Posts belonging to Category algorithm



Copycat Robot

Introducing T-HR3, third generation humanoid robot designed to explore how clever joints can improve brilliant balance and real remote controlToyota says its 29 joints allow it to copy the most complex of moves – safely bringing friendly, helpful robots one step closer.


CLICK ON THE IMAGE TO ENJOY THE VIDEO

Humanoid robots are very popular among Japanese people…creating one like this has always been our dream and that’s why we pursued it,” says Akifumi Tamaoki, manager of Partner robot division at Toyota.

The robot is controlled by a remote operator sitting in an exoskeletonmirroring its master’s moves, a headset giving the operator a realtime robot point of view.

We’re primarily focused on making this robot a very family-oriented one, so that it can help people including services such as carer” explains Tamaoki.
Toyota said T-HR3 could help around the homes or medical facilities in Japan or construction sites, a humanoid helping hand – designed for a population ageing faster than anywhere else on earth.

Source: http://toyota.com/

Artificial Intelligence Chip Analyzes Molecular-level Data In Real Time

Nano Global, an Austin-based molecular data company, today announced that it is developing a chip using intellectual property (IP) from Arm, the world’s leading semiconductor IP company. The technology will help redefine how global health challenges – from superbugs to infectious diseases, and cancer are conquered.

The pioneering system-on-chip (SoC) will yield highly-secure molecular data that can be used in the recognition and analysis of health threats caused by pathogens and other living organisms. Combined with the company’s scientific technology platform, the chip leverages advances in nanotechnology, optics, artificial intelligence (AI), blockchain authentication, and edge computing to access and analyze molecular-level data in real time.

In partnership with Arm, we’re tackling the vast frontier of molecular data to unlock the unlimited potential of this universe,” said Steve Papermaster, Chairman and CEO of Nano Global. “The data our technology can acquire and process will enable us to create a safer and healthier world.”

We believe the technology Nano Global is delivering will be an important step forward in the collective pursuit of care that improves lives through the application of technology,” explained Rene Haas, executive vice president and president of IPG, Arm. “By collaborating with Nano Global, Arm is taking an active role in developing and deploying the technologies that will move us one step closer to solving complex health challenges.”

Additionally, Nano Global will be partnering with several leading institutions, including Baylor College of Medicine and National University of Singapore, on broad research initiatives in clinical, laboratory, and population health environments to accelerate data collection, analysis, and product development.
The initial development of the chip is in process with first delivery expected by 2020. The company is already adding new partners to their platform.

Source: https://nanoglobal.com/
AND
www.prnewswire.com

AI, “worst event in the history of our civilisation” says Stephen Hawking

Stephen Hawking has sent a stark warning out to the world, stating that the invention of artificial intelligence (AI) could be the “worst event in the history of our civilisation”. Speaking at the Web Summit technology conference in Lisbon, Portugal, the theoretical physicist reiterated his warning against the rise of powerful, conscious machines.
While Prof Hawking admitted that AI could be used for good, he also stated that humans need to find a way to control it so that it does not become more powerful than us as “computers can, in theory, emulate human intelligence, and exceed it.” Looking at the positives, the 75-year old said AI could help undo some of the damage that humans have inflicted on the natural world, help beat disease and “transform” every aspect of society. But, there are negatives that come with it.
CLICK ON THE IMAGE TO ENJOY THE VIDEO

Success in creating effective AI, could be the biggest event in the history of our civilisation. Or the worst. We just don’t know. “So we cannot know if we will be infinitely helped by AI, or ignored by it and side-lined, or conceivably destroyed by it. “Unless we learn how to prepare for, and avoid, the potential risks, AI could be the worst event in the history of our civilisation. It brings dangers, like powerful autonomous weapons, or new ways for the few to oppress the many. It could bring great disruption to our economy,” explains the University of Cambridge alumni.

Prof Hawking added that to make sure AI is in line with our goals, creators need to “employ best practice and effective management.” But he still has hope: “I am an optimist and I believe that we can create AI for the good of the world. “That it can work in harmony with us. We simply need to be aware of the dangers, identify them, employ the best possible practice and management, and prepare for its consequences well in advance.”

Just last week, Prof Hawking warned that AI will replace us as the dominant being on the planet.

Source: http://www.express.co.uk/

AI-controlled Greenhouse Uses 90 Percent Less Water To Produce Salads

Californian startup  Iron Ox runs an indoor farm complete with a few hundred plants—and two robot farmers. Instead of using technology to grow genetically modified food, a former Google engineer partnered with one of his friends who had a PhD in robotics to open a technology-based farm where they plant, seed, and grow heads of lettuce.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Iron Ox’s goal is to provide quality produce to everyone without a premium price. According to Natural Society the average head of lettuce travels 2,055 miles from farm to market, which is why fresh lettuce is often so expensive. Currently, Iron Ox only provides produce to restaurants and grocery stores in the Bay Area of California, which is why after a daily harvest, their products are hours fresh as opposed to shipped in. The company aims to open greenhouses near other major cities, guaranteeing same-day delivery from their trucks at a fraction of the price of the current supply chain.

