Posts belonging to Category semiconductors



Robots With The Sense Of Touch

A team of researchers from the University of Houston (UH) has reported a breakthrough in stretchable electronics that can serve as an artificial skin, allowing a robotic hand to sense the difference between hot and cold, while also offering advantages for a wide range of biomedical devices.

Cunjiang Yu, Bill D. Cook Assistant Professor of mechanical engineering and lead author for the paper, said the work is the first to create a semiconductor in a rubber composite format, designed to allow the electronic components to retain functionality even after the material is stretched by 50 percent. The semiconductor in rubber composite format enables stretchability without any special mechanical structure. Yu noted that traditional semiconductors are brittle and using them in otherwise stretchable materials has required a complicated system of mechanical accommodations. “That’s both more complex and less stable than the new discovery, as well as more expensive.”

Our strategy has advantages for simple fabrication, scalable manufacturing, high-density integration, large strain tolerance and low cost,” he said.

Yu and the rest of the team – co-authors include first author Hae-Jin Kim, Kyoseung Sim and Anish Thukral, all with the UH Cullen College of Engineering – created the electronic skin and used it to demonstrate that a robotic hand could sense the temperature of hot and iced water in a cup. The skin also was able to interpret computer signals sent to the hand and reproduce the signals as .

The robotic skin can translate the gesture to readable letters that a person like me can understand and read,” Yu said.

The work is reported in the journal Science Advances.

Source: http://www.uh.edu/

More Durable Fuel Cells For Hydrogen Electric Car

Take a ride on the University of Delaware’s (UDFuel Cell bus, and you see that fuel cells can power vehicles in an eco-friendly way. In just the last two years, Toyota, BMW and Honda have released vehicles that run on fuel cells, and carmakers such as GM, BMW and VW are working on prototypes.  If their power sources lasted longer and cost less, fuel cell vehicles could go mainstream faster. Now, a team of engineers at UD has developed a technology that could make fuel cells cheaper and more durable.

Hydrogen-powered fuel cells are a green alternative to internal combustion engines because they produce power through electrochemical reactions, leaving no pollution behind. Materials called catalysts spur these electrochemical reactions. Platinum is the most common catalyst in the type of fuel cells used in vehicles. However, platinum is expensive — as anyone who’s shopped for jewelry knows. The metal costs around $30,000 per kilogram. Instead, the UD team made a catalyst of tungsten carbide, which goes for around $150 per kilogram. They produced tungsten carbide nanoparticles in a novel way, much smaller and more scalable than previous methods.

The material is typically made at very high temperatures, about 1,500 Celsius, and at these temperatures, it grows big and has little surface area for chemistry to take place on,” explains Vlachos, professor at the Catalysis Center for Energy Innovation (UD). “Our approach is one of the first to make nanoscale material of high surface area that can be commercially relevant for catalysis.”

The researchers made tungsten carbide nanoparticles using a series of steps including hydrothermal treatment, separation, reduction, carburization and more. The results are described in a paper published in Nature Communications.

Source: https://www.udel.edu/

China, Global Leader In NanoScience

Mobile phones, computers, cosmetics, bicyclesnanoscience is hiding in so many everyday items, wielding a huge influence on our lives at a microscale level. Scientists and engineers from around the world exchanged new findings and perceptions on nanotechnology at the recent 7th International Conference on Nanoscience and Technology (ChinaNANO 2017) in Beijing last week. China has become a nanotechnology powerhouse, according to a report released at the conference. China’s applied nanoscience research and the industrialization of nanotechnology have been developing steadily, with the number of nano-related patent applications ranking among the top in the world.

According to Bai Chunli, president of the Chinese Academy of Sciences (CAS), China faces new opportunities for nanoscience research and development as it builds the National Center for Nanoscience and Technology  (NCNST) and globally influential national science centers.

We will strengthen the strategic landscape and top-down design for developing nanoscience, which will contribute greatly to the country’s economy and society,” said Bai.

Nanoscience can be defined as the study of the interaction, composition, properties and manufacturing methods of materials at a nanometer scale. At such tiny scales, the physical, chemical and biological properties of materials are different from those at larger scales — often profoundly so.

