive inks based on graphene and layered materials are key for low-cost manufacturing of flexible electronics, novel energy solutions, composites and coatings. A new method for liquid-phase exfoliation of graphite paves the way for scalable production.

Conductive inks are useful for a range of applications, including printed and flexible electronics such as radio frequency identification (RFID) antennas, transistors or photovoltaic cells. The advent of the internet of things is predicted to lead to new connectivity within everyday objects, including in food packaging. Thus, there is a clear need for cheap and efficient production of electronic devices, using stable, conductive and non-toxic components. These inks can also be used to create novel composites, coatings and energy storage devices.

A new method for producing high quality conductive graphene inks with high concentrations has been developed by researchers working at the Cambridge Graphene Centre at the University of Cambridge, UK. The novel method uses ultrahigh shear forces in a microfluidisation process to exfoliate graphene flakes from graphite. The process converts 100% of the starting graphite material into usable flakes for conductive inks, avoiding the need for centrifugation and reducing the time taken to produce a usable ink. The research, published in ACS Nano, also describes optimisation of the inks for different printing applications, as well as giving detailed insights into the fluid dynamics of graphite exfoliation.

graphene scalable production

“This important conceptual advance will significantly help innovation and industrialization. The fact that the process is already licensed and commercialized indicates how it is feasible to cut the time from lab to market” , said Prof. Andrea Ferrari, Director of the Cambridge Graphene Centre.


Wireless Power

A new method developed by Disney Research for wirelessly transmitting power throughout a room enables users to charge electronic devices as seamlessly as they now connect to WiFi hotspots, eliminating the need for electrical cords or charging cradles. The researchers demonstrated their method, called quasistatic cavity resonance (QSCR), inside a specially built 16-by-16-foot room at their lab. They safely generated near-field standing magnetic waves that filled the interior of the room, making it possible to power several cellphones, fans and lights simultaneously.


This new innovative method will make it possible for electrical power to become as ubiquitous as WiFi,” said Alanson Sample, associate lab director & principal research scientist at Disney Research. “This in turn could enable new applications for robots and other small mobile devices by eliminating the need to replace batteries and wires for charging.

In this work, we’ve demonstrated room-scale wireless power, but there’s no reason we couldn’t scale this down to the size of a toy chest or up to the size of a warehouse,” said Sample, who leads the lab’s Wireless Systems Group.

According to Sample, is a long-standing technological dream. Celebrated inventor Nikola Tesla famously demonstrated a wireless lighting system in the 1890s and proposed a system for transmitting power long distances to homes and factories, though it never came to fruition. Today, most wireless power transmission occurs over very short distances, typically involving charging stands or pads.

The QSCR method involves inducing electrical currents in the metalized walls, floor and ceiling of a room, which in turn generate uniform magnetic fields that permeate the room’s interior. This enables power to be transmitted efficiently to receiving coils that operate at the same resonant frequency as the magnetic fields. The induced currents in the structure are channeled through discrete capacitors, which isolate potentially harmful electrical fields.

Our simulations show we can transmit 1.9 kilowatts of power while meeting federal safety guidelines,” Chabalko said. “This is equivalent to simultaneously charging 320 smart phones.”

A research report on QSCR by the Disney Research team of Matthew J. Chabalko, Mohsen Shahmohammadi and Alanson P. Sample was published in the online journal PLOS ONE.


How To Turn Sunlight, Heat and Movement Into Electricity — All at Once

Many forms of energy surround you: sunlight, the heat in your room and even your own movements. All that energy — normally wasted — can potentially help power your portable and wearable gadgets, from biometric sensors to smart watches. Now, researchers from the University of Oulu in Finland have found that a mineral with the perovskite crystal structure has the right properties to extract energy from multiple sources at the same time.

perovskite solar panel

Perovskites are a family of minerals, many of which have shown promise for harvesting one or two types of energy at a time — but not simultaneously. One family member may be good for solar cells, with the right properties for efficiently converting solar energy into electricity. Meanwhile, another is adept at harnessing energy from changes in temperature and pressure, which can arise from motion, making them so-called pyroelectric and piezoelectric materials, respectively.