So why the robots? Lettuce has always been a testing ground for farming innovation, from early greenhouses to closed aquaponic ecosystems. According to Iron Ox, their AI-controlled greenhouse uses 90 percent less water than traditional farms, and because of the technology, each head of lettuce receives intimate individualized attention that is not realistic with human labor. Iron Ox also says that because they grow their products indoors with no pesticides, they don’t have to worry about typical farming issues like stray animals eating their product.

Iron Ox has yet to launch a fully-functioning automated greenhouse, but hope to build their first by the end of 2017. However, Iron Ox is not the only company to experiment with robot farming. Spread, a sustainable farming organization, broke ground on their first techno-farm, which will be fully automated and operated by robots growing lettuce, in May. They have plans to expand to the Middle East next and then continue growing.

Does this mean the future of produce is automation? Not exactly. Agriculture is complex business, and not all produce can be greenhouse-grown as efficiently and effectively as lettuce. But it’s one more reason for farmers to be aware of how the robots are coming for us all.

Source: https://www.saveur.com/

Computer Reads Body Language

Researchers at Carnegie Mellon University‘s Robotics Institute have enabled a computer to understand body poses and movements of multiple people from video in real time — including, for the first time, the pose of each individual’s hands and fingers. This new method was developed with the help of the Panoptic Studio — a two-story dome embedded with 500 video cameras — and the insights gained from experiments in that facility now make it possible to detect the pose of a group of people using a single camera and a laptop computer.

Yaser Sheikh, associate professor of robotics, said these methods for tracking 2-D human form and motion open up new ways for people and machines to interact with each other and for people to use machines to better understand the world around them. The ability to recognize hand poses, for instance, will make it possible for people to interact with computers in new and more natural ways, such as communicating with computers simply by pointing at things.

Detecting the nuances of nonverbal communication between individuals will allow robots to serve in social spaces, allowing robots to perceive what people around them are doing, what moods they are in and whether they can be interrupted. A self-driving car could get an early warning that a pedestrian is about to step into the street by monitoring body language. Enabling machines to understand human behavior also could enable new approaches to behavioral diagnosis and rehabilitation, for conditions such as autism, dyslexia and depression.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We communicate almost as much with the movement of our bodies as we do with our voice,” Sheikh said. “But computers are more or less blind to it.”

In sports analytics, real-time pose detection will make it possible for computers to track not only the position of each player on the field of play, as is now the case, but to know what players are doing with their arms, legs and heads at each point in time. The methods can be used for live events or applied to existing videos.

To encourage more research and applications, the researchers have released their computer code for both multi-person and hand pose estimation. It is being widely used by research groups, and more than 20 commercial groups, including automotive companies, have expressed interest in licensing the technology, Sheikh said.

Sheikh and his colleagues have presented reports on their multi-person and hand pose detection methods at CVPR 2017, the Computer Vision and Pattern Recognition Conference  in Honolulu.

Source: https://www.cmu.edu/

Optical Computer

Researchers at the University of Sydney (Australia) have dramatically slowed digital information carried as light waves by transferring the data into sound waves in an integrated circuit, or microchipTransferring information from the optical to acoustic domain and back again inside a chip is critical for the development of photonic integrated circuits: microchips that use light instead of electrons to manage data.

These chips are being developed for use in telecommunications, optical fibre networks and cloud computing data centers where traditional electronic devices are susceptible to electromagnetic interference, produce too much heat or use too much energy.

The information in our chip in acoustic form travels at a velocity five orders of magnitude slower than in the optical domain,” said Dr Birgit Stiller, research fellow at the University of Sydney and supervisor of the project.

It is like the difference between thunder and lightning,” she said.

This delay allows for the data to be briefly stored and managed inside the chip for processing, retrieval and further transmission as light wavesLight is an excellent carrier of information and is useful for taking data over long distances between continents through fibre-optic cables.

But this speed advantage can become a nuisance when information is being processed in computers and telecommunication systems.

Source: https://sydney.universty.au/

Very Fast Magnetic Data Storage

For almost seventy years now, magnetic tapes and hard disks have been used for data storage in computers. In spite of many new technologies that have been developed in the meantime, the controlled magnetization of a data storage medium remains the first choice for archiving information because of its longevity and low price. As a means of realizing random access memories (RAMs), however, which are used as the main memory for processing data in computers, magnetic storage technologies were long considered inadequate. That is mainly due to its low writing speed and relatively high energy consumption.

