Posts belonging to Category Universities



Multi-AntiOxidant Nanoparticles Fight Sepsis

With an incidence of 31.5 million worldwide and a mortality of around 17%, sepsis remains the most common cause of death in hospitalized patients, even in industrialized countries where antibiotics and critical care facilities are readily available. While this disease begins as a serious infection, sepsis‘ life-threatening organ failure is due to an excessive inflammatory response.

By overproducing oxygen free radicals, the immunity of the host itself paradoxically leads to an increase in morbidity and mortality. A team of researchers from Center for Nanoparticle Research, within the  (IBS), with colleagues from the Seoul National University Hospital synthesized nanoparticles with superior antioxidant properties to treat sepsis in rats and mice by removing harmful oxygen radicals and reducing inflammatory responses.

Under normal physiological conditions, oxygen radicals, also called reactive oxygen species (ROS), are created as by-products of several cellular reactions and their concentration is counterbalanced by antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT). However in patients with severe infections, the production of ROS as well as reactive nitrogen species (RNS), increases dramatically, while the body’s antioxidant capacity may be compromised. As a consequence, the ROS and RNS accumulation can lead to damages to DNA, proteins, and lipid membranes.

All major diseases are related to ROS,” explains HYEON Taeghwan, the director of the Center for Nanoparticle Research. “Cellular damage caused by ROS has been found not only in sepsis, but also in cancer, diabetes, cardiovascular disease, atherosclerosis, and neurodegenerative diseases, just to name a few.”

Ceria nanoparticles replace the function of antioxidant enzymes. Cerium trivalent ions (Ce3+) play a decisive role in eliminating ROS. Thanks to the addition of zirconium ions, the scientists could create a new type of nanoparticles, named 7CZ (containing 70% Ce ions and 30% Zr ions), with optimized nanoparticle size and Ce3+ content. The nanoparticles described in this study are smaller, just two nanometers in size. Moreover, they have a higher percent of Ce3+. When tested in mice with sepsis, the survival rate increased 2.5 fold in the 7CZ NP-treated group compared to the control. Scientists found that 7CZ nanoparticles can infiltrate the damaged tissue and act locally at the infection site.

Treating sepsis has been an old challenge for physicians worldwide,” emphasizes LEE Seung-Hoon, professor of department of Neurology, Seoul National University Hospital. “This study shows the possibility of overcoming the limits of modern medicine with nanotechnology.”

This study has been published in the journal Angewandte Chemie.

Source: ,http://www.ibs.re.kr/

New Solar System Produces 50 Percent More Energy

A concentrating photovoltaic system (CPV) with embedded microtracking can produce over 50 percent more energy per day than standard silicon solar cells in a head-to-head competition, according to a team of engineers who field tested a prototype unit over two sunny days last fall.

Solar cells used to be expensive, but now they’re getting really cheap,” said Chris Giebink, Charles K. Etner Assistant Professor of Electrical Engineering, Penn State. “As a result, the solar cell is no longer the dominant cost of the energy it produces. The majority of the cost increasingly lies in everything else — the inverter, installation labor, permitting fees, etc. — all the stuff we used to neglect.

This changing economic landscape has put a premium on high efficiency. In contrast to silicon solar panels, which currently dominate the market at 15 to 20 percent efficiency, concentrating photovoltaics focus sunlight onto smaller, but much more efficient solar cells like those used on satellites, to enable overall efficiencies of 35 to 40 percent. Current CPV systems are large — the size of billboards — and have to rotate to track the sun during the day. These systems work well in open fields with abundant space and lots of direct sun.

What we’re trying to do is create a high-efficiency CPV system in the form factor of a traditional silicon solar panel,” said Giebink.

Source: http://news.psu.edu/

Move And Produce Electricity To Power Your Phone

Imagine slipping into a jacket, shirt or skirt that powers your cell phone, fitness tracker and other personal electronic devices as you walk, wave and even when you are sitting down. A new, ultrathin energy harvesting system developed at Vanderbilt University’s Nanomaterials and Energy Devices Laboratory has the potential to do just that. Based on battery technology and made from layers of black phosphorus that are only a few atoms thick, the new device generates small amounts of electricity when it is bent or pressed even at the extremely low frequencies characteristic of human motion.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

In the future, I expect that we will all become charging depots for our personal devices by pulling energy directly from our motions and the environment,” said Assistant Professor of Mechanical Engineering Cary Pint, who directed the research.
This is timely and exciting research given the growth of wearable devices such as exoskeletons and smart clothing, which could potentially benefit from Dr. Pint’s advances in materials and energy harvesting,” observed Karl Zelik, assistant professor of mechanical and biomedical engineering at Vanderbilt, an expert on the biomechanics of locomotion who did not participate in the device’s development.

