Posts belonging to Category Universities



Nanotechnology Spacecraft

Renowned physicist Stephen Hawking is proposing a nanotechnology spacecraft that can travel at a fifth of the speed of light. At that speed, it could reach the nearest star in 20 years and send back images of a suspected “Second Earth” within 5 years. That means if we launched it today, we would have our first look at an Earth-like planet within 25 years.

Hawking proposed a nano-spacecraft, termed “Star Chip,” at the Starmus Festival IV: Life And The Universe, Trondheim, Norway, June 18 – 23, 2017. Hawking told attendees that every time intelligent life evolves it annihilates itself with “war, disease and weapons of mass destruction.” He asserted this as the primary reason why advanced civilizations from another part of the Universe are not contacting Earth and the primary reason we need to leave the Earth. His advocates we colonize a “Second Earth.”

Scientific evidence appears to support Hawking’s claim. The SETI Institute has been listening for evidence of extraterrestrial radio signals, a sign of advanced extraterrestrial life, since 1984. To date, their efforts have been futile. SETI claims, rightly, that the universe is vast, and they are listening to only small sectors, which is much like finding a needle in a haystack.

Source: http://www.huffingtonpost.com/

3-D Printed Graphene Foam

Nanotechnologists from Rice University and China’s Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene. The research could yield industrially useful quantities of bulk graphene and is described online in a new study in the American Chemical Society journal ACS Nano.

Laser sintering was used to 3-D print objects made of graphene foam, a 3-D version of atomically thin graphene. At left is a photo of a fingertip-sized cube of graphene foam; at right is a close-up of the material as seen with a scanning electron microscope

This study is a first of its kind,” said Rice chemist James Tour, co-corresponding author of the paper. “We have shown how to make 3-D graphene foams from nongraphene starting materials, and the method lends itself to being scaled to graphene foams for additive manufacturing applications with pore-size control.”

Graphene, one of the most intensely studied nanomaterials of the decade, is a two-dimensional sheet of pure carbon that is both ultrastrong and conductive. Scientists hope to use graphene for everything from nanoelectronics and aircraft de-icers to batteries and bone implants. But most industrial applications would require bulk quantities of graphene in a three-dimensional form, and scientists have struggled to find simple ways of creating bulk 3-D graphene.

For example, researchers in Tour’s lab began using lasers, powdered sugar and nickel to make 3-D graphene foam in late 2016. Earlier this year they showed that they could reinforce the foam with carbon nanotubes, which produced a material they dubbed “rebar graphene” that could retain its shape while supporting 3,000 times its own weight. But making rebar graphene was no simple task. It required a pre-fabricated 3-D mold, a 1,000-degree Celsius chemical vapor deposition (CVD) process and nearly three hours of heating and cooling.  “This simple and efficient method does away with the need for both cold-press molds and high-temperature CVD treatment,” said co-lead author Junwei Sha, a former student in Tour’s lab who is now a postdoctoral researcher at Tianjin. “We should also be able to use this process to produce specific types of graphene foam like 3-D printed rebar graphene as well as both nitrogen- and sulfur-doped graphene foam by changing the precursor powders.” Sha and colleagues conducted an exhaustive study to find the optimal amount of time and laser power to maximize graphene production. The foam created by the process is a low-density, 3-D form of graphene with large pores that account for more than 99 percent of its volume.

The 3-D graphene foams prepared by our method show promise for applications that require rapid prototyping and manufacturing of 3-D carbon materials, including energy storage, damping and sound absorption,” said co-lead author Yilun Li, a graduate student at Rice.

Source: http://news.rice.edu/

Solar Energy Transforms Salt Water Into Fresh Drinking Water

A federally funded research effort to revolutionize water treatment has yielded an off-grid technology that uses energy from sunlight alone to turn salt water into fresh drinking water. The desalination system, which uses a combination of membrane distillation technology and light-harvesting nanophotonics, is the first major innovation from the Center for Nanotechnology Enabled Water Treatment (NEWT), a multi-institutional engineering research center based at Rice University.