In 1956, IBM introduced the first magnetic hard disc, the RAMAC. ETH researchers have now tested a novel magnetic writing technology that could soon be used in the main memories of modern computers

Pietro Gambardella, Professor at the Department of Materials of the Eidgenössische Technische Hochschule Zürich (ETHZ, Switzerland), and his colleagues, together with colleagues at the Physics Department and at the Paul Scherrer Institute (PSI), have now shown that using a novel technique, magnetic storage can still be achieved very fast and without wasting energy.

In 2011, Gambardella and his colleagues already demonstrated a technique that could do just that: An electric current passing through a specially coated semiconductor film inverted the magnetization in a tiny metal dot. This is made possible by a physical effect called spin-orbit-torque. In this effect, a current flowing in a conductor leads to an accumulation of electrons with opposite magnetic moment (spins) at the edges of the conductor. The electron spins, in turn, create a magnetic field that causes the atoms in a nearby magnetic material to change the orientation of their magnetic moments. In a new study the scientists have now investigated how this process works in detail and how fast it is.

The results were recently published in the scientific journal Nature Nanotechnology.

Source: https://www.ethz.ch/

Rapid, Cheap Liver Cancer Test

University of Utah researchers say they are designing a diagnostic method that will be able to accurately identify signs of liver cancer within minutes, saving critical time for patients of the stealthy disease. The new type of test could forever change how people screen for the disease, said Marc Porter, a U. chemical engineering and chemistry professor who is leading the research along with Dr. Courtney Scaife, a surgeon who both practices and teaches surgery for the university. Porter said the long-term vision is for the tool itself to become as automatic and portable as a pregnancy test, though additional technology — called a spectrometer — is currently needed to precisely measure the results of the test.

A small domino-sized cartridge holds a membrane for a new field test for liver cancer developed by researchers from the University of Utah. The test doesn’t involve sending a specimen to a blood lab and cuts the wait time for results from two weeks to two minutes. It can be administered wherever the patient is, which will be valuable for developing nations with little access to hospitals.

It’s really compact, it’s simple and low cost,” he said of the test kit.

Liver cancer is difficult to survive because typically it is highly developed by the time symptoms show up, Porter said. It is the second deadliest form of cancer worldwide, resulting in about 788,000 deaths in 2015, according to the World Health Organization. “All too often, the cancer is diagnosed past when you can actually have surgical intervention,” Porter said.

Currently, a blood test taken to determine the presence of liver cancer is usually sent to a lab offsite, where it takes days or even up to two weeks to test and return, said Vincent Horiuchi, spokesman for the U.’s College of Engineering. Those days are precious time that is lost in the fight against the disease, he said.

Source: https://unews.utah.edu/

China, Global Leader In NanoScience

Mobile phones, computers, cosmetics, bicyclesnanoscience is hiding in so many everyday items, wielding a huge influence on our lives at a microscale level. Scientists and engineers from around the world exchanged new findings and perceptions on nanotechnology at the recent 7th International Conference on Nanoscience and Technology (ChinaNANO 2017) in Beijing last week. China has become a nanotechnology powerhouse, according to a report released at the conference. China’s applied nanoscience research and the industrialization of nanotechnology have been developing steadily, with the number of nano-related patent applications ranking among the top in the world.

According to Bai Chunli, president of the Chinese Academy of Sciences (CAS), China faces new opportunities for nanoscience research and development as it builds the National Center for Nanoscience and Technology  (NCNST) and globally influential national science centers.

We will strengthen the strategic landscape and top-down design for developing nanoscience, which will contribute greatly to the country’s economy and society,” said Bai.

Nanoscience can be defined as the study of the interaction, composition, properties and manufacturing methods of materials at a nanometer scale. At such tiny scales, the physical, chemical and biological properties of materials are different from those at larger scales — often profoundly so.

For example, alloys that are weak or brittle become strong and ductile; compounds that are chemically inert become powerful catalysts. It is estimated that there are more than 1,600 nanotechnology-based consumer products on the market, including lightweight but sturdy tennis rackets, bicycles, suitcases, automobile parts and rechargeable batteries. Nanomaterials are used in hairdryers or straighteners to make them lighter and more durable. The secret of how sunscreens protect skin from sunburn lies in the nanometer-scale titanium dioxide or zinc oxide they contain.

In 2016, the world’s first one-nanometer transistor was created. It was made from carbon nanotubes and molybdenum disulphide, rather than silicon.
Carbon nanotubes or silver nanowires enable touch screens on computers and televisions to be flexible, said Zhu Xing, chief scientist (CNST). Nanotechnology is also having an increasing impact on healthcare, with progress in drug delivery, biomaterials, imaging, diagnostics, active implants and other therapeutic applications. The biggest current concern is the health threats of nanoparticles, which can easily enter body via airways or skin. Construction workers exposed to nanopollutants face increased health risks.