Doctoral students Nitin Muralidharan and Mengya Lic o-led the effort to make and test the devices. When you look at Usain Bolt, you see the fastest man on Earth. When I look at him, I see a machine working at 5 Hertz, said Muralidharan.

The new energy harvesting system is described in a paper titled “Ultralow Frequency Electrochemical Mechanical Strain Energy Harvester using 2D Black Phosphorus Nanosheets” published  by the journal ACS Energy Letters.

Source: https://news.vanderbilt.edu/

How To Strengthen 3-D Printed Parts

From aerospace and defense to digital dentistry and medical devices, 3-D printed parts are used in a variety of industries. Currently, 3-D printed parts are very fragile and traditionally used in the prototyping phase of materials or as a toy for display. A doctoral student in the Department of Materials Science and Engineering at Texas A&M University has pioneered a countermeasure to transform the landscape of 3-D printing today.

Brandon Sweeney and his advisor Dr. Micah Green, associate professor in the Department of Chemical Engineering, discovered a way to make 3-D printed parts stronger and immediately useful in real-world applications. Sweeney and Green applied the traditional welding concepts to bond the submillimeter layers in a 3-D printed part together, while in a microwave.

I was able to see the amazing potential of the technology, such as the way it sped up our manufacturing times and enabled our CAD designs to come to life in a matter of hours,” Sweeney said. “Unfortunately, we always knew those parts were not really strong enough to survive in a real-world application.

3-D printed objects are comprised of many thin layers of materials, plastics in this case, deposited on top of each other to form a desired shape. These layers are prone to fracturing, causing issues with the durability and reliability of the part when used in a real-world application, for example a custom printed medical device. “I knew that nearly the entire industry was facing this problem,” Sweeney said. “Currently, prototype parts can be 3-D printed to see if something will fit in a certain design, but they cannot actually be used for a purpose beyond that.”

When Sweeney started his doctorate, he was working with Green in the Department of Chemical Engineering at Texas Tech University. Green had been collaborating with Dr. Mohammad Saed, assistant professor in the electrical and computer engineering department at Texas Tech, on a project to detect carbon nanotubes using microwaves. The trio crafted an idea to use carbon nanotubes in 3-D printed parts, coupled with microwave energy to weld the layers of parts together.

The basic idea is that a 3-D part cannot simply be stuck into an oven to weld it together because it is plastic and will melt,” Sweeney said. “We realized that we needed to borrow from the concepts that are traditionally used for welding parts together where you’d use a point source of heat, like a torch or a TIG welder to join the interface of the parts together. You’re not melting the entire part, just putting the heat where you need it.” The technology is patent-pending and licensed with a local company, Essentium Materials.

The team recently published a paper “Welding of 3-D Printed Carbon Nanotube-Polymer Composites by Locally Induced Microwave Heating,” in Science Advances.

Source: http://engineering.tamu.edu/

Solar Nanotechnology-based Desalination

A new desalination system has been developed that combines membrane distillation technology and light-harvesting nanophotonics. Called nanophotonics-enabled solar membrane distillation technology, or NESMD for short, the development has come from the Center for Nanotechnology Enabled Water Treatment (NEWT), based at Rice University. The system works whereby hot salt water is flowed across one side of a porous membrane and cold freshwater is flowed across the otherWater vapor is naturally drawn through the membrane from the hot to the cold side, and because the seawater doesn’t need to be boiled, the energy requirements are less than they would be for traditional distillation, according to the researchers. However, the energy costs are still significant because heat is continuously lost from the hot side of the membrane to the cold.

Unlike traditional membrane distillation, NESMD benefits from increasing efficiency with scale,” said Rice’s Naomi Halas, a corresponding author on the paper and the leader of NEWT‘s  nanophotonics research efforts. “It requires minimal pumping energy for optimal distillate conversion, and there are a number of ways we can further optimise the technology to make it more productive and efficient.

The distillation membrane in the chamber contained a specially designed top layer of carbon black nanoparticles infused into a porous polymer. The light-capturing nanoparticles heated the entire surface of the membrane when exposed to sunlight. A thin half-millimeter-thick layer of salt water flowed atop the carbon-black layer, and a cool freshwater stream flowed below.

