Posts belonging to Category Universities

Liquid Storage Of The Sun’s Power

Researchers at Chalmers University of Technology in Sweden have demonstrated efficient solar energy storage in a chemical liquid. The stored energy can be transported and then released as heat whenever needed. ​Many consider the sun the energy source of the future. But one challenge is that it is difficult to store solar energy and deliver the energy ‘on demand’.

The research team from Chalmers University has shown that it is possible to convert the solar energy directly into energy stored in the bonds of a chemical fluid – a so-called molecular solar thermal system. The liquid chemical makes it possible to store and transport the solar energy and release it on demand, with full recovery of the storage medium. The process is based on the organic compound norbornadiene that upon exposure to light converts into quadricyclane.

The technique means that we can store the solar energy in chemical bonds and release the energy as heat whenever we need it,’ says Professor Kasper Moth-Poulsen, who is leading the research team. ‘Combining the chemical energy storage with water heating solar panels enables a conversion of more than 80 percent of the incoming sunlight.’

The research project was initiated at Chalmers more than six years ago and the research team contributed in 2013 to a first conceptual demonstration. At the time, the solar energy conversion efficiency was 0.01 percent and the expensive element ruthenium played a major role in the compound. Now, four years later, the system stores 1.1 percent of the incoming sunlight as latent chemical energy – an improvement of a factor of 100. Also, ruthenium has been replaced by much cheaper carbon-based elements.

We saw an opportunity to develop molecules that make the process much more efficient,’ says Moth-Poulsen. ‘At the same time, we are demonstrating a robust system that can sustain more than 140 energy storage and release cycles with negligible degradation.’

The research is presented on the cover of the scientific journal Energy & Environmental Science.


Nanoparticles From Air Pollution Travel Into Blood To Cause Heart Disease

Inhaled nanoparticles – like those released from vehicle exhausts – can work their way through the lungs and into the bloodstream, potentially raising the risk of heart attack and stroke, according to new research part-funded by the British Heart Foundation. The findings, published today in the journal ACS Nano, build on previous studies that have found tiny particles in air pollution are associated with an increased risk of cardiovascular disease, although the cause remains unproven. However, this research shows for the first time that inhaled nanoparticles can gain access to the blood in healthy individuals and people at risk of stroke. Most worryingly, these nanoparticles tend to build-up in diseased blood vessels where they could worsen coronary heart disease – the cause of a heart attack.

It is not currently possible to measure environmental nanoparticles in the blood. So, researchers from the University of Edinburgh, and the National Institute for Public Health and the Environment in the Netherlands, used a variety of specialist techniques to track the fate of harmless gold nanoparticles breathed in by volunteers. They were able to show that these nanoparticles can migrate from the lungs and into the bloodstream within 24 hours after exposure and were still detectable in the blood three months later. By looking at surgically removed plaques from people at high risk of stroke they were also able to find that the nanoparticles accumulated in the fatty plaques that grow inside blood vessels and cause heart attacks and strokesCardiovascular disease (CVD) – the main forms of which are coronary heart disease and stroke – accounts for 80% of all premature deaths from air pollution.


It is striking that particles in the air we breathe can get into our blood where they can be carried to different organs of the body. Only a very small proportion of inhaled particles will do this, however, if reactive particles like those in air pollution then reach susceptible areas of the body then even this small number of particles might have serious consequences,”  said Dr Mark Miller, Senior Research Fellow at the University of Edinburgh who led the study.


Nanoparticle Vaccine Against Cancer

Researchers from UT Southwestern Medical Center have developed a first-of-its-kind nanoparticle vaccine immunotherapy that targets several different cancer types.

The nanovaccine consists of tumor antigens tumor proteins that can be recognized by the immune system – inside a synthetic polymer nanoparticle. Nanoparticle vaccines deliver minuscule particulates that stimulate the immune system to mount an immune response. The goal is to help people’s own bodies fight cancer.


What is unique about our design is the simplicity of the single-polymer composition that can precisely deliver tumor antigens to immune cells while stimulating innate immunity. These actions result in safe and robust production of tumor-specific T cells that kill cancer cells,” said Dr. Jinming Gao, a Professor of Pharmacology and Otolaryngology in UT Southwestern’s Harold C. Simmons Comprehensive Cancer Center.

A study outlining this research, published online today in Nature Nanotechnology, reported that the nanovaccine had anti-tumor efficacy in multiple tumor types in mice.

The research was a collaboration between the laboratories of study senior authors Dr. Gao and Dr. Zhijian “James” Chen, Professor of Molecular Biology and Director of the Center for Inflammation Research. The Center was established in 2015 to study how the body senses infection and to develop approaches to exploit this knowledge to create new treatments for infection, immune disorders, and autoimmunity.