The report was co-produced by Springer Nature, National Center for Nanoscience and Technology (NCNST) and the National Science Library of the Chinese Academy of Sciences (CAS).

Source: http://www.shanghaidaily.com/

Green Solar Panels And Other Colors

Researchers from AMOLF, the University of Amsterdam (UvA) and the Energy Research Centre of the Netherlands (ECN) have developed a technology to create efficient bright green colored solar panels. Arrays of silicon nanoparticles integrated in the front module glass of a silicon heterojunction solar cell scatter a narrow band of the solar spectrum and create a green appearance for a wide range of angles. The remainder of the solar spectrum is efficiently coupled into the solar cell. The current generated by the solar panel is only  reduced by 10%. The realization of efficient colorful solar panels is an important step for the integration of solar panels into the built environment and landscape.
Photovoltaic
research has much focused on maximizing the electricity yield obtained from solar panels: nowadays, commercial panels have a maximum conversion efficiency from sunlight into electricity of around 22%. To reach such high efficiency, silicon solar cells have been equipped with a textured surface with an antireflection layer to absorb as much light as possible. This creates a dark blue or black appearance of the solar panels.

To create the colored solar panels the researchers have used the effect of Mie scattering, the resonant backscattering of light with a particular color by nanoparticles. They integrated dense arrays of silicon nanocylinders with a diameter of 100 nm in the top module cover slide of a high-efficiency silicon heterojunction solar cell. Due to the resonant nature of the light scattering effect, only the green part of the spectrum is reflected; the other colors are fully coupled into the solar cell. The current generated by the mini solar panel (0,7 x 0,7 cm2)  is only reduced by 10%. The solar panel appears green over a broad range of angles up to 75 degrees. The nanoparticles are fabricated using soft-imprint lithography, a technique that can readily be scaled up to large-area fabrication.
The light scattering effect due to Mie resonances is easily controllable: by changing the size of the nanoparticles the wavelength of the resonant light scattering can be tuned. Following this principle the researchers are now working to realize solar cells in other colors, and on a combination of different colors to create solar panels with a white appearance. For the large-scale application of solar panels, it is essential that their color can be tailored.

The new design was published online in the journal Applied Physics Letters.

Source: https://amolf.nl/

Chinese Quantum Satellite Sends ‘Unbreakable’ Code

China has sent an “unbreakablecode from a satellite to the Earth, marking the first time space-to-ground quantum key distribution technology has been realized, state media said. China launched the world’s first quantum satellite last August, to help establish “hack proofcommunications, a development the Pentagon has called a “notable advance“. The official Xinhua news agency said the latest experiment was published in the journal Nature, where reviewers called it a “milestone“.

The satellite sent quantum keys to ground stations in China between 645 km (400 miles) and 1,200 km (745 miles) away at a transmission rate up to 20 orders of magnitude more efficient than an optical fiber, Xinhua cited Pan Jianwei, lead scientist on the experiment from the state-run Chinese Academy of Sciences, as saying.

That, for instance, can meet the demand of making an absolute safe phone call or transmitting a large amount of bank data,” Pan said. Any attempt to eavesdrop on the quantum channel would introduce detectable disturbances to the system, Pan said. “Once intercepted or measured, the quantum state of the key will change, and the information being intercepted will self-destruct,” Xinhua said.

The news agency said there were “enormous prospects” for applying this new generation of communications in defense and finance.

Source: http://www.reuters.com/

Pilotless Cargo Flights By 2025

Pilotless planes would save airlines $35bn (£27bn) a year and could lead to substantial fare cuts – if passengers were able to stomach the idea of remote-controlled flying, according to new research. The savings for carriers could be huge, said investment bank UBS, even though it may take until the middle of the century for passengers to have enough confidence to board a pilotless plane. UBS estimated that pilots cost the industry $31bn a year, plus another $3bn in training, and that fully automated planes would fly more efficiently, saving another $1bn a year in fuel.

Passengers could benefit from a reduction in ticket prices of about a tenth, the report said. “The average percentage of total cost and average benefit that could be passed onto passengers in price reduction for the US airlines is 11%,” it said, although the savings in Europe would be less, at 4% on average but rising to 8% at RyanairAircraft costs and fuel make up a much larger proportion of costs at airlines than pilot salaries, but UBS said profits at some major airlines could double if they switched to pilotless.

More than half of the 8,000 people UBS surveyed, however, said they would refuse to travel in a pilotless plane, even if fares were cut. “Some 54% of respondents said they were unlikely to take a pilotless flight, while only 17% said they would likely undertake a pilotless flight. Perhaps surprisingly, half of the respondents said that they would not buy the pilotless flight ticket even if it was cheaper,” the report said. It added, however, that younger and more educated respondents were more willing to fly on a pilotless plane. “This bodes well for the technology as the population ages,” it said.

Source: https://www.theguardian.com/