Posts belonging to Category biomolecular



Biomaterial To Replace Plastics And Reduce Pollution

An inexpensive biomaterial that can be used to sustainably replace plastic barrier coatings in packaging and many other applications has been developed by Penn State researchers, who predict its adoption would greatly reduce pollution. Completely compostable, the material — a polysaccharide polyelectrolyte complex — is comprised of nearly equal parts of treated cellulose pulp from wood or cotton, and chitosan, which is derived from chitin — the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is the mountains of leftover shells from lobsters, crabs and shrimp consumed by humans.

These environmentally friendly barrier coatings have numerous applications ranging from water-resistant paper, to coatings for ceiling tiles and wallboard, to food coatings to seal in freshness, according to lead researcher Jeffrey Catchmark, professor of agricultural and biological engineering, College of Agricultural Sciences.

In the research, paperboard coated with the biomaterial exhibited strong oil and water barrier properties. The coating also resisted toluene, heptane and salt solutions and exhibited improved wet and dry mechanical and water vapor barrier properties.

The material’s unexpected strong, insoluble adhesive properties are useful for packaging as well as other applications, such as better performing, fully natural wood-fiber composites for construction and even flooring,” Jeffrey Catchmark said. “And the technology has the potential to be incorporated into foods to reduce fat uptake during frying and maintain crispness. Since the coating is essentially fiber-based, it is a means of adding fiber to diets.”

Source: http://news.psu.edu/

Nano Robots Build Molecules

Scientists at The University of Manchester have created the world’s first ‘molecular robot’ that is capable of performing basic tasks including building other molecules.

The tiny robots, which are a millionth of a millimetre in size, can be programmed to move and build molecular cargo, using a tiny robotic arm.

Each individual robot is capable of manipulating a single molecule and is made up of just 150 carbon, hydrogen, oxygen and nitrogen atoms. To put that size into context, a billion billion of these robots piled on top of each other would still only be the same size as a single grain of salt. The robots operate by carrying out chemical reactions in special solutions which can then be controlled and programmed by scientists to perform the basic tasks.

In the future such robots could be used for medical purposes, advanced manufacturing processes and even building molecular factories and assembly lines.

All matter is made up of atoms and these are the basic building blocks that form molecules. Our robot is literally a molecular robot constructed of atoms just like you can build a very simple robot out of Lego bricks, explains Professor David Leigh, who led the research at University’s School of Chemistry. “The robot then responds to a series of simple commands that are programmed with chemical inputs by a scientistIt is similar to the way robots are used on a car assembly line. Those robots pick up a panel and position it so that it can be riveted in the correct way to build the bodywork of a car. So, just like the robot in the factory, our molecular version can be programmed to position and rivet components in different ways to build different products, just on a much smaller scale at a molecular level.”

The research has been published in Nature.

Source: http://www.manchester.ac.uk/

New Treatment To Kill Cancer

Raise your hand if you haven’t been touched by cancer,” says Mylisa Parette to a roomful of strangers. Parette, the research manager for Keystone Nano (KN), has occasional opportunities to present her company’s technologies to business groups and wants to emphasize the scope of the problem that still confronts society. “It’s easier to see the effects of cancer when nobody raises their hand,” she says. Despite 40 years of the War on Cancer, one in two men and one in three women will be diagnosed with the disease at some point in their lifetime. Parette and her Keystone Nano colleagues are working on a new approach to cancer treatment. The company was formed from the collaboration of two Penn State faculty members who realized that the nanoparticle research that the one was undertaking could be used to solve the drug delivery problems that the other was facing.

Mark Kester, a pharmacologist at Penn State College of Medicine in Hershey, was working with a new drug that showed real promise as a cancer therapy but that could be dangerous if injected directly into the bloodstream. Jim Adair, a materials scientist in University Park, was creating nontoxic nanoparticles that could enclose drugs that might normally be toxic or hydrophobic and were small enough to be taken up by cells.

The two combined their efforts and, licensing the resulting technology from Penn State, they joined with entrepreneur Jeff Davidson, founder of the Biotechnology Institute and the Pennsylvania Biotechnology Association, to form Keystone Nano. The new company’s first hire was Parette, whose job is to translate the lab-scale technology into something that can be ramped up to an industrial scale, and to prepare that technology for FDA approval leading to clinical trials.

Davidson, Parette, and KN’s research team work out of the Zetachron building, a long, one-story science incubator a mile from Penn State’s University Park campus. Operated by the Centre County Industrial Development Corporation, the building was originally the home of the successful Penn State spin-out company that gave it its name. A second Keystone Nano lab was recently opened in the Hershey Center for Applied Research, a biotech incubator adjacent to Penn State College of Medicine.