For example, alloys that are weak or brittle become strong and ductile; compounds that are chemically inert become powerful catalysts. It is estimated that there are more than 1,600 nanotechnology-based consumer products on the market, including lightweight but sturdy tennis rackets, bicycles, suitcases, automobile parts and rechargeable batteries. Nanomaterials are used in hairdryers or straighteners to make them lighter and more durable. The secret of how sunscreens protect skin from sunburn lies in the nanometer-scale titanium dioxide or zinc oxide they contain.

In 2016, the world’s first one-nanometer transistor was created. It was made from carbon nanotubes and molybdenum disulphide, rather than silicon.
Carbon nanotubes or silver nanowires enable touch screens on computers and televisions to be flexible, said Zhu Xing, chief scientist (CNST). Nanotechnology is also having an increasing impact on healthcare, with progress in drug delivery, biomaterials, imaging, diagnostics, active implants and other therapeutic applications. The biggest current concern is the health threats of nanoparticles, which can easily enter body via airways or skin. Construction workers exposed to nanopollutants face increased health risks.

The report was co-produced by Springer Nature, National Center for Nanoscience and Technology (NCNST) and the National Science Library of the Chinese Academy of Sciences (CAS).

Source: http://www.shanghaidaily.com/

Electric Car: More Silicon To Enhance Batteries

Silicon – the second most abundant element in the earth’s crust – shows great promise in Li-ion batteries, according to new research from the University of Eastern Finland. By replacing graphite anodes with silicon, it is possible to quadruple anode capacity.

In a climate-neutral society, renewable and emission-free sources of energy, such as wind and solar power, will become increasingly widespread. The supply of energy from these sources, however, is intermittent, and technological solutions are needed to safeguard the availability of energy also when it’s not sunny or windy. Furthermore, the transition to emission-free energy forms in transportation requires specific solutions for energy storage, and lithium-ion batteries are considered to have the best potential.

Researchers from the University of Eastern Finland introduced new technology to Li-ion batteries by replacing graphite used in anodes by silicon. The study analysed the suitability of electrochemically produced nanoporous silicon for Li-ion batteries. It is generally understood that in order for silicon to work in batteries, nanoparticles are required, and this brings its own challenges to the production, price and safety of the material. However, one of the main findings of the study was that particles sized between 10 and 20 micrometres and with the right porosity were in fact the most suitable ones to be used in batteries. The discovery is significant, as micrometre-sized particles are easier and safer to process than nanoparticles. This is also important from the viewpoint of battery material recyclability, among other things.

In our research, we were able to combine the best of nano– and micro-technologies: nano-level functionality combined with micro-level processability, and all this without compromising performance,” Researcher Timo Ikonen from the University of Eastern Finland says. “Small amounts of silicon are already used in Tesla’s batteries to increase their energy density, but it’s very challenging to further increase the amount,” he continues.

Next, researchers will combine silicon with small amounts of carbon nanotubes in order to further enhance the electrical conductivity and mechanical durability of the material.

The findings were published in Scientific Reports .

Source: http://news.cision.com/

How To Store Data At The Molecular Level

From smartphones to nanocomputers or supercomputers, the growing need for smaller and more energy efficient devices has made higher density data storage one of the most important technological quests. Now scientists at the University of Manchester have proved that storing data with a class of molecules known as single-molecule magnets is more feasible than previously thought. The research, led by Dr David Mills and Dr Nicholas Chilton, from the School of Chemistry, is being published in Nature. It shows that magnetic hysteresis, a memory effect that is a prerequisite of any data storage, is possible in individual molecules at -213 °C. This is tantalisingly close to the temperature of liquid nitrogen (-196 °C).

The result means that data storage with single molecules could become a reality because the data servers could be cooled using relatively cheap liquid nitrogen at -196°C instead of far more expensive liquid helium (-269 °C). The research provides proof-of-concept that such technologies could be achievable in the near future.

The potential for molecular data storage is huge. To put it into a consumer context, molecular technologies could store more than 200 terabits of data per square inch – that’s 25,000 GB of information stored in something approximately the size of a 50p coin, compared to Apple’s latest iPhone 7 with a maximum storage of 256 GB.

