Posts belonging to Category internet of NanoThings

Not just speed: 7 incredible things you can do with 5G

You can’t walk around Mobile World Congress  without 5G slapping you in the face. If there’s a phenomenon that’s dominated this week’s trade show besides the return of a 17-year-old phone, it’s the reality that the next generation of cellular technology has arrived. Well, at least it’s real in the confines of the Fira Gran Via convention center in Barcelona.

Above the Qualcomm booth flashed the slogan: “5G: From the company that brought you 3G and 4G.” If you took a few more steps, you could hear an Intel representative shout about the benefits of 5G. If you hopped over to Ericsson, you’d find a “5G avenue” with multiple exhibits demonstrating the benefits of the technology. Samsung kicked off its press conference not with its new tablets, but with a chat about 5G.

Remote surgery via a special glove, virtual reality and 5G

(click on the image to enjoy the video)

The hype around 5G has been brewing for more than a year, but we’re finally starting to see the early research and development bear fruit. The technology promises to change our lives by connecting everything around us to a network that is 100 times faster than our cellular connection and 10 times faster than our speediest home broadband service.

But it’s not just about speed for speed’s sake. While the move from 3G to 4G LTE was about faster connections, the evolution to 5G is so much more. The combination of speed, responsiveness and reach could unlock the full capabilities of other hot trends in technology, offering a boost to self-driving cars, drones, virtual reality and the internet of things. “If you just think of speed, you don’t see the magic of all it can do,” said Jefferson Wang, who follows the mobile industry for IBB Consulting.

The bad news: 5G is still a while away for consumers, and the industry is still fighting over the nitty-gritty details of the technology itself. The good news: There’s a chance it’s coming sooner than we thought. It’s clear why the wireless carriers are eager to move to 5G. With the core phone business slowing down, companies are eager for new tech to spark excitement and connect more devices. “We are absolutely convinced that 5G is the next revolution,” Tim Baxter, president of Samsung’s US unit, said during a press conference.


Memristors Retain Data 10 Years Without Power

The internet of things ( IoT) is coming, that much we know. But still it won’t; not until we have components and chips that can handle the explosion of data that comes with IoT. In 2020, there will already be 50 billion industrial internet sensors in place all around us. A single autonomous device – a smart watch, a cleaning robot, or a driverless car – can produce gigabytes of data each day, whereas an airbus may have over 10 000 sensors in one wing alone.

Two hurdles need to be overcome. First, current transistors in computer chips must be miniaturized to the size of only few nanometres; the problem is they won’t work anymore then. Second, analysing and storing unprecedented amounts of data will require equally huge amounts of energy. Sayani Majumdar, Academy Fellow at Aalto University (Finland), along with her colleagues, is designing technology to tackle both issues.

Majumdar has with her colleagues designed and fabricated the basic building blocks of future components in what are called “neuromorphiccomputers inspired by the human brain. It’s a field of research on which the largest ICT companies in the world and also the EU are investing heavily. Still, no one has yet come up with a nano-scale hardware architecture that could be scaled to industrial manufacture and use.

The probe-station device (the full instrument, left, and a closer view of the device connection, right) which measures the electrical responses of the basic components for computers mimicking the human brain. The tunnel junctions are on a thin film on the substrate plate.

The technology and design of neuromorphic computing is advancing more rapidly than its rival revolution, quantum computing. There is already wide speculation both in academia and company R&D about ways to inscribe heavy computing capabilities in the hardware of smart phones, tablets and laptops. The key is to achieve the extreme energy-efficiency of a biological brain and mimic the way neural networks process information through electric impulses,” explains Majumdar.

In their recent article in Advanced Functional Materials, Majumdar and her team show how they have fabricated a new breed of “ferroelectric tunnel junctions”, that is, few-nanometre-thick ferroelectric thin films sandwiched between two electrodes. They have abilities beyond existing technologies and bode well for energy-efficient and stable neuromorphic computing.

The junctions work in low voltages of less than five volts and with a variety of electrode materials – including silicon used in chips in most of our electronics. They also can retain data for more than 10 years without power and be manufactured in normal conditions.