Our excitement is that we think our technology has shown efficacy in a whole range of animal models,” Davidson, Keystone CEO, remarks during a recent meeting in the shared conference room at Zetachron. “We understand the method of action, the active ingredient. We think it has every chance of being useful in treating disease. Our question is, how do we push this forward from where we are today to determining, one way or another, that it really does work?

Keystone Nano is pioneering two approaches to cancer therapy, both of which rely on advances in nanotechnology to infiltrate tumors and deliver a therapeutic agent. The approach nearest to clinical trials is a ceramide nanoliposome, or what Davidson calls a “nano fat ball around an active ingredient.” Kester, in whose lab the approach was developed, thinks of it as a basketball with a thick bilayer coating that contains 30 percent active ceramide and a hollow interior that can hold another cancer drug.

Source: http://news.psu.edu/

Skin Patches Melt Fat

Researchers have devised a medicated skin patch that can turn energy-storing white fat into energy-burning brown fat locally while raising the body’s overall metabolism. The patch could be used to burn off pockets of unwanted fat such as “love handles” and treat metabolic disorders, such as obesity and diabetes, according to researchers at Columbia University Medical Center (CUMC) and the University of North Carolina. Humans have two types of fat. White fat stores excess energy in large triglyceride droplets. Brown fat has smaller droplets and a high number of mitochondria that burn fat to produce heat. Newborns have a relative abundance of brown fat, which protects against exposure to cold temperatures. But by adulthood, most brown fat is lost.

For years, researchers have been searching for therapies that can transform an adult’s white fat into brown fat—a process named browning—which can happen naturally when the body is exposed to cold temperatures—as a treatment for obesity and diabetes.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

There are several clinically available drugs that promote browning, but all must be given as pills or injections,” said study co-leader Li Qiang, PhD, assistant professor of pathology & cell biology at Columbia. “This exposes the whole body to the drugs, which can lead to side effects such as stomach upset, weight gain, and bone fractures. Our skin patch appears to alleviate these complications by delivering most drugs directly to fat tissue.

To apply the treatment, the drugs are first encased in nanoparticles, each roughly 250 nanometers (nm) in diameter—too small to be seen by the naked eye. (In comparison, a human hair is about 100,000 nm wide.) The nanoparticles are then loaded into a centimeter-square skin patch containing dozens of microscopic needles. When applied to skin, the needles painlessly pierce the skin and gradually release the drug from nanoparticles into underlying tissue.

The findings, from experiments in mice, were published online today in ACS Nano.

Source: http://newsroom.cumc.columbia.edu/

Magnetic Cellular ‘Legos’ For Tissue Engineering

By incorporating magnetic nanoparticles in cells and developing a system using miniaturized magnets, researchers from 3 associated universities* in Paris (France) , have succeeded in creating cellular magneticLegos.” They were able to aggregate cells using only magnets and without an external supporting matrix, with the cells then forming a tissue that can be deformed at will. This approach, which is detailed in Nature Communications, could prove to be a powerful tool for biophysical studies, as well as the regenerative medicine of tomorrow.

Nanotechnology has quickly swept across the medical field by proposing sometimes unprecedented solutions at the furthest limits of current treatments, thereby becoming central to diagnosis and therapy, notably for the regeneration of tissue. A current challenge for regenerative medicine is to create a cohesive and organized cellular assembly without using an external supporting matrix. This is a particularly substantial challenge when it involves synthesizing thick and/or large-sized tissue, or when these tissues must be stimulated like their in vivo counterparts (such as cardiac tissue or cartilage) in order to improve their functionality.

The researchers met this challenge by using magnetism to act on the cells at a distance, in order to assemble, organize, and stimulate them. Cells, which are the building blocks of tissue, are thus magnetized in advance through the incorporation of magnetic nanoparticles, thus becoming true cellular magnetic “Legos” that can be moved and stacked using external magnets. In this new system acting as a magnetic tissue stretcher, the magnetized cells are trapped on a first micromagnet, before a second, mobile magnet traps the aggregate formed by the cells. The movement of the two magnets can stretch or compress the resulting tissue at will.

Researchers first used embryonic stem cells to test their system. They began by showing that the incorporation of nanoparticles had no impact on either the functioning of the stem cell or its capacity for differentiation. These functional magnetic stem cells were then tested in the stretcher, in which they remarkably differentiated toward cardiac cell precursors when stimulation imposed “magnetic beating” imitating the contraction of the heart. These results demonstrate the role that purely mechanical factors can play in cell differentiation.