Single-molecule magnets display a magnetic memory effect that is a requirement of any data storage and molecules containing lanthanide atoms have exhibited this phenomenon at the highest temperatures to date. Lanthanides are rare earth metals used in all forms of everyday electronic devices such as smartphones, tablets and laptops. The team achieved their results using the lanthanide element dysprosium.

This is very exciting as magnetic hysteresis in single molecules implies the ability for binary data storage. Using single molecules for data storage could theoretically give 100 times higher data density than current technologies. Here we are approaching the temperature of liquid nitrogen, which would mean data storage in single molecules becomes much more viable from an economic point of view,’ explains Dr Chilton.

The practical applications of molecular-level data storage could lead to much smaller hard drives that require less energy, meaning data centres across the globe could become a lot more energy efficient.

Source: http://www.manchester.ac.uk/

Nano-based Yarns Generate Electricity

An international research team led by scientists at The University of Texas at Dallas and Hanyang University in South Korea has developed high-tech yarns that generate electricity when they are stretched or twisted.

In a study published in the journal Science, researchers describe “twistronyarns and their possible applications, such as harvesting energy from the motion of ocean waves or from temperature fluctuations. When sewn into a shirt, these yarns served as a self-powered breathing monitor.

The easiest way to think of twistron harvesters is, you have a piece of yarn, you stretch it, and out comes electricity,” said Dr. Carter Haines BS’11, PhD’15, associate research professor in the Alan G. MacDiarmid NanoTech Institute at UT Dallas and co-lead author of the article. The article also includes researchers from South Korea, Virginia Tech, Wright-Patterson Air Force Base and China.

Coiled carbon nanotube yarns, created at The University of Texas at Dallas and imaged here with a scanning electron microscope, generate electrical energy when stretched or twisted.
The yarns are constructed from carbon nanotubes, which are hollow cylinders of carbon 10,000 times smaller in diameter than a human hair. The researchers first twist-spun the nanotubes into high-strength, lightweight yarns. To make the yarns highly elastic, they introduced so much twist that the yarns coiled like an over-twisted rubber band.

In order to generate electricity, the yarns must be either submerged in or coated with an ionically conducting material, or electrolyte, which can be as simple as a mixture of ordinary table salt and water.

Fundamentally, these yarns are supercapacitors,” said Dr. Na Li, a research scientist at the NanoTech Institute and co-lead author of the study. “In a normal capacitor, you use energy — like from a battery — to add charges to the capacitor. But in our case, when you insert the carbon nanotube yarn into an electrolyte bath, the yarns are charged by the electrolyte itself. No external battery, or voltage, is needed.

When a harvester yarn is twisted or stretched, the volume of the carbon nanotube yarn decreases, bringing the electric charges on the yarn closer together and increasing their energy, Haines said. This increases the voltage associated with the charge stored in the yarn, enabling the harvesting of electricity.

Source: http://www.utdallas.edu/

AR Smart Glasses, Next Frontier Of FaceBook

Facebook is hard at work on the technical breakthroughs needed to ship futuristic smart glasses that can let you see virtual objects in the real world. A patent application for a “waveguide display with two-dimensional scanner” was published on Thursday by three members from the advanced research division of Facebook’s virtual-reality subsidiary, Oculus.

The smart glasses being developed by Oculus will use a waveguide display to project light onto the wearer’s eyes instead of a more traditional display. The smart glasses would be able to display images, video, and work with connected speakers or headphones to play audio when worn.The display “may augment views of a physical, real-world environment with computer-generated elements” and “may be included in an eye-wear comprising a frame and a display assembly that presents media to a user’s eyes,” according to the filing.

By using waveguide technology, Facebook is taking a similar approach to Microsoft‘s HoloLens AR headset and the mysterious glasses being developed by the Google-backed startup Magic Leap.

One of the authors of the patent is, in fact, lead Oculus optical scientist Pasi Saarikko, who joined Facebook in 2015 after leading the optical design of the HoloLens at Microsoft.

While work is clearly being done on the underlying technology for Facebook‘s smart glasses now, don’t expect to see the device anytime soon. Michael Abrash, the chief scientist of Oculus, recently said that AR glasses won’t start replacing smartphones until as early as 2022.