Sometimes, however, just one type of energy isn’t enough. A given form of energy isn’t always available — maybe it’s cloudy or you’re in a meeting and can’t get up to move around. Other researchers have developed devices that can harness multiple forms of energy, but they require multiple materials, adding bulk to what’s supposed to be a small and portable device.

This week in Applied Physics Letters, Yang Bai and his colleagues at the University of Oulu explain their research on a specific type of perovskite called KBNNO, which may be able to harness many forms of energy. Like all perovskites, KBNNO is a ferroelectric material, filled with tiny electric dipoles analogous to tiny compass needles in a magnet. Within the next year, Bai said, he hopes to build a prototype multi-energy-harvesting device. The fabrication process is straightforward, so commercialization could come in just a few years once researchers identify the best material. “This will push the development of the Internet of Things and smart cities, where power-consuming sensors and devices can be energy sustainable,” he said.

This kind of material would likely supplement the batteries on your devices, improving energy efficiency and reducing how often you need to recharge. One day, Bai said, multi-energy harvesting may mean you won’t have to plug in your gadgets anymore. Batteries for small devices may even become obsolete.


War: Never Underestimate The Power Of Small

If there is one lesson to glean from Picatinny Arsenal‘s new course in nanomaterials, it’s this: never underestimate the power of smallNanotechnology is the study of manipulating matter on an atomic, molecular, or supermolecular scale. The end result can be found in our everyday products, such as stained glass, sunscreen, cellphones, and pharmaceutical products. Other examples are in U.S. Army items such as vehicle armor, Soldier uniforms, power sources, and weaponry. All living things also can be considered united forms of nanotechnology produced by the forces of nature.
explosive3-dimensional tomography generated imaging of pores within a nanoRDEX-based explosive

People tend to think that nanotechnology is all about these little robots roaming around, fixing the environment or repairing damage to your body, and for many reasons that’s just unrealistic,” said Rajen Patel, a senior engineer within the Energetics and Warheads Manufacturing Technology Division, or EWMTD. The division is part of the U.S. Army Armament Research, Development and Engineering Center or ARDEC. “For me, nanotechnology means getting materials to have these properties that you wouldn’t expect them to have.”

The subject can be separated into multiple types (nanomedicine, nanomachines, nanoelectronics, nanocomposites, nanophotonics and more), which can benefit areas, such as communications, medicine, environment remediation, and manufacturingNanomaterials are defined as materials that have at least one dimension in the 1-100 nm range (there are 25,400,000 nanometers in one inch.) To provide some size perspective: comparing a nanometer to a meter is like comparing a soccer ball to the earth.

Picatinny‘s nanomaterials class focuses on nanomaterials‘ distinguishing qualities, such as their optical, electronic, thermal and mechanical properties–and teaches how manipulating them in a weapon can benefit the warfighter. While you could learn similar information at a college course, Patel argues that Picatinny‘s nanomaterial class is nothing like a university class. This is because Picatinny‘s nanomaterials class focuses on applied, rather than theoretical nanotechnology, using the arsenal as its main source of examples. “We talk about things like what kind of properties you get, how to make materials, places you might expect to see nanotechnology within the Army,” explained Patel. The class is taught at the Armament University.

In 2010, an article in The Picatinny Voice titled “Tiny particles, big impact: Nanotechnology to help warfighters” discussed Picatinny’s ongoing research on nanopowders. It noted that Picatinny‘s Nanotechnology Lab is the largest facility in North America to produce nanopowders and nanomaterials, which are used to create nanoexplosives. It also mentioned how using nanomaterials helped to develop lightweight composites as an alternative to traditional steel.

Not too long ago making milligram quantities of nanoexplosives was challenging. Now, we have technologies that allow us make pounds of nanoexplosives per hour at low cost“. Pilot scale production of nanoexplosives is currently being performed at ARDEC. The broad interest in developing nanoenergetics such as nano-RDX and nano-HMX is their remarkably low initiation sensitivity. There are two basic approaches to studying nanomaterials: bottom-up (building a large object atom by atom) and top-down (deconstructing a larger material). Both approaches have been successfully employed in the development of nanoenergetics at ARDEC. One of the challenges with manufacturing nonmaterials can be coping with shockwaves. A shockwave initiates an explosive as it travels through a weapon‘s main fill or the booster. When a shockwave travels through an energetic charge, it can hit small regions of defects, or voids, which heat up quickly and build pressure until the explosive reaches detonation. By using nanoenergetics, one could adjust the size and quantity of the defects and voids, so that the pressure isn’t as strong and ultimately prevent accidental detonation.