How To Detect Nuclear Device

How to keep U.S. ports of entry safe and secure by detecting and interdicting illicit radioactive or nuclear materials? A team led by Northeastern’s Swastik Kar and Yung Joon Jung has developed a technology that could go a long way toward achieving that goal.

nuclear radiation

Our detector could dramatically change the manner and accuracy with which we are able to detect nuclear threats at home or abroad,” says Kar, associate professor in the Department of Physics. It could also help streamline radio-medicine, including radiation therapies and scanning diagnostics, boost the effectiveness of unmanned radiation monitoring vehicles in mapping and monitoring contaminated areas following disasters, and revolutionize radiometric imaging in space exploration. Made of graphene and carbon nanotubes, the researchers’ detector far outpaces any existing one in its ultrasensitivity to charged particles, minuscule size, low-power requirements, and low cost.

All radiation, of course, is not harmful, and even the type that may be depends on dosage and length of exposure. The word “radiation” refers simply to the emission and propagation of energy in the form of waves or particles. It has many sources, including the sun, electronic devices such as microwaves and cellphones, visible light, X-rays, gamma waves, cosmic waves, and nuclear fission, which is what produces power in nuclear reactors. Most of the harmful radiations are “ionizing radiations”—they have sufficient energy to remove electrons from the orbits of surrounding atoms, causing them to become charged, or “ionized.” It is those charged particles, or ions, that the detectors pick up and quantify, revealing the intensity of the radiation. Most current detectors, however, are not only bulky, power hungry, and expensive, they also cannot pick up very low levels of ions. Kar and Yung Joon’s detector, on the other hand, is so sensitive it can pick up just a single charged particle.

Our detectors are many orders of magnitude more sensitive in terms of how small a signal they can detect,” says Yung Joon, associate professor in the Department of Mechanical and Industrial Engineering. “Ours can detect one ion, the fundamental limit. If you can detect a single ion, then you can detect everything larger than that.”


Inkjet Printers Grow Nerve Stem Cells

Inkjet printers and lasers are parts of a new way to produce cells important to research on nerve regeneration. Researchers at Iowa State University have developed a nanotechnology that uses inkjet printers to print multi-layer graphene circuits….It turns out mesenchymal stem cells adhere and grow well on the treated circuit’s raised, rough, and 3D nanostructures. Add small doses of electricity—100 millivolts for 10 minutes per day over 15 days—and the stem cells become Schwann-like cells, [which secrete substances that promote the health of nerve cells].

nerve cells

This technology could lead to a better way to differentiate stem cells,” says Metin Uz, a postdoctoral research associate in chemical and biological engineering. The researchers report the results could lead to changes in how nerve injuries are treated inside the body. “These results help pave the way for in vivo peripheral nerve regeneration where the flexible graphene electrodes could conform to the injury site and provide intimate electrical stimulation for nerve cell regrowth,” the researchers write in a summary of their findings.


How To Prevent Metastasis In Pancreatic Cancer

UCLA scientists have unlocked an important mechanism that allows chemotherapy-carrying nanoparticles—extremely small objects between 1 and 100 nanometers (a billionth of a meter)—to directly access pancreatic cancer tumors, thereby improving the ability to kill cancer cells and hence leading to more effective treatment outcome of the disease. The researchers also confirmed the key role of a peptide (an extremely small protein) in regulating vascular access of the nanoparticle to the cancer site.

The discovery is the result of a two-year study co-led by Drs. Huan Meng and André Nel, members of UCLA‘s Jonsson Comprehensive Cancer Center and the UCLA California NanoSystems Institute. The findings are important as they demonstrate how the delivery of chemotherapy to pancreatic cancer can be improved significantly through the use of smart-designed nanoparticle features.

Pancreatic ductal adenocarcinoma is generally a fatal disease, with a five-year survival rate of less than 6 percent. The introduction of nanocarriers as delivery vehicles for common chemotherapy agents such as the drug irinotecan, has led to improved survival of patients with this disease. However, the reality is that nanocarriers may not always reach their intended target in sufficient numbers because of a constraint on their ability to transit through the blood vessel wall at the tumor site, leading the encapsulated drugs to be diverted or lost before they can deliver their payload.

silica nanoparticle

A key challenge for scientists is how to help nanoparticles travel to and be retained at tumor sites. This can be accomplished by custom-designed or engineered nanoparticles that overcome common challenges, such as the presence of a dense tissue surrounding the pancreas cancer cells. Prior research has identified a major vascular access mechanism that relies on a vesicle transport system, which can be turned with a peptide called iRGD in the blood vessel wall. iRGD is therefore potentially useful to optimize the delivery of cancer drugs by the nanoparticle to the tumor.