Tunnel junctions have up to this point mostly been made of metal oxides and require 700 degree Celsius temperatures and high vacuums to manufacture. Ferroelectric materials also contain lead which makes them – and all our computers – a serious environmental hazard.

Our junctions are made out of organic hydro-carbon materials and they would reduce the amount of toxic heavy metal waste in electronics. We can also make thousands of junctions a day in room temperature without them suffering from the water or oxygen in the air”, explains Majumdar.

What makes ferroelectric thin film components great for neuromorphic computers is their ability to switch between not only binary states – 0 and 1 – but a large number of intermediate states as well. This allows them to ‘memoriseinformation not unlike the brain: to store it for a long time with minute amounts of energy and to retain the information they have once received – even after being switched off and on again.

We are no longer talking of transistors, but ‘memristors’. They are ideal for computation similar to that in biological brains.  Take for example the Mars 2020 Rover about to go chart the composition of another planet. For the Rover to work and process data on its own using only a single solar panel as an energy source, the unsupervised algorithms in it will need to use an artificial brain in the hardware.

What we are striving for now, is to integrate millions of our tunnel junction memristors into a network on a one square centimetre area. We can expect to pack so many in such a small space because we have now achieved a record-high difference in the current between on and off-states in the junctions and that provides functional stability. The memristors could then perform complex tasks like image and pattern recognition and make decisions autonomously,” says Majumdar.


Flat Lens Boost Virtual Reality

Metalensesflat surfaces that use nanostructures to focus light — promise to revolutionize optics by replacing the bulky, curved lenses currently used in optical devices with a simple, flat surface.  But, these metalenses have remained limited in the spectrum of light they can focus well Now a team of researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has developed the first single lens that can focus the entire visible spectrum of light — including white light — in the same spot and in high resolution. This has only ever been achieved in conventional lenses by stacking multiple lenses.

Focusing the entire visible spectrum and white light – combination of all the colors of the spectrum — is so challenging because each wavelength moves through materials at different speeds. Red wavelengths, for example, will move through glass faster than the blue, so the two colors will reach the same location at different times resulting in different foci. This creates image distortions known as chromatic aberrations.

Cameras and optical instruments use multiple curved lenses of different thicknesses and materials to correct these aberrations, which, of course, adds to the bulk of the device.

Metalenses have advantages over traditional lenses,” says Federico Capasso, Professor of Applied Physics at SEAS and senior author of the research. “Metalenses are thin, easy to fabricate and cost effective. This breakthrough extends those advantages across the whole visible range of light. This is the next big step. Using our achromatic lens, we are able to perform high quality, white light imaging. This brings us one step closer to the goal of incorporating them into common optical devices such as cameras“.

The research is published in Nature Nanotechnology.


Fabric Made Of Nanofibers With Embedded OLED

In South Korea, Professor Kyung Cheol Choi from the School of Electrical Engineering (KAIST)  and his team succeeded in fabricating highly efficient Organic Light-Emitting Diodes (OLEDs) on an ultra-thin fiber. The team expects the technology, which produces high-efficiency, long-lasting OLEDs, can be widely utilized in wearable displays. Existing fiber-based wearable displays’ OLEDs show much lower performance compared to those fabricated on planar substrates. This low performance caused a limitation for applying it to actual wearable displays.

In order to solve this problem, the team designed a structure of OLEDs compatible to fiber and used a dip-coating method in a three-dimensional structure of fibers. Through this method, the team successfully developed efficient OLEDs that are designed to last a lifetime and are still equivalent to those on planar substrates.
The team identified that solution process planar OLEDs can be applied to fibers without any reduction in performance through the technology. This fiber OLEDs exhibited luminance and current efficiency values of over 10,000 cd/m^2(candela/square meter) and 11 cd/A (candela/ampere).
The team also verified that the fiber OLEDs withstood tensile strains of up to 4.3% while retaining more than 90% of their current efficiency. In addition, they could be woven into textiles and knitted clothes without causing any problems.Moreover, the technology allows for fabricating OLEDs on fibers with diameters ranging from 300㎛ down to 90㎛, thinner than a human hair, which attests to the scalability of the proposed fabrication scheme.
Noting that every process is carried out at a low temperature (~105℃), fibers vulnerable to high temperatures can also employ this fabrication scheme.
Professor Choi said, “Existing fiber-based wearable displays had limitations for applicability due to their low performance. However, this technology can fabricate OLEDs with high performance on fibers. This simple, low-cost process opens a way to commercialize fiber-based wearable displays.”