NEWT’s “nanophotonics-enabled solar membrane distillation” technology, or NESMD, combines tried-and-true water treatment methods with cutting-edge nanotechnology that converts sunlight to heat. More than 18,000 desalination plants operate in 150 countries, but NEWT’s desalination technology is unlike any other used today.

Direct solar desalination could be a game changer for some of the estimated 1 billion people who lack access to clean drinking water,” said Rice scientist and water treatment expert Qilin Li, a corresponding author on the study. “This off-grid technology is capable of providing sufficient clean water for family use in a compact footprint, and it can be scaled up to provide water for larger communities.”

The technology is described online in the Proceedings of the National Academy of Sciences.

Source: http://news.rice.edu/

Quantum Satellite Secures Communications

A Chinese quantum satellite has dispatched transmissions over a distance of 1,200 km (746 miles), a dozen times further than the previous record, a breakthrough in a technology that could be used to deliver secure messages, state media said on Friday.

China launched the world’s first quantum satellite last August, to help establish “hack proof” communications between space and the ground, state media said at the time.

The feat opens up “bright prospects” for quantum communications, said Pan Jianwei, the lead scientist of the Chinese team, Quantum Experiments at Space Scale (QUESS), according to the official Xinhua news agency.

The scientists exploited the phenomenon of quantum entanglement, in which a particle can affect a far-off twin instantly, somehow overcoming the long distance separating them, a situation termed “spooky action at a distance” by the Nobel-prize winning physicist Albert Einstein, Xinhua added.

The team had successfully distributed entangled photon pairs over 1,200 km, it said, outstripping the distance of up to 100 km (62 miles) at which entanglement had previously been achieved.

The technology so far is “the only way to establish secure keys between two distant locations on earth without relying on trustful relay,” Pan told Xinhua, referring to encrypted messages.

The new development “illustrates the possibility of a future global quantum communication network” the journal Science, which published the results of the Chinese team, said on its website.

Source: http://www.reuters.com/

Artificial Intelligence At The Hospital

Diagnosing cancer is a slow and laborious process. Here researchers at University Hospital Zurich painstakingly make up biopsy slides – up to 50 for each patient – for the pathologist to examine for signs of prostate cancer. A pathologist takes around an hour and a half per patient – a task IBMs Watson supercomputer is now doing in fractions of a second.

CLICK ON THE IMAGE TO ENJOY THE VIDEO
“If the pathologist becomes faster by using such a system I think it will pay off. Because my time is also worth something. If I sit here one and a half hours looking at slides, screening all these slides, instead of just signing out the two or three positive ones, and taking into account that there may be a .1 error rate, percent error rate. this will pay off, because I can do in one and a half hours at the end five patients,” says Dr. Peter Wild, University Hospital Zürich.

The hospital’s archive of biopsy images is being slowly fed into Watson – a process that will take years. But maybe one day pathologists won’t have to view slides through a microscope at all. Diagnosis is not the only area benefiting from AI. The technology is helping this University of Sheffield team design a new drug that could slow down the progress of motor neurone disease. A system built by British start-up BenevolentAI is identifying new areas for further exploration far faster than a person could ever hope to.

Benevolent basically uses their artificial intelligence system to scan the whole medical and biomedical literature. It’s not really easy for us to stay on top of millions of publications that come out every year. So they can interrogate that information, using artificial intelligence and come up with ideas for new drugs that might be used in a completely different disease, but may be applicable on motor neurone disease. So that’s the real benefit in their system, the kind of novel ideas that they come up with,” explains Dr. Richard Mead, Sitran, University of Sheffield. BenevolentAI has raised one hundred million dollars in investment to develop its AI system, and help revolutionise the pharmaceutical industry.