The UCLA research team designed a nanoparticle comprised of a hollow silica core surrounded by a lipid bilayer to enhance the delivery of irinotecan in an animal model with pancreatic cancer. The invention is called a silicasome. The researchers proposed that the therapeutic benefit of the irinotecan containing nanoparticles may be enhanced when combined with the injection of iRGD. The investigators used the nanoparticle plus the iRGD to deliver irinotecan in a robust animal model for pancreatic cancer that closely mimics human disease.

The study is published online in the Journal of Clinical Investigation.


How To Harness Heat To Power Computers

One of the biggest problems with computers, dating to the invention of the first one, has been finding ways to keep them cool so that they don’t overheat or shut down. Instead of combating the heat, two University of Nebraska–Lincoln engineers have embraced it as an alternative energy source that would allow computing at ultra-high temperatures. Sidy Ndao, assistant professor of mechanical and materials engineering, said his research group’s development of a nano-thermal-mechanical device, or thermal diode, came after flipping around the question of how to better cool computers.

thermal diode

If you think about it, whatever you do with electricity you should (also) be able to do with heat, because they are similar in many ways,” Ndao said. “In principle, they are both energy carriers. If you could control heat, you could use it to do computing and avoid the problem of overheating.”

A paper Ndao co-authored with Mahmoud Elzouka, a graduate student in mechanical and materials engineering, was published in the March edition of Scientific Reports. In it, they documented their device working in temperatures that approached 630 degrees Fahrenheit (332 degrees Celsius).


Nanoparticles reprogram immune cells to fight cancer

Dr. Matthias Stephan has a bold vision. He imagines a future where patients with leukemia could be treated as early as the day they are diagnosed with cellular immunotherapy that’s available in their neighborhood clinic and is as simple to administer as today’s chemotherapy, but without the harsh side effects. The key to that scientific leap? Nanoparticles, tiny technology that’s able to carry tumor-targeting genes directly to immune cells still within the body and program them to destroy cancer. In a proof-of-principle study published Monday in Nature Nanotechnology, Stephan and other researchers at Fred Hutchinson Cancer Research Center showed that nanoparticle-programmed immune cells, known as T cells, can clear or slow the progression of leukemia in a preclinical model.

nanoparticles reprogram genes

“Our technology is the first that we know of to quickly program tumor-recognizing capabilities into T cells without extracting them for laboratory manipulation,” said Stephan, the study’s senior author. Although his method for programming T cells is still several steps away from the clinic, Stephan envisions a future in which biodegradable nanoparticles could transform cell-based immunotherapies — whether for cancer or infectious disease — into an easily administered, off-the-shelf treatment that’s available anywhere.

Stephan imagines that in the future, nanoparticle-based immunotherapy could be “something that is available right away and can hopefully out-compete chemotherapies. That’s my excitement.”


Clean Hydrogen Produced From Biomass

A team of scientists at the University of Cambridge has developed a way of using solar power to generate a fuel that is both sustainable and relatively cheap to produce. It’s using natural light to generate hydrogen from biomass. One of the challenges facing modern society is what it does with its waste products. As natural resources decline in abundance, using waste for energy is becoming more pressing for both governments and business. Biomass has been a source of heat and energy since the beginning of recorded history.  The planet’s oil reserves are derived from ancient biomass which has been subjected to high pressures and temperatures over millions of years. Lignocellulose is the main component of plant biomass and up to now its conversion into hydrogen has only been achieved through a gasification process which uses high temperatures to decompose it fully.

biomass can produce hydrogen

Lignocellulose is nature’s equivalent to armoured concrete. It consists of strong, highly crystalline cellulose fibres, that are interwoven with lignin and hemicellulose which act as a glue. This rigid structure has evolved to give plants and trees mechanical stability and protect them from degradation, and makes chemical utilisation of lignocellulose so challenging,” says  Dr Moritz Kuehnel, from the Department of Chemistry at the University of Cambridge and co-author of the research.

The new technology relies on a simple photocatalytic conversion process. Catalytic nanoparticles are added to alkaline water in which the biomass is suspended. This is then placed in front of a light in the lab which mimics solar light. The solution is ideal for absorbing this light and converting the biomass into gaseous hydrogen which can then be collected from the headspace. The hydrogen is free of fuel-cell inhibitors, such as carbon monoxide, which allows it to be used for power.

The findings have been  published in Nature Energy.


How To Capture Quickly Cancer Markers

A nanoscale product of human cells that was once considered junk is now known to play an important role in intercellular communication and in many disease processes, including cancer metastasis. Researchers at Penn State have developed nanoprobes to rapidly isolate these rare markers, called extracellular vesicles (EVs), for potential development of precision cancer diagnoses and personalized anticancer treatments.