It’s a major production challenge because if you want to process nanomaterials–if you want to coat it with some polymer for explosives–any kind of medium that can dissolve these types of materials can promote ripening and you can end up with a product which no longer has the nanomaterial that you began with,”  However, nanotechnology research continues to grow at Picatinny as the research advances in the U.S. Army.


Nanocomputer Confirms The Moore’s Law

A research team led by faculty scientist Ali Javey at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has done just that by creating a transistor with a working 1-nanometer gate. For comparison, a strand of human hair is about 50,000 nanometers thick. The development could be key to keeping alive Intel co-founder Gordon Moore’s prediction that the density of transistors on integrated circuits would double every two years, enabling the increased performance of our laptops, mobile phones, televisions, and other electronics. For more than a decade, engineers have been eyeing the finish line in the race to shrink the size of components in integrated circuits. They knew that the laws of physics had set a 5-nanometer threshold on the size of transistor gates among conventional semiconductors, about one-quarter the size of high-end 20-nanometer-gate transistors now on the market.


We made the smallest transistor reported to date,” said Javey, lead principal investigator of the Electronic Materials program in Berkeley Lab’s Materials Science Division. “The gate length is considered a defining dimension of the transistor. We demonstrated a 1-nanometer-gate transistor, showing that with the choice of proper materials, there is a lot more room to shrink our electronics.” The key was to use carbon nanotubes and molybdenum disulfide (MoS2), an engine lubricant commonly sold in auto parts shops. MoS2 is part of a family of materials with immense potential for applications in LEDs, lasers, nanoscale transistors, solar cells, and more.

The findings were published in the journal Science.


Nanocomputer: Carbon Nanotube Transistors Outperform Silicon

For decades, scientists have tried to harness the unique properties of carbon nanotubes to create high-performance electronics that are faster or consume less power — resulting in longer battery life, faster wireless communication and faster processing speeds for devices like smartphones and laptops. But a number of challenges have impeded the development of high-performance transistors made of carbon nanotubes, tiny cylinders made of carbon just one atom thick. Consequently, their performance has lagged far behind semiconductors such as silicon and gallium arsenide used in computer chips and personal electronics.

Now, for the first time, University of Wisconsin–Madison materials engineers have created carbon nanotube transistors that outperform state-of-the-art silicon transistors. Led by Michael Arnold and Padma Gopalan, UW–Madison professors of materials science and engineering, the team’s carbon nanotube transistors achieved current that’s 1.9 times higher than silicon transistors. The researchers reported their advance in a paper published in the journal Science Advances.

carbon nanotube integrated circuits

This achievement has been a dream of nanotechnology for the last 20 years,” says Arnold. “Making carbon nanotube transistors that are better than silicon transistors is a big milestone. This breakthrough in carbon nanotube transistor performance is a critical advance toward exploiting carbon nanotubes in logic, high-speed communications, and other semiconductor electronics technologies.”

This advance could pave the way for carbon nanotube transistors to replace silicon transistors and continue delivering the performance gains the computer industry relies on and that consumers demand. The new transistors are particularly promising for wireless communications technologies that require a lot of current flowing across a relatively small area.


Electric Bus Service Without Driver Open Next Week

A self shuttle service, electric and driverless but with passengers, was launched Friday in Lyon (France)  to be tested for a year in the new district of Confluence, “a world first” according to officials of the operation. Two “Armashuttles of the French company Navya, a prototype was tested in 2013 on the hill of the Croix-Rousse, must serve a 10-minute rotations five stops on route commissioning between the Hotel de Region and the tip of the peninsula of the city, Saône side.

Long of 1.3 kilometers and baptized Navly, the service will be open this weekend from 10:00 then at 17:00 from Monday to Friday, 7:30 a.m. to 7:00 p.m., from September 5. Fifteen people in total can be carried in each vehicle. Developed by Keolis, the network operator of the Lyon public transport (TCL) and Navya, a specialist in innovative mobility solutions, the project “meets the challenges of serving the last kilometer,” said Pascal Jacquesson, CEO of Keolis Lyon. Supported by the Metropolis of Lyon and approved in July by the Ministry of Ecology, the “fine service” must supplement the local tram and bus provides TCL, attention including “employees of large companies and administrative and cultural institutions of the district,” he said.