Rice scientist and water treatment expert Qilin Li said the water production rate increased greatly by concentrating the sunlight: “The intensity got up 17.5 kilowatts per meter squared when a lens was used to concentrate sunlight by 25 times, and the water production increased to about 6 liters per meter squared per hour.”

In the PNAS study, researchers offered proof-of-concept results based on tests with an NESMD chamber about the size of three postage stamps and just a few millimeters thick.

Source: http://www.waterworld.com/

Cancer: A Giant Step For Immunotherapy

A Food and Drug Administration (FDA) panel opened a new era in medicine, unanimously recommending that the agency approve the first-ever treatment that genetically alters a patient’s own cells to fight cancer, transforming them into what scientists call “a living drug” that powerfully bolsters the immune system to shut down the disease.

If the F.D.A. accepts the recommendation, which is likely, the treatment will be the first gene therapy ever to reach the market. Others are expected: Researchers and drug companies have been engaged in intense competition for decades to reach this milestone. Novartis is now poised to be the first. Its treatment is for a type of leukemia, and it is working on similar types of treatments in hundreds of patients for another form of the disease, as well as multiple myeloma and an aggressive brain tumor.

To use the technique, a separate treatment must be created for each patient — their cells removed at an approved medical center, frozen, shipped to a Novartis plant for thawing and processing, frozen again and shipped back to the treatment center.

A single dose of the resulting product has brought long remissions, and possibly cures, to scores of patients in studies who were facing death because every other treatment had failed. The panel recommended approving the treatment for B-cell acute lymphoblastic leukemia that has resisted treatment, or relapsed, in children and young adults aged 3 to 25.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We believe that when this treatment is approved it will save thousands of children’s lives around the world,” Emily’s father, Tom Whitehead, told the panel. “I hope that someday all of you on the advisory committee can tell your families for generations that you were part of the process that ended the use of toxic treatments like chemotherapy and radiation as standard treatment, and turned blood cancers into a treatable disease that even after relapse most people survive.”

The main evidence that Novartis presented to the F.D.A. came from a study of 63 patients who received the treatment from April 2015 to August 2016. Fifty-two of them, or 82.5 percent, went into remission — a high rate for such a severe disease. Eleven others died.

It’s a new world, an exciting therapy,” said Dr. Gwen Nichols, the chief medical officer of the Leukemia and Lymphoma Society, which paid for some of the research that led to the treatment. The next step, she said, will be to determine “what we can combine it with and is there a way to use it in the future to treat patients with less disease, so that the immune system is in better shape and really able to fight.” She added, “This is the beginning of something big.”

Source: http://www.chop.edu/
A
ND
https://www.nytimes.com/

Blood Test for Early Detection of Pancreatic Cancer

A newly identified biomarker panel could pave the way to earlier detection and better treatment for pancreatic cancer, according to new research from the Perelman School of Medicine at University of Pennsylvania. Currently over 53,000 people in the United States are diagnosed with pancreatic cancer — the fourth leading cause of cancer death — every year. The blood biomarkers, detailed today in Science Translational Medicine, correctly detected pancreatic cancer in blood samples from patients at different stages of their disease.

The majority of pancreatic cancer patients are not diagnosed until an advanced stage, beyond the point at which their tumors can be surgically removed.

A team led by Ken Zaret, PhD, director of the Penn Institute for Regenerative Medicine and the Joseph Leidy Professor of Cell and Developmental Biology, and Gloria Petersen, PhD, from the Mayo Clinic, identified a pair of biomarkers that physicians could soon use to discover the disease earlier.

Starting with our cell model that mimics human pancreatic cancer progression, we identified released proteins, then tested and validated a subset of these proteins as potential plasma biomarkers of this cancer,” Zaret said. The authors anticipate that health care providers will use the early-detection biomarkers to test for their presence and levels in blood from pancreatic cancer patients and blood drawn from individuals with a high risk of developing pancreatic cancer, including those who have a first-degree relative with pancreatic cancer, are genetically predisposed to the disease, or who had a sudden onset of diabetes after the age of 50.

Early detection of cancer has had a critical influence on lessening the impact of many types of cancer, including breast, colon, and cervical cancer. A long standing concern has been that patients with pancreatic cancer are often not diagnosed until it is too late for the best chance at effective treatment,” said Robert Vonderheide, MD, DPhil, director of the Abramson Cancer Center (ACC) at the University of Pennsylvania. “Having a biomarker test for this disease could dramatically alter the outlook for these patients.”