This “all-in-one” approach, which makes it possible to build and manipulate tissue within the same system, could thus prove to be a powerful tool both for biophysical studies and tissue engineering.

* Laboratoire Matière et Systèmes Complexes (CNRS/Université Paris Diderot), in collaboration with the Laboratoire Adaptation Biologique et Vieillissement (CNRS/UPMC) and the Centre de Recherche Cardiovasculaire de Paris (Inserm/Université Paris Descartes)

Source: https://www.nature.com/
A
ND
https://eurekalert.org/

Rapid, Cheap Liver Cancer Test

University of Utah researchers say they are designing a diagnostic method that will be able to accurately identify signs of liver cancer within minutes, saving critical time for patients of the stealthy disease. The new type of test could forever change how people screen for the disease, said Marc Porter, a U. chemical engineering and chemistry professor who is leading the research along with Dr. Courtney Scaife, a surgeon who both practices and teaches surgery for the university. Porter said the long-term vision is for the tool itself to become as automatic and portable as a pregnancy test, though additional technology — called a spectrometer — is currently needed to precisely measure the results of the test.

A small domino-sized cartridge holds a membrane for a new field test for liver cancer developed by researchers from the University of Utah. The test doesn’t involve sending a specimen to a blood lab and cuts the wait time for results from two weeks to two minutes. It can be administered wherever the patient is, which will be valuable for developing nations with little access to hospitals.

It’s really compact, it’s simple and low cost,” he said of the test kit.

Liver cancer is difficult to survive because typically it is highly developed by the time symptoms show up, Porter said. It is the second deadliest form of cancer worldwide, resulting in about 788,000 deaths in 2015, according to the World Health Organization. “All too often, the cancer is diagnosed past when you can actually have surgical intervention,” Porter said.

Currently, a blood test taken to determine the presence of liver cancer is usually sent to a lab offsite, where it takes days or even up to two weeks to test and return, said Vincent Horiuchi, spokesman for the U.’s College of Engineering. Those days are precious time that is lost in the fight against the disease, he said.

Source: https://unews.utah.edu/

How To Draw Electricity from the Bloodstream

Men build dams and huge turbines to turn the energy of waterfalls and tides into electricity. To produce hydropower on a much smaller scale, Chinese scientists have now developed a lightweight power generator based on carbon nanotube fibers suitable to convert even the energy of flowing blood in blood vessels into electricity.

For thousands of years, people have used the energy of flowing or falling water for their purposes, first to power mechanical engines such as watermills, then to generate electricity by exploiting height differences in the landscape or sea tides. Using naturally flowing water as a sustainable power source has the advantage that there are (almost) no dependencies on weather or daylight. Even flexible, minute power generators that make use of the flow of biological fluids are conceivable. How such a system could work is explained by a research team from Fudan University in Shanghai, China. Huisheng Peng and his co-workers have developed a fiber with a thickness of less than a millimeter that generates electrical power when surrounded by flowing saline solution—in a thin tube or even in a blood vessel.

The construction principle of the fiber is quite simple. An ordered array of carbon nanotubes was continuously wrapped around a polymeric core. Carbon nanotubes are well known to be electroactive and mechanically stable; they can be spun and aligned in sheets. In the as-prepared electroactive threads, the carbon nanotube sheets coated the fiber core with a thickness of less than half a micron. For power generation, the thread or “fiber-shaped fluidic nanogenerator” (FFNG), as the authors call it, was connected to electrodes and immersed into flowing water or simply repeatedly dipped into a saline solution. “The electricity was derived from the relative movement between the FFNG and the solution,” the scientists explained. According to the theory, an electrical double layer is created around the fiber, and then the flowing solution distorts the symmetrical charge distribution, generating an electricity gradient along the long axis.

The power output efficiency of this system was high. Compared with other types of miniature energy-harvesting devices, the FFNG was reported to show a superior power conversion efficiency of more than 20%. Other advantages are elasticity, tunability, lightweight, and one-dimensionality, thus offering prospects of exciting technological applications. The FFNG can be made stretchable just by spinning the sheets around an elastic fiber substrate. If woven into fabrics, wearable electronics become thus a very interesting option for FFNG application. Another exciting application is the harvesting of electrical energy from the bloodstream for medical applications. First tests with frog nerves proved to be successful.

The findings are published in  the journal Angewandte Chemie.