Driverless yellow bus

This period of one year is intended to test everything from technology to economic model” to be determined, for its part, Christophe Sapet, Chairman of Navya headquartered in Villeurbanne. Limited at a speed of 20 km / h for the service, the Arma shuttle is a jewel of technology to 200,000 euros each, equipped with guiding cameras in stereovision, laser sensors, GPS and a battery life of six to eight hours.

Already tested in many other cities of the Hexagon, but without passengers, Navya shuttles also run abroad as in Sion, Switzerland. other electric minibus without drivers have already been tested for several months in La Rochelle (Charente-Maritime), as part of European experience.


Green Electronics

A team of University of Toronto chemists has created a battery that stores energy in a biologically-derived unit, paving the way for cheaper consumer electronics that are easier on the environment.

The battery is similar to many commercially-available high-energy lithium-ion batteries with one important difference. It uses flavin from vitamin B2 as the cathode: the part that stores the electricity that is released when connected to a device.


We’ve been looking to nature for a while to find complex molecules for use in a number of consumer electronics applications,” says Dwight Seferos, a professor in U of T’s department of chemistry and Canada Research Chair in Polymer Nanotechnology. “When you take something made by nature that is already complex, you end up spending less time making new material,” says Seferos.

The team created the material from vitamin B2 that originates in genetically-modified fungi using a semi-synthetic process to prepare the polymer by linking two flavin units to a long-chain molecule backbone. This allows for a green battery with high capacity and high voltage – something increasingly important as the ‘Internet of Things’ continues to link us together more and more through our battery-powered portable devices.

It’s a pretty safe, natural compound,” Seferos adds. “If you wanted to, you could actually eat the source material it comes from.” B2’s ability to be reduced and oxidized makes its well-suited for a lithium ion battery.


Nanotechnology Key Driver for the Global Internet of Things Market

Analysts from Technavio,  a leading market research companyforecast the global internet of nano things (IoNT) market to grow at a annual growth rate of more than 24% during the 2016/2020  period, according to their latest report. The rise in the number of connected nanoscale devices in industries has led to generation of large data sets. These data can be used to optimize costs, deliver better services, and boost revenues. Also, the interconnection of nanoscale devices has enabled efficient data communication between disparate devices over the network. Thus, IoNT helps organizations to reduce the complexity in communication and increase the process efficiency using data collected from nanoscale devices.


Even governments have realized the importance of IoNT technology in the healthcare sector that can be used to treat cancer and other genetic diseases at the molecular level. This has further increased the demand and awareness of IoNT among multiple industries,” says Amit Sharma, a lead analyst at Technavio for research on IT professional services.

The report also highlights the US government’s National Nanotechnology Initiative (NNI) that supports the adoption of nanotechnology in industries, such as healthcare, defense, and textiles, due to its vast applications. This initiative has been awarded over USD 22 billion since 2001 to promote the adoption of nanoscience and nanotechnology by states, universities, and companies.

The rise in demand for miniaturization of electronics products coupled with increased consumer demand for smaller and more powerful devices at affordable prices has made nanotechnology more popular among industries. Both private and public sectors are investing heavily in R&D to tap the potential benefits of nanotechnology.

Also, the rise in commercialization of nanomaterials, such as nanocatalyst thin films for catalytic converters, nanotechnology-enhanced thin-film solar cells, and nanoscale electronic memory, is shaping the growth of the global nanotechnology market. Thus, there is an increase in the number of interconnected nanodevices. IoNT provides a communication infrastructure for interconnected nanodevices to share information and coordinate multiple activities over the Internet.

“The Internet revolution is fueling global connectivity by bringing unconnected devices, such as nanoscale devices, on the network. The nanonetwork technology is evolving to meet the needs of various applications. Such technologies provide an effective communication infrastructure for the rapid pace of communication among nanoscale devices,” comments Amit.

The scope of Internet has been extended due to increased interconnection of nanosensors with consumer devices and other physical assets. IoNT enables data collection, processing, and sharing with end-users. It finds application in industries such as healthcare, manufacturing, transportation and logistics, energy and utilities, and other services.