Facebook CEO Mark Zuckerberg has called virtual and augmented reality the next major computing platform capable of replacing smartphones and traditional PCs. Facebook purchased Oculus for $2 billion in 2014 and plans to spend billions more on developing the technology.

Source: http://pdfaiw.uspto.gov/
A
ND
http://www.businessinsider.com

New Solar System Produces 50 Percent More Energy

A concentrating photovoltaic system (CPV) with embedded microtracking can produce over 50 percent more energy per day than standard silicon solar cells in a head-to-head competition, according to a team of engineers who field tested a prototype unit over two sunny days last fall.

Solar cells used to be expensive, but now they’re getting really cheap,” said Chris Giebink, Charles K. Etner Assistant Professor of Electrical Engineering, Penn State. “As a result, the solar cell is no longer the dominant cost of the energy it produces. The majority of the cost increasingly lies in everything else — the inverter, installation labor, permitting fees, etc. — all the stuff we used to neglect.

This changing economic landscape has put a premium on high efficiency. In contrast to silicon solar panels, which currently dominate the market at 15 to 20 percent efficiency, concentrating photovoltaics focus sunlight onto smaller, but much more efficient solar cells like those used on satellites, to enable overall efficiencies of 35 to 40 percent. Current CPV systems are large — the size of billboards — and have to rotate to track the sun during the day. These systems work well in open fields with abundant space and lots of direct sun.

What we’re trying to do is create a high-efficiency CPV system in the form factor of a traditional silicon solar panel,” said Giebink.

Source: http://news.psu.edu/

SuperPowerful Tiny Device Converts Light Into Electricity

In today’s increasingly powerful electronics, tiny materials are a must as manufacturers seek to increase performance without adding bulk. Smaller also is better for optoelectronic devices — like camera sensors or solar cells —which collect light and convert it to electrical energy. Think, for example, about reducing the size and weight of a series of solar panels, producing a higher-quality photo in low lighting conditions, or even transmitting data more quickly.

However, two major challenges have stood in the way: First, shrinking the size of conventionally used “amorphousthin-film materials also reduces their quality. And second, when ultrathin materials become too thin, they are almost transparent — and actually lose some ability to gather or absorb light.

Now, in a nanoscale photodetector that combines both a unique fabrication method and light-trapping structures, a team of engineers from the University at Buffalo (UB) and the University of Wisconsin-Madison (UW-Madison) has overcome both of those obstacles. The researchers — electrical engineers Qiaoqiang Gan at UB, and Zhenqiang (Jack) Ma and Zongfu Yu at UW-Madison — described their device, a single-crystalline germanium nanomembrane photodetector on a nanocavity substrate, in the July 7, 2017, issue of the journal Science Advances.

This image shows the different layers of the nanoscale photodetector, including germanium (red) in between layers of gold or aluminum (yellow) and aluminum oxide (purple). The bottom layer is a silver substrate

We’ve created an exceptionally small and extraordinarily powerful device that converts light into energy,” says Gan, associate professor of electrical engineering in UB’s School of Engineering and Applied Sciences, and one of the paper’s lead authors. “The potential applications are exciting because it could be used to produce everything from more efficient solar panels to more powerful optical fibers.”

The idea, basically, is you want to use a very thin material to realize the same function of devices in which you need to use a very thick material,” says Ma, the Lynn H. Matthias Professor and Vilas Distinguished Achievement Professor in electrical and computer engineering at UW-Madison, also a lead author. Nanocavities are made up of an orderly series of tiny, interconnected molecules that essentially reflect, or circulate, light.

The new device is an advancement of Gan’s work developing nanocavities that increase the amount of light that thin semiconducting materials like germanium can absorb. It consists of nanocavities sandwiched between a top layer of ultrathin single-crystal germanium and a bottom, reflecting layer of silver.

Source: https://www.buffalo.edu/

Use The Phone And See 3D Content Without 3D Glasses

RED, the company known for making some truly outstanding high-end cinema cameras, is set to release a smartphone in Q1 of 2018 called the HYDROGEN ONE. RED says that it is a standalone, unlocked and fully-featured smartphone “operating on Android OS that just happens to add a few additional features that shatter the mold of conventional thinking.” Yes, you read that right. This phone will blow your mind, or something – and it will even make phone calls.