AI Machine Beats Champion Chess Program

, the game-playing AI created by Google sibling DeepMind, has beaten the world’s best chess-playing computer program, having taught itself how to play in under four hours. The repurposed AI, which has repeatedly beaten the world’s best Go players as AlphaGo, has been generalised so that it can now learn other games. It took just four hours to learn the rules to chess before beating the world champion chess program, Stockfish 8, in a 100-game match up. AlphaZero won or drew all 100 games, according to a non-peer-reviewed research paper published with Cornell University Library’s arXiv.


Starting from random play, and given no domain knowledge except the game rules, AlphaZero achieved within 24 hours a superhuman level of play in the games of chess and shogi [a similar Japanese board game] as well as Go, and convincingly defeated a world-champion program in each case,” said the paper’s authors that include DeepMind founder Demis Hassabis, who was a child chess prodigy reaching master standard at the age of 13.

“It’s a remarkable achievement, even if we should have expected it after AlphaGo,” former world chess champion Garry Kasparov told “We have always assumed that chess required too much empirical knowledge for a machine to play so well from scratch, with no human knowledge added at all.

Computer programs have been able to beat the best human chess players ever since IBM’s Deep Blue supercomputer defeated Kasparov on 12 May 1997DeepMind said the difference between AlphaZero and its competitors is that its machine-learning approach is given no human input apart from the basic rules of chess. The rest it works out by playing itself over and over with self-reinforced knowledge. The result, according to DeepMind, is that AlphaZero took an “arguably more human-like approach” to the search for moves, processing around 80,000 positions per second in chess compared to Stockfish 8’s 70m.

After winning 25 games of chess versus Stockfish 8 starting as white, with first-mover advantage, a further three starting with black and drawing a further 72 games, AlphaZero also learned shogi in two hours before beating the leading program Elmo in a 100-game matchup. AlphaZero won 90 games, lost eight and drew 2. The new generalised AlphaZero was also able to beat the “super human” former version of itself AlphaGo at the Chinese game of Go after only eight-hours of self-training, winning 60 games and losing 40 games.

While experts said the results are impressive, and have potential across a wide-range of applications to complement human knowledge, professor Joanna Bryson, a computer scientist and AI researcher at the University of Bath, warned that it was “still a discrete task“.


DNA Origami, The New Revolution To Come For Nanotechnology

For the past few decades, some scientists have known the shape of things to come in nanotechnology is tied to the molecule of life, DNA. This burgeoning field is called “DNA origami.” The moniker is borrowed from the art of conjuring up birds, flowers and other shapes by imaginatively folding a single sheet of paper. Similarly, DNA origami scientists are dreaming up a variety of shapes — at a scale one thousand times smaller than a human hair — that they hope will one day revolutionize computing, electronics and medicine. Now, a team of Arizona State University and Harvard scientists has invented a major new advance in DNA nanotechnology. Dubbed “single-stranded origami” (ssOrigami), their new strategy uses one long noodle-like strand of DNA, or its chemical cousin RNA, that can self-fold — without even a single knot — into the largest, most complex structures to date. And the strands forming these structures can be made inside living cells or using enzymes in a test tube, allowing scientists the potential to plug-and-play with new designs and functions for nanomedicine: picture tiny nanobots playing doctor and delivering drugs within cells at the site of injury.

A DNA origami with an emoji-like smiley face

I think this is an exciting breakthrough, and a great opportunity for synthetic biology as well,” said Hao Yan, a co-inventor of the technology, director of the ASU Biodesign Institute’s Center for Molecular Design and Biomimetics, and the Milton Glick Professor in the School of Molecular Sciences.

We are always inspired by nature’s designs to make information-carrying molecules that can self-fold into the nanoscale shapes we want to make,” he said.

As proof of concept, they’ve pushed the envelope to make 18 shapes, including emoji-like smiley faces, hearts and triangles, that significantly expand the design studio space and material scalability for so-called, “bottom-upnanotechnology.