Source: http://www.reuters.com/

Nanoscale Memory Cell

Developing a superconducting computer that would perform computations at high speed without heat dissipation has been the goal of several research and development initiatives since the 1950s. Such a computer would require a fraction of the energy current supercomputers consume, and would be many times faster and more powerful. Despite promising advances in this direction over the last 65 years, substantial obstacles remain, including in developing miniaturized low-dissipation memory.

Researchers at the University of Illinois at Urbana-Champaign have developed a new nanoscale memory cell that holds tremendous promise for successful integration with superconducting processors. The new technology, created by Professor of Physics Alexey Bezryadin and graduate student Andrew Murphy, in collaboration with Dmitri Averin, a professor of theoretical physics at State University of New York at Stony Brook, provides stable memory at a smaller size than other proposed memory devices.

The device comprises two superconducting nanowires, attached to two unevenly spaced electrodes that were “written” using electron-beam lithography. The nanowires and electrodes form an asymmetric, closed superconducting loop, called a nanowire ‘SQUID’ (superconducting quantum interference device). The direction of current flowing through the loop, either clockwise or counterclockwise, equates to the “0” or “1” of binary code.

This is very exciting. Such superconducting memory cells can be scaled down in size to the range of few tens of nanometers, and are not subject to the same performance issues as other proposed solutions,” comments Bezryadin.

Murphy adds, “Other efforts to create a scaled-down superconducting memory cell weren’t able to reach the scale we have. A superconducting memory device needs to be cheaper to manufacture than standard memory now, and it needs to be dense, small, and fast.”

Source: https://physics.illinois.edu/

Nano-based Material Is 60 Times More Efficient To Produce Hydrogen

Global climate change and the energy crisis mean that alternatives to fossil fuels are urgently needed. Among the cleanest low-carbon fuels is hydrogen, which can react with oxygen to release energy, emitting nothing more harmful than water (H2O) as the product. However, most hydrogen on earth is already locked into H2O (or other molecules), and cannot be used for power.

Hydrogen can be generated by splitting H2O, but this uses more energy than the produced hydrogen can give back. Water splitting is often driven by solar power, so-called “solar-to-hydrogenconversion. Materials like titanium oxide, known as semiconductors with the wide band-gap, are traditionally used to convert sunlight to chemical energy for the photocatalytic reaction. However, these materials are inefficient because only the ultraviolet (UV) part of light is absorbed—the rest spectrum of sunlight is wasted.

Now, a team in Osaka University has developed a material to harvest a broader spectrum of sunlight. The three-part composites of this material maximize both absorbing light and its efficiency for water splitting. The core is a traditional semiconductor, lanthanum titanium oxide (LTO). The LTO surface is partly coated with tiny specks of gold, known as nanoparticles. Finally, the gold-covered LTO is mixed with ultrathin sheets of the element black phosphorus (BP), which acts as a light absorber.

BP is a wonderful material for solar applications, because we can tune the frequency of light just by varying its thickness, from ultrathin to bulk,” the team leader Tetsuro Majima says. “This allows our new material to absorb visible and even near infrared light, which we could never achieve with LTO alone.”

By absorbing this broad sweep of energy, BP is stimulated to release electrons, which are then conducted to the gold nanoparticles coating the LTO. Gold nanoparticles also absorb visible light, causing some of its own electrons to be jolted out. The free electrons in both BP and gold nanoparticles are then transferred into the LTO semiconductor, where they act as an electric current for water splitting.

Hydrogen production using this material is enhanced not only by the broader spectrum of light absorption, but by the more efficient electron conduction, caused by the unique interface between two dimensional materials of BP and LTO. As a result, the material is 60 times more active than pure LTO.