Source: http://newsroom.wiley.com/

Urban Farming At Home

Growing your own vegetables and herbs can be a laborious process. Lack of space in urban environments makes it even harder. But this smart garden is bringing the window box into the modern age. Much like Nespresso coffee capsules, users ‘plant’ this soil pod… containing the seeds and all the nutrients which are released in sync with the plant’s life cycle.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

This is the plastic container they put the growing substrate in here. It has a wick solution, so basically it starts to drain the water from the water tank, and the lamp does the rest of the job. The lamp imitates daylight time, so it’s 16 hours on and 8 hours off. So far we have tested some 7,000 different plants and each growing substrate is designed specifically for this plant,” says Karel Kask, sales Manager, Click and Grow. Estonia-based ‘Click and Grow‘ says it’s tested up to a thousand lighting solutions to ensure optimal growth. The red and white lights deliver the perfect spectrum they say, speeding up growth by 30 to 50 percent, depending on the plant. Each soil pod provides up to 3 harvests. ‘Click and Grow‘ was inspired by NASA technology used to grow food in space. Here, astronauts aboard the International Space Station sample lettuce they’ve grown.

They’re using quite similar soil-based solutions; so they take the soil substrate into space and grow them already in there. They have an automated watering solution. So it’s quite similar to the solution that we do.The Smart Garden 9, its latest and most advanced model, was displayed at this week’s IFA tech fair in Berlin,” adds Kask.

China, Global Leader In NanoScience

Mobile phones, computers, cosmetics, bicyclesnanoscience is hiding in so many everyday items, wielding a huge influence on our lives at a microscale level. Scientists and engineers from around the world exchanged new findings and perceptions on nanotechnology at the recent 7th International Conference on Nanoscience and Technology (ChinaNANO 2017) in Beijing last week. China has become a nanotechnology powerhouse, according to a report released at the conference. China’s applied nanoscience research and the industrialization of nanotechnology have been developing steadily, with the number of nano-related patent applications ranking among the top in the world.

According to Bai Chunli, president of the Chinese Academy of Sciences (CAS), China faces new opportunities for nanoscience research and development as it builds the National Center for Nanoscience and Technology  (NCNST) and globally influential national science centers.

We will strengthen the strategic landscape and top-down design for developing nanoscience, which will contribute greatly to the country’s economy and society,” said Bai.

Nanoscience can be defined as the study of the interaction, composition, properties and manufacturing methods of materials at a nanometer scale. At such tiny scales, the physical, chemical and biological properties of materials are different from those at larger scales — often profoundly so.

For example, alloys that are weak or brittle become strong and ductile; compounds that are chemically inert become powerful catalysts. It is estimated that there are more than 1,600 nanotechnology-based consumer products on the market, including lightweight but sturdy tennis rackets, bicycles, suitcases, automobile parts and rechargeable batteries. Nanomaterials are used in hairdryers or straighteners to make them lighter and more durable. The secret of how sunscreens protect skin from sunburn lies in the nanometer-scale titanium dioxide or zinc oxide they contain.

In 2016, the world’s first one-nanometer transistor was created. It was made from carbon nanotubes and molybdenum disulphide, rather than silicon.
Carbon nanotubes or silver nanowires enable touch screens on computers and televisions to be flexible, said Zhu Xing, chief scientist (CNST). Nanotechnology is also having an increasing impact on healthcare, with progress in drug delivery, biomaterials, imaging, diagnostics, active implants and other therapeutic applications. The biggest current concern is the health threats of nanoparticles, which can easily enter body via airways or skin. Construction workers exposed to nanopollutants face increased health risks.

The report was co-produced by Springer Nature, National Center for Nanoscience and Technology (NCNST) and the National Science Library of the Chinese Academy of Sciences (CAS).

Source: http://www.shanghaidaily.com/

Canakinumab Drug Lowers Risk Of Fatal Lung Cancer By 75%

It turns out that cholesterol isn’t the only thing you have to worry about to keep your heart healthy. In recent years, doctors have started to focus on inflammation — the same process that makes cuts red and painful — as an important contributor to a heart attack. It’s the reason doctors recommend low-dose aspirin to prevent recurrent heart attacks in people who have already had them, why they also prescribe statins, which lower both cholesterol and inflammation, and why they have started to measure inflammation levels in the blood.

But it’s never been clear exactly how much inflammation adds to heart disease risk. Since statins lower both, it’s hard to tell whether inflammation or cholesterol has the bigger impact on heart problems. But in a new paper published in the New England Journal of Medicine and presented at the European Society of Cardiology meeting, scientists say they now have proof that lowering inflammation alone, without affecting cholesterol, also reduces the risk of a heart attack.