Nanotechnology Boosts CyberSecurity Against Hackers

The next generation of electronic hardware security may be at hand as researchers at New York University Tandon School of Engineering  (NYU Tandon) introduce a new class of unclonable cybersecurity security primitives made of a low-cost nanomaterial with the highest possible level of structural randomness. Randomness is highly desirable for constructing the security primitives that encrypt and thereby secure computer hardware and data physically, rather than by programming.

In a paper published in the journal ACS Nano, Assistant Professor of Electrical and Computer Engineering Davood Shahrjerdi and his team at NYU Tandon offer the first proof of complete spatial randomness in atomically thin molybdenum disulfide (MoS2). The researchers grew the nanomaterial in layers, each roughly one million times thinner than a human hair. By varying the thickness of each layer, Shahrjerdi explained, they tuned the size and type of energy band structure, which in turn affects the properties of the material.

(a) At monolayer thickness, this material has the optical properties of a semiconductor that emits light. At multilayer, the properties change and the material doesn’t emit light. (b) Varying the thickness of each layer results in a thin film speckled with randomly occurring regions that alternately emit or block light. (c) Upon exposure to light, this pattern can be translated into a one-of-a-kind authentication key that could secure hardware components at minimal cost.

This property is unique to this material,” underscores Shahrjerdi. By tuning the material growth process, the resulting thin film is speckled with randomly occurring regions that alternately emit or do not emit light. When exposed to light, this pattern translates into a one-of-a-kind authentication key that could secure hardware components at minimal cost.


Printed 3D Nanostructures Against Counterfeiting

Security features are to protect bank notes, documents, and branded products against counterfeiting. Losses caused by product forgery and counterfeiting may be enormous. According to the German Engineering Association, the damage caused in 2016 in its branch alone amounted to EUR 7.3 billion. In the Advanced Materials Technologies journal, researchers of Karlsruhe Institute of Technology (KIT) and the ZEISS company now propose to use printed 3D microstructures instead of 2D structures, such as holograms, to improve counterfeit protection.

Today, optical security features, such as holograms, are frequently based on two-dimensional microstructures,” says Professor Martin Wegener, expert for 3D printing of microstructures at the Institute of Nanotechnology of KIT. “By using 3D-printed fluorescent microstructures, counterfeit protection can be increased.” The new security features have a side length of about 100 µm and are barely visible with the eye or a conventional microscope. For their production and application, Wegener and his team have developed an innovative method that covers all processes from microstructure fabrication to the readout of information.

The microstructures consist of a 3D cross-grid scaffold and dots that fluoresce in different colors and can be arranged variably in three dimensions within this grid. To produce and print such microstructures, the experts use a rapid and precise laser lithography device developed and commercialized by the Nanoscribe company, a spinoff of KIT. It enables highly precise manufacture of voluminous structures of a few millimeters edge length or of microstructured surfaces of several cm² in dimension. The special 3D printer produces the structures layer by layer from non-fluorescent and two fluorescent photoresists. A laser beam very precisely passes certain points of the liquid photoresist. The material is exposed and hardened at the focus point of the laser beam. The resulting filigree structure is then embedded in a transparent polymer in order to protect it against damage.


How To Use Computers Heat To Generate Electricity

Electronic devices such as computers generate heat that mostly goes to waste. Physicists at Bielefeld University (Germany) have found a way to use this energy: They apply the heat to generate magnetic signals known as ‘spin currents’. In future, these signals could replace some of the electrical current in electronic components. In a new study, the physicists tested which materials can generate this spin current most effectively from heat. The research was carried out in cooperation with colleagues from the University of Greifswald, Gießen University, and the Leibniz Institute for Solid State and Materials Research in Dresden.

The Bielefeld physicists are working on the basic principles for making data processing more effective and energy-efficient in the young field of ‘spin caloritronics’. They are members of the ‘Thin Films & Physics of Nanostructures’ research group headed by Professor Dr. Günter Reiss. Their new study determines the strength of the spin current for various combinations of thin films.

A spin current is produced by differences in temperature between two ends of an electronic component. These components are extremely small and only one millionth of a millimetre thick. Because they are composed of magnetic materials such as iron, cobalt, or nickel, they are called magnetic nanostructures.