Source: http://resou.osaka-u.ac.jp/

Skin Regeneration

A small U.S. biotech has successfully regenerated skin and stimulated hair growth in pigs with burns and abrasions, paving the way for a scientific breakthrough that could lead to the regeneration of fully functional human skinSalt Lake City-based PolarityTE Inc‘s patented approach to tissue engineering is designed to use a patient’s own healthy tissue to re-grow human skin for the treatment of burns and wounds. Despite recent advances in reconstructive surgery, plastic surgeons cannot give burn victims what they require the most — their skin. Current approaches to treat serious burns are “severely limited” in their effectiveness and in some cases, are rather expensive, PolarityTE‘s founder and CEO Denver Lough said in an interview.

Epicel, a skin graft widely used in burn units that is sold by Cambridge, Massachusetts-based Vericel Corp, does not result in fully thick and functional skin — which is PolarityTE‘s objective.

“If clinically successful, the PolarityTE platform could deliver the first scientific breakthrough in wound healing and reconstructive surgery in nearly half a century,” said Lough, who served as senior plastic surgery resident at Johns Hopkins Hospital before creating PolarityTE last year.

“PolarityTE expects to begin a human trial later this year and the cell therapy could hit the market 12 to 18 months thereafter”.

PolarityTE conducted its pre-clinical study on wounded pigs at an animal facility in Utah. The use of therapy resulted in scar-less healing, growth of hair follicles, complete wound coverage and the progressive regeneration of all skin layers, the company said. As pig skin is more complex and robust than human skin, successful swine data is typically seen as a precursor to effectiveness in human trials.

The technology also has the potential to develop fully-functional tissues, including bone, muscle, cartilage and the liver, PolarityTE said.

Source: http://www.polarityte.com/
AND
http://www.reuters.com/

30 Billion Switches Onto The New IBM Nano-based Chip

IBM is clearly not buying into the idea that Moore’s Law is dead after it unveiled a tiny new transistor that could revolutionise the design, and size, of future devices. Along with Samsung and Globalfoundries, the tech firm has created a ‘breakthrough’ semiconducting unit made using stacks of nanosheets. The companies say they intend to use the transistors on new five nanometer (nm) chips that feature 30 billion switches on an area the size of a fingernail. When fully developed, the new chip will help with artificial intelligence, the Internet of Things, and cloud computing.

For business and society to meet the demands of cognitive and cloud computing in the coming years, advancement in semiconductor technology is essential,” said Arvind Krishna, senior vice president, Hybrid Cloud, and director, IBM Research.

IBM has been developing nanometer sheets for the past 10 years and combined stacks of these tiny sheets using a process called Extreme Ultraviolet (EUV) lithography to build the structure of the transistor.

Using EUV lithography, the width of the nanosheets can be adjusted continuously, all within a single manufacturing process or chip design,” IBM and the other firms said. This allows the transistors to be adjusted for the specific circuits they are to be used in.

Source: http://www.wired.co.uk/

A Single Drop Of Blood To Test Agressive Prostate Cancer

A new diagnostic developed by Alberta scientists will allow men to bypass painful biopsies to test for aggressive prostate cancer. The test incorporates a unique nanotechnology platform to make the diagnostic using only a single drop of blood, and is significantly more accurate than current screening methods.

The Extracellular Vesicle Fingerprint Predictive Score (EV-FPS) test uses machine learning to combine information from millions of cancer cell nanoparticles in the blood to recognize the unique fingerprint of aggressive cancer. The diagnostic, developed by members of the Alberta Prostate Cancer Research Initiative (APCaRI), was evaluated in a group of 377 Albertan men who were referred to their urologist with suspected prostate cancer. It was found that EV-FPS correctly identified men with aggressive prostate cancer 40 percent more accurately than the most common test—Prostate-Specific Antigen (PSA) blood test—in wide use today.

Higher sensitivity means that our test will miss fewer aggressive cancers,” said John Lewis, the Alberta Cancer Foundation‘s Frank and Carla Sojonky Chair of Prostate Cancer Research at the University of Alberta. “For this kind of test you want the sensitivity to be as high as possible because you don’t want to miss a single cancer that should be treated.”