Source: https://www.pennmedicine.org/

Use The Phone And See 3D Content Without 3D Glasses

RED, the company known for making some truly outstanding high-end cinema cameras, is set to release a smartphone in Q1 of 2018 called the HYDROGEN ONE. RED says that it is a standalone, unlocked and fully-featured smartphone “operating on Android OS that just happens to add a few additional features that shatter the mold of conventional thinking.” Yes, you read that right. This phone will blow your mind, or something – and it will even make phone calls.

In a press release riddled with buzzwords broken up by linking verbs, RED praises their yet-to-be smartphone with some serious adjectives. If we were just shown this press release outside of living on RED‘s actual server, we would swear it was satire. Here are a smattering of phrases found in the release.

Incredible retina-riveting display
Nanotechnology
Holographic multi-view content
RED Hydrogen 4-View content
Assault your senses
Proprietary H3O algorithm
Multi-dimentional audio

  • There are two models of the phone, which run at different prices. The Aluminum model will cost $1,195, but anyone worth their salt is going to go for the $1,595 Titanium version. Gotta shed that extra weight, you know?

Those are snippets from just the first three sections, of which there are nine. I get hyping a product, but this reads like a catalog seen in the background of a science-fiction comedy, meant to sound ridiculous – especially in the context of a ficticious universe.

Except that this is real life.

After spending a few minutes removing all the glitter words from this release, it looks like it will be a phone using a display similar to what you get with the Nintendo 3DS, or what The Verge points out as perhaps better than the flopped Amazon Fire Phone. Essentially, you should be able to use the phone and see 3D content without 3D glasses. Nintendo has already proven that can work, however it can really tire out your eyes. As an owner of three different Nintendo 3DS consoles, I can say that I rarely use the 3D feature because of how it makes my eyes hurt. It’s an odd sensation. It is probalby why Nintendo has released a new handheld that has the same power as the 3DS, but dropping the 3D feature altogether.

Anyway, back to the HYDROGEN ONE, RED says that it will work in tandem with their cameras as a user interface and monitor. It will also display what RED is calling “holographic content,” which isn’t well-described by RED in this release. We can assume it is some sort of mixed-dimensional view that makes certain parts of a video or image stand out over the others.

Source: http://www.red.com/
AND
http://www.imaging-resource.com/

How To Re-Wire The Brains Of People With Depression

Doctors in California say magnetic stimulation can help ‘rewire‘ the brains of people with depression, offering hope for patients whose condition is not improved by medication or therapy. Depression is one of the most common forms of mental illness, affecting more than 350 million people worldwide. Bob Holmes is one of them.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

I struggled with that for many years, didn’t know really what to do, tried to pull myself through it. And then ultimately when I got into my forties, I wasn’t successful,” says Bob Holmes, who suffers from He has been receiving transcranial magnetic stimulation at the University of California Los Angeles (UCLA), a treatment that beams targeted magnetic pulses deep inside his brain. Doctors say the therapy can effectivelyrewire‘ the brain by changing how brain circuits are arranged.

(SOUNDBITE) (English) ANDREW LEUCHTER, DIRECTOR OF THE SEMEL INSTITUTE’S TMS CLINICAL AND RESEARCH SERVICE AT THE UNIVERSITY OF CALIFORNIA LOS ANGELES, SAYING:

By pulsing it with energy repeatedly, we’re changing the way that area works, but also changing the way the whole brain network works,” explains Andrew Leuchter,Director of the Semel Institute (UCLA).

For Holmes, the treatment has been life changing.  “I would recommend it a hundred percent. I have spoken to a number of people who have depression, given them my opinion, and I think it’s a wonderful program. It’s been a life-saver for me, and I’m very grateful that I found it, and I’m very grateful for the people here,” adds Holmes.

Doctors hope the newest generation of equipment could decrease the length of a treatment session from over 35 minutes down to three minutes, allowing a patient to complete a course in two weeks and bringing the therapy to even more people with depression.

Source: http://newsroom.ucla.edu/
A
ND
http://www.reuters.com/

Perovskite Solar Cells Conversion Efficiency Rises Up To 20%

A new low-temperature solution printing technique allows fabrication of high-efficiency perovskite solar cells with large crystals intended to minimize current-robbing grain boundaries. The meniscus-assisted solution printing (MASP) technique boosts power conversion efficiencies to nearly 20 percent by controlling crystal size and orientation.

The process, which uses parallel plates to create a meniscus of ink containing the metal halide perovskite precursors, could be scaled up to rapidly generate large areas of dense crystalline film on a variety of substrates, including flexible polymers. Operating parameters for the fabrication process were chosen by using a detailed kinetics study of perovskite crystals observed throughout their formation and growth cycle.