In the study, 10,000 people who have already had a heart attack were randomly assigned to get injected with a placebo or different doses of a drug called canakinumab. Canakinumab, made by Novartis, is currently approved to treat rare immune-related conditions and works to reduce inflammation but does not affect cholesterol levels. After four years, the people who received the drug had a 15% lower chance of having a heart attack or stroke compared to people who didn’t get the drug. The medication also reduced the need for angioplasty or bypass surgery by 30%.

Even I am pinching myself,” says Dr. Paul Ridker, who led the study and is director of the center for cardiovascular disease prevention at Brigham and Women’s Hospital and is a pioneer in exposing the role inflammation plays in heart disease. “This outcome is more than we hoped for. The bottom line is we now have clear evidence that lowering inflammation through this pathway lowers rates of heart attack and stroke with no change at all in cholesterol.”

Perhaps more intriguing are additional results that Ridker reported, related to cancer. In a separate study published in the Lancet using data from the same study, he found that people taking canakinumab lowered their risk of dying from any cancer over four years by 50%, and their risk of fatal lung cancer by 75%.

Source: http://time.com/

No More Visit To The Doctor’s Office

A visit to the doctor’s office can feel like the worst thing when you’re already sick. This small device is aimed at replacing physical face-to-face check ups. It’s made by Israel’s Tytocare, a leading telemedicine company. Their Tyto device allows patients to conduct examinations of organs and be diagnosed by remote clinicians.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We basically replicate a face-to-face interaction with a remote clinician while allowing him to do a full physical examination, analysis and the diagnosis of a patient at home,” said Dedi Gilad, CEO of Tytocare.

The associated TytoApp guides users through complicated examinations. It can be used to check heart rate or temperature — as well as conduct examinations of the ears, throat and lungs. And it allows a clinician to interact with patients online or offline. It also represents a significant cost saving – in the US a basic primary care visit costs around 170 dollars, three times the cost of telemedicine appointments. The system was tested at Israel’s Schneider children’s hospital.

What we found was really remarkable, that there was almost no difference between the two types of examinations…But we must be careful about the use. There are certain diseases, certain complaints, that can not be answered by this kind of device and we should carefully judge case by case and be aware of the limitations of this device,”  explains Prof. Yehezkel Waisman, Director of The Emergency Medicine department at Schneider children hospital.

Telemedecine does have its critics, who believe that real-time encounters with a doctor will always be superior. But those behind it say it could drastically cut the number of face-to-face doctors’ visits and save money for healthcare providers and insurers.

Source: http://www.tytocare.com/
AND
http://www.reuters.com/

How To Detect, Kill Circulating Tumor Cells

A nanolaser known as the spaser can serve as a super-bright, water-soluble, biocompatible probe capable of finding metastasized cancer cells in the blood stream and then killing these cells, according to a new research study. The spaser can be used as an optical probe and when released into the body (possibly through an injection or drinking a solution), it can find and go after circulating tumor cells (CTCs), stick to them and destroy these cells by breaking them apart to prevent cancer metastases. The spaser absorbs laser light, heats up, causes shock waves in the cell and destroys the cell membrane.

The spaser, which stands for surface plasmon amplification by stimulated emission of radiation, is a nanoparticle, about 20 nanometers in size or hundreds times smaller than human cells. It has folic acid attached to its surface, which allows selective molecular targeting of cancer cells. The folate receptor is commonly overexpressed on the surface of most human cancer cells and is weakly expressed in normal cells. The discovery was made by researchers at Georgia State University, the University of Arkansas for Medical Sciences, the University of Arkansas at Little Rock and the Siberian Branch of the Russian Academy of Science.

There is no other method to reliably detect and destroy CTCs,” said Dr. Mark Stockman, director of the Center for Nano-Optics and professor of physics at Georgia State. “This is the first. This biocompatible spaser can go after these cells and destroy them without killing or damaging healthy cells. Any other chemistry would damage and likely kill healthy cells. Our findings could play a pivotal role in providing a better, life-saving treatment option for cancer patients.”

Metastatic cancer occurs when cancer spreads to distant parts of the body, often to the bone, liver, lungs and brain, through a process called metastasis. Many types of cancers refer to this as stage IV cancer. Once cancer spreads, it can be difficult to control, and most metastatic cancer can’t be cured with current treatments, according to the National Institute of Health’s National Cancer Institute. One of the most dangerous ways metastasizing occurs is through the CTCs, which this study aims to detect and destroy using spasers. The spasers used in this study measure just 22 nanometers, setting the record for the smallest nanolasers.

The findings are published in the journal Nature Communications.

Source: http://news.gsu.edu/