The physicists take two such nanofilms and place a layer of metal oxide between them that is only a few atoms thick. They heat up one of the external films – for example, with a hot nanowire or a focused laser. Electrons with a specific spin orientation then pass through the metal oxide. This produces the spin current. A spin can be conceived as electrons spinning on their own axes – either clockwise or anti-clockwise.

Their findings have been  published  in the research journal ‘Nature Communications’.


AI, “worst event in the history of our civilisation” says Stephen Hawking

Stephen Hawking has sent a stark warning out to the world, stating that the invention of artificial intelligence (AI) could be the “worst event in the history of our civilisation”. Speaking at the Web Summit technology conference in Lisbon, Portugal, the theoretical physicist reiterated his warning against the rise of powerful, conscious machines.
While Prof Hawking admitted that AI could be used for good, he also stated that humans need to find a way to control it so that it does not become more powerful than us as “computers can, in theory, emulate human intelligence, and exceed it.” Looking at the positives, the 75-year old said AI could help undo some of the damage that humans have inflicted on the natural world, help beat disease and “transform” every aspect of society. But, there are negatives that come with it.

Success in creating effective AI, could be the biggest event in the history of our civilisation. Or the worst. We just don’t know. “So we cannot know if we will be infinitely helped by AI, or ignored by it and side-lined, or conceivably destroyed by it. “Unless we learn how to prepare for, and avoid, the potential risks, AI could be the worst event in the history of our civilisation. It brings dangers, like powerful autonomous weapons, or new ways for the few to oppress the many. It could bring great disruption to our economy,” explains the University of Cambridge alumni.

Prof Hawking added that to make sure AI is in line with our goals, creators need to “employ best practice and effective management.” But he still has hope: “I am an optimist and I believe that we can create AI for the good of the world. “That it can work in harmony with us. We simply need to be aware of the dangers, identify them, employ the best possible practice and management, and prepare for its consequences well in advance.”

Just last week, Prof Hawking warned that AI will replace us as the dominant being on the planet.


Sophia The Robot Says: ‘I have feelings too’

Until recently, the most famous thing that Sophia the robot had ever done was beat Jimmy Fallon a little too easily in a nationally televised game of rock-paper-scissors.


But now, the advanced artificial intelligence robot — which looks like Audrey Hepburn, mimics human expressions and may be the grandmother of robots that solve the world’s most complex problems — has a new feather in her cap:


The kingdom of Saudi Arabia officially granted citizenship to the humanoid robot last week during a program at the Future Investment Initiative, a summit that links deep-pocketed Saudis with inventors hoping to shape the future.

Sophia’s recognition made international headlines — and sparked an outcry against a country with a shoddy human rights record that has been accused of making women second-class citizens.


Smart Paper Conducts Electricity, Detects Water

In cities and large-scale manufacturing plants, a water leak in a complicated network of pipes can take tremendous time and effort to detect, as technicians must disassemble many pieces to locate the problem. The American Water Works Association indicates that nearly a quarter-million water line breaks occur each year in the U.S., costing public water utilities about $2.8 billion annually.

A University of Washington (UW) team wants to simplify the process for discovering detrimental leaks by developing “smartpaper that can sense the presence of water. The paper, laced with conductive nanomaterials, can be employed as a switch, turning on or off an LED light or an alarm system indicating the absence or presence of water.

Water sensing is very challenging to do due to the polar nature of water, and what is used now is very expensive and not practical to implement,” said lead author Anthony Dichiara, a UW assistant professor of bioresource science and engineering in the School of Environment and Forest Sciences. “That led to the reason to pursue this work.”

Along with Dichiara, a team of UW undergraduate students in the Bioresource Science and Engineering program successfully embedded nanomaterials in paper that can conduct electricity and sense the presence of water. Starting with pulp, they manipulated the wood fibers and carefully mixed in nanomaterials using a standard process for papermaking, but never before used to make sensing papers.

Discovering that the paper could detect the presence of water came by way of a fortuitous accident. Water droplets fell onto the conductive paper the team had created, causing the LED light indicating conductivity to turn off. Though at first they thought they had ruined the paper, the researchers realized they had instead created a paper that was sensitive to water.
The researchers described their discovery in a paper appearing in the Journal of Materials Chemistry A.