We used a meniscus-assisted solution printing technique at low temperature to craft high quality perovskite films with much improved optoelectronic performance,” said Zhiqun Lin, a professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. “We began by developing a detailed understanding of crystal growth kinetics that allowed us to know how the preparative parameters should be tuned to optimize fabrication of the films.”

The new technique is reported in the journal Nature Communications.

Source: http://www.news.gatech.edu/

Nanoweapons Against North Korea

Unless you’re working in the field, you probably never heard about U.S. nanoweapons. This is intentional. The United States, as well as Russia and China, are spending billions of dollars per year developing nanoweapons, but all development is secret. Even after Pravda.ru’s June 6, 2016 headline, “US nano weapon killed Venezuela’s Hugo Chavez, scientists say,” the U.S. offered no response.

Earlier this year, May 5, 2017, North Korea claimed the CIA plotted to kill Kim Jong Un using a radioactive nano poison, similar to the nanoweapon Venezuelan scientists claim the U.S. used to assassinate former Venezuelan President Hugo Chavez. All major media covered North Korea’s claim. These accusations are substantial, but are they true? Let’s address this question.

Unfortunately, until earlier this year, nanoweapons gleaned little media attention. However, in March 2017 that changed with the publication of the book, Nanoweapons: A Growing Threat to Humanity (2017 Potomac Books), which inspired two articles. On March 9, 2017, American Security Today published “Nanoweapons: A Growing Threat to Humanity – Louis A. Del Monte,” and on March 17, 2017, CNBC published “Mini-nukes and mosquito-like robot weapons being primed for future warfare.” Suddenly, the genie was out of the bottle. The CNBC article became the most popular on their website for two days following its publication and garnered 6.5K shares. Still compared to other classes of military weapons, nanoweapons remain obscure. Factually, most people never even heard the term. If you find this surprising, recall most people never heard of stealth aircraft until their highly publicized use during the first Iraq war in 1990. Today, almost everyone that reads the news knows about stealth aircraft. This may become the case with nanoweapons, but for now, it remains obscure to the public.

Given their relative obscurity, we’ll start by defining nanoweapons. A nanoweapon is any military weapon that exploits the power of nanotechnology. This, of course, begs another question: What is nanotechnology? According to the United States National Nanotechnology Initiative’s website, nano.gov, “Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is about 1 to 100 nanometers.” To put this in simple terms, the diameter of a typical human hair equals 100,000 nanometers. This means nanotechnology is invisible to the naked eye or even under an optical microscope.

Source: http://www.huffingtonpost.com/

Dialysis Membrane Made From Graphene

Dialysis, in the most general sense, is the process by which molecules filter out of one solution, by diffusing through a membrane, into a more dilute solution. Outside of hemodialysis, which removes waste from blood, scientists use dialysis to purify drugs, remove residue from chemical solutions, and isolate molecules for medical diagnosis, typically by allowing the materials to pass through a porous membrane.

Today’s commercial dialysis membranes separate molecules slowly, in part due to their makeup: They are relatively thick, and the pores that tunnel through such dense membranes do so in winding paths, making it difficult for target molecules to quickly pass through.

Now MIT engineers have fabricated a functional dialysis membrane from a sheet of graphene — a single layer of carbon atoms, linked end to end in hexagonal configuration like that of chicken wire. The graphene membrane, about the size of a fingernail, is less than 1 nanometer thick. (The thinnest existing memranes are about 20 nanometers thick.) The team’s membrane is able to filter out nanometer-sized molecules from aqueous solutions up to 10 times faster than state-of-the-art membranes, with the graphene itself being up to 100 times faster.

While graphene has largely been explored for applications in electronics, Piran Kidambi, a postdoc in MIT’s Department of Mechanical Engineering, says the team’s findings demonstrate that graphene may improve membrane technology, particularly for lab-scale separation processes and potentially for hemodialysis.

Because graphene is so thin, diffusion across it will be extremely fast,” Kidambi says. “A molecule doesn’t have to do this tedious job of going through all these tortuous pores in a thick membrane before exiting the other side. Moving graphene into this regime of biological separation is very exciting.”

Kidambi is a lead author of a study reporting the technology, published today in Advanced Materials. Six co-authors are from MIT, including Rohit Karnik, associate professor of mechanical engineering, and Jing Kong, associate professor of electrical engineering.

Source: http://news.mit.edu/