According to the team, current tests such as the PSA and digital rectal exam (DRE) often lead to unneeded biopsies. Lewis says more than 50 per cent of men who undergo biopsy do not have prostate cancer, yet suffer the pain and side effects of the procedure such as infection or sepsis. Less than 20 per cent of men who receive a are diagnosed with the aggressive form of prostate cancer that could most benefit from treatment.

It’s estimated that successful implementation of the EV-FPS test could eventually eliminate up to 600-thousand unnecessary biopsies, 24-thousand hospitalizations and up to 50 per cent of unnecessary treatments for prostate each year in North America alone. Beyond cost savings to the health care system, the researchers say the diagnostic test will have a dramatic impact on the health care experience and quality of life for men and their families.

Compared to elevated total PSA alone, the EV-FPS test can more accurately predict the result of prostate biopsy in previously unscreened men,” said Adrian Fairey, urologist at the Northern Alberta Urology Centre and member of APCaRI. “This information can be used by clinicians to determine which men should be advised to undergo immediate prostate biopsy and which men should be advised to defer and continue screening.”

Source:  https://medicalxpress.com/

Super Efficient Nanowires shape the future of electronics

A group of researchers at the Basque Excellence Research Center into Polymers (POLYMAT), the University of the Basque Country (UPV/EHU), the University of Barcelona, the Institute of Bioengineering of Barcelona (IBEC), and the University of Aveiro, and led by Aurelio Mateo-Alonso, the Ikerbasque research professor at POLYMAT, have developed a new suite of molecular wires or nanowires that are opening up new horizons in molecular electronics.

The growing demand for increasingly smaller electronic devices is prompting the need to produce circuits whose components are also as small as possible, and this is calling for fresh approaches in their design.

Molecular electronics has sparked great interest because the manufacture of electronic circuits using molecules would entail a reduction in their size. Nanowires are conducting wires on a molecular scale that carry the current inside these circuits. That is why the efficiency of these wires is crucially important.

In fact, one of the main novelties in this new suite of nanowires developed by the group led by Aurelio Mateo lies in their high efficiency, which constitutes a step forward in miniaturizing electronic circuits.
The findings have been published today in the journal Nature Communications.

Source: https://www.ehu.eus/

Farming in Brooklyn

Erik Groszyk used to spend all day at his desk working as an investment banker. Now he cultivates his own urban farm out of a 40-foot shipping container in a Brooklyn parking lot.

I just found myself not satisfied and kind of yearning for more,’ says Erik Groszyk.  The Harvard grad is one of 10 ‘entrepreneurial farmers,’ selected from a batch of 500 applicants, working with Square Roots, an indoor urban farming company launched in November that grows local food year-round in the heart of New York City. Now, six months into the program, Groszyk said his training in farming, artificial lighting, water chemistry and nutrient balance allows him to harvest roughly 15 to 20 pounds of produce each week.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

People have lost trust in the food system, right? They want real food where they know their farmer, they know where their food is coming from, and they trust their food,‘ explains Tobias Peggs, Square Roots co-founder. He, along with his co-founder Kimbal Musk, the younger brother of Tesla‘s Elon Musk, aim to spread out to as many American cities as they possibly can in the next five to 10 years.

By 2050 there will be nine billion people on the planet and 70 percent will leave in urban areas. These people need feeding, and they will want local, real food,” he adds.
Square Roots sells food locally. It also plans to launch more urban farms, for others to operate, and will own a share in those farms’ revenues as well. Peggs says the company, by getting hyper-local, is looking to join a global food revolution. ‘America’s is the world’s great, greatest exporter. Right? We exported rock and roll, we exported Levi’s jeans. We also exported obesity. And the feeling is, if we can solve that, in America, through initiatives like Square Roots, bringing real food to everyone, getting more people on a healthy, low-cost, sustainable food system, that we’ll also be able to export that solution.’

Source: https://squarerootsgrow.com/
A
ND
http://www.reuters.com/