In a press release riddled with buzzwords broken up by linking verbs, RED praises their yet-to-be smartphone with some serious adjectives. If we were just shown this press release outside of living on RED‘s actual server, we would swear it was satire. Here are a smattering of phrases found in the release.

Incredible retina-riveting display
Nanotechnology
Holographic multi-view content
RED Hydrogen 4-View content
Assault your senses
Proprietary H3O algorithm
Multi-dimentional audio

  • There are two models of the phone, which run at different prices. The Aluminum model will cost $1,195, but anyone worth their salt is going to go for the $1,595 Titanium version. Gotta shed that extra weight, you know?

Those are snippets from just the first three sections, of which there are nine. I get hyping a product, but this reads like a catalog seen in the background of a science-fiction comedy, meant to sound ridiculous – especially in the context of a ficticious universe.

Except that this is real life.

After spending a few minutes removing all the glitter words from this release, it looks like it will be a phone using a display similar to what you get with the Nintendo 3DS, or what The Verge points out as perhaps better than the flopped Amazon Fire Phone. Essentially, you should be able to use the phone and see 3D content without 3D glasses. Nintendo has already proven that can work, however it can really tire out your eyes. As an owner of three different Nintendo 3DS consoles, I can say that I rarely use the 3D feature because of how it makes my eyes hurt. It’s an odd sensation. It is probalby why Nintendo has released a new handheld that has the same power as the 3DS, but dropping the 3D feature altogether.

Anyway, back to the HYDROGEN ONE, RED says that it will work in tandem with their cameras as a user interface and monitor. It will also display what RED is calling “holographic content,” which isn’t well-described by RED in this release. We can assume it is some sort of mixed-dimensional view that makes certain parts of a video or image stand out over the others.

Source: http://www.red.com/
AND
http://www.imaging-resource.com/

30 Billion Switches Onto The New IBM Nano-based Chip

IBM is clearly not buying into the idea that Moore’s Law is dead after it unveiled a tiny new transistor that could revolutionise the design, and size, of future devices. Along with Samsung and Globalfoundries, the tech firm has created a ‘breakthrough’ semiconducting unit made using stacks of nanosheets. The companies say they intend to use the transistors on new five nanometer (nm) chips that feature 30 billion switches on an area the size of a fingernail. When fully developed, the new chip will help with artificial intelligence, the Internet of Things, and cloud computing.

For business and society to meet the demands of cognitive and cloud computing in the coming years, advancement in semiconductor technology is essential,” said Arvind Krishna, senior vice president, Hybrid Cloud, and director, IBM Research.

IBM has been developing nanometer sheets for the past 10 years and combined stacks of these tiny sheets using a process called Extreme Ultraviolet (EUV) lithography to build the structure of the transistor.

Using EUV lithography, the width of the nanosheets can be adjusted continuously, all within a single manufacturing process or chip design,” IBM and the other firms said. This allows the transistors to be adjusted for the specific circuits they are to be used in.

Source: http://www.wired.co.uk/

Super Efficient Nanowires shape the future of electronics

A group of researchers at the Basque Excellence Research Center into Polymers (POLYMAT), the University of the Basque Country (UPV/EHU), the University of Barcelona, the Institute of Bioengineering of Barcelona (IBEC), and the University of Aveiro, and led by Aurelio Mateo-Alonso, the Ikerbasque research professor at POLYMAT, have developed a new suite of molecular wires or nanowires that are opening up new horizons in molecular electronics.

The growing demand for increasingly smaller electronic devices is prompting the need to produce circuits whose components are also as small as possible, and this is calling for fresh approaches in their design.

Molecular electronics has sparked great interest because the manufacture of electronic circuits using molecules would entail a reduction in their size. Nanowires are conducting wires on a molecular scale that carry the current inside these circuits. That is why the efficiency of these wires is crucially important.

In fact, one of the main novelties in this new suite of nanowires developed by the group led by Aurelio Mateo lies in their high efficiency, which constitutes a step forward in miniaturizing electronic circuits.
The findings have been published today in the journal Nature Communications.

Source: https://www.ehu.eus/