Lipid nanoprobes

Most cells generate and secrete extracellular vesicles,” says Siyang Zheng, associate professor of biomedical engineering and electrical engineering. “But they are difficult for us to study. They are sub-micrometer particles, so we really need an electron microscope to see them. There are many technical challenges in the isolation of nanoscale EVs that we are trying to overcome for point-of-care cancer diagnostics.”

At one time, researchers believed that EVs were little more than garbage bags that were tossed out by cells. More recently, they have come to understand that these tiny fat-enclosed sacks — lipids — contain double-stranded DNA, RNA and proteins that are responsible for communicating between cells and can carry markers for their origin cells, including tumor cells. In the case of cancer, at least one function for EVs is to prepare distant tissue for metastasis.

The team’s initial challenge was to develop a method to isolate and purify EVs in blood samples that contain multiple other components. The use of liquid biopsy, or blood testing, for cancer diagnosis is a recent development that offers benefits over traditional biopsy, which requires removing a tumor or sticking a needle into a tumor to extract cancer cells. For lung cancer or brain cancers, such invasive techniques are difficult, expensive and can be painful.

Noninvasive techniques such as liquid biopsy are preferable for not only detection and discovery, but also for monitoring treatment,” explains Chandra Belani, professor of medicine and deputy director of the Cancer Institute,Penn State College of Medicine, and clinical collaborator on the study.

We invented a system of two micro/nano materials,” adds Zheng. “One is a labeling probe with two lipid tails that spontaneously insert into the lipid surface of the extracellular vesicle. At the other end of the probe we have a biotin molecule that will be recognized by an avidin molecule we have attached to a magnetic bead.”


Ultrafast Flexible Electronic Memory

Engineering experts from the University of Exeter (UK) have developed innovative new memory using a hybrid of graphene oxide and titanium oxide. Their devices are low cost and eco-friendly to produce, are also perfectly suited for use in flexible electronic devices such as ‘bendablemobile phone, computer and television screens, and even ‘intelligentclothing.
. Crucially, these devices may also have the potential to offer a cheaper and more adaptable alternative to ‘flash memory’, which is currently used in many common devices such as memory cards, graphics cards and USB computer drives. The research team insist that these innovative new devices have the potential to revolutionise not only how data is stored, but also take flexible electronics to a new age in terms of speed, efficiency and power.

bendable mobile phone

Using graphene oxide to produce memory devices has been reported before, but they were typically very large, slow, and aimed at the ‘cheap and cheerful’ end of the electronics goods market”, said Professor David Wright, an Electronic Engineering expert from the University of Exeter.

Our hybrid graphene oxide-titanium oxide memory is, in contrast, just 50 nanometres long and 8 nanometres thick and can be written to and read from in less than five nanoseconds – with one nanometre being one billionth of a metre and one nanosecond a billionth of a second.”

The research is published in the scientific journal ACS Nano.


Graphene And Fractals Boost The Solar Power Storage By 3000%

Inspired by an American fern, researchers have developed a groundbreaking prototype that could be the answer to the storage challenge still holding solar back as a total energy solution. The new type of electrode created by RMIT University (Australia) researchers could boost the capacity of existing integrable storage technologies by 3000 per cent. But the graphene-based prototype also opens a new path to the development of flexible thin film all-in-one solar capture and storage, bringing us one step closer to self-powering smart phones, laptops, cars and buildings. The new electrode is designed to work with supercapacitors, which can charge and discharge power much faster than conventional batteries. Supercapacitors have been combined with solar, but their wider use as a storage solution is restricted because of their limited capacity.

RMIT’s Professor Min Gu said the new design drew on nature’s own genius solution to the challenge of filling a space in the most efficient way possible – through intricate self-repeating patterns known as “fractals”.

The leaves of the western swordfern are densely crammed with veins, making them extremely efficient for storing energy and transporting water around the plant,” said Gu, Leader of the Laboratory of Artificial Intelligence Nanophotonics at RMIT.

mimicking fern

Our electrode is based on these fractal shapes – which are self-replicating, like the mini structures within snowflakes – and we’ve used this naturally-efficient design to improve solar energy storage at a nano level. “The immediate application is combining this electrode with supercapacitors, as our experiments have shown our prototype can radically increase their storage capacity30 times more than current capacity limits.   “Capacity-boosted supercapacitors would offer both long-term reliability and quick-burst energy release – for when someone wants to use solar energy on a cloudy day for example – making them ideal alternatives for solar power storage.”  Combined with supercapacitors, the fractal-enabled laser-reduced graphene electrodes can hold the stored charge for longer, with minimal leakage.