Posts belonging to Category biomolecular



Acupuncture And Nanotechnology Married To Cure Cancer

DGIST (Daegu Gyeongbuk Institute of Science and Technology) in South Korea announced that Professor Su-Il In’s research team from the department of Energy Science and Engineering has presented the possibility of cancer treatment, including colorectal cancer, using acupuncture needles that employ nanotechnology for the first time in the world.

The research team of Professor Su-Il In, through joint research with Dr. Eunjoo Kim of Companion Diagnostics & Medical Technology Research Group at DGIST and Professor Bong-Hyo Lee’s research team from the College of Oriental Medicine at Daegu Haany University, has published a study showing that the molecular biologic indicators related to anticancer effects are changed only by the treatment of acupuncture, which is widely used in oriental medicine.

In oriental medicine, treatment using acupuncture needles has been commonly practiced for thousands of years in the fields of treating musculoskeletal disorders, pain relief, and addiction relief. Recently, it has emerged as a promising treatment for brain diseases, gastrointestinal disorders, nausea, and vomiting, and studies are under way to use acupuncture to treat severe diseases.

SURFACE IMAGES OF (A) CONVENTIONAL ACUPUNCTURE NEEDLE (CN) AND, (B) THE NANOPOROUS ACUPUNCTURE NEEDLE (PN) WITH ITS (C AND D) HIGH RESOLUTION IMAGES

Not only that, Professor In’s team discovered that acupuncture needles can be used for cancer treatment which is difficult to treat in modern medicine. In this study, the researchers developed nanoporous needles with microscopic holes in the surface of the needles ranging from nanopores (nm = one billionth of a meter) to micrometers (μm = one millionth of a meter) by applying relatively simple electrochemical nanotechnology. By increasing the surface area of the needle by a factor of ten, the nanoporous needles doubled the electrophysiological signal generation function by needle stimulus.

As a result of AOM administration in rats, the rats receiving periodic acupuncture treatment with nanoporous needles were found to have a much lower incidence of abnormal vascular clusters as a precursor to colorectal cancer in the initiation stage than those in the control group.

Source: https://www.eurekalert.org/

Editing Genes In Human Embryos

Two new CRISPR tools overcome the scariest parts of gene editing.The ability to edit RNA and individual DNA base pairs will make gene editing much more precise. Several years ago, scientists discovered a technique known as CRISPR/Cas9, which allowed them to edit DNA more efficiently than ever before.
Since then, CRISPR science has exploded; it’s become one of the most exciting and fast-moving areas of research, transforming everything from medicine to agriculture and energy. In 2017 alone, more than 14,000 CRISPR studies were published.

But here’s the thing: CRISPR, while a major leap forward in gene editing, can still be a blunt instrument. There have been problems with CRISPR modifying unintended gene targets and making worrisome, and permanent, edits to an organism’s genome. These changes could be passed down through generations, which has raised the stakes of CRISPR experiments — and the twin specters of “designer babies” and genetic performance enhancers — particularly when it comes to editing genes in human embryos.
So while CRISPR science is advancing quickly, scientists are still very much in the throes of tweaking and refining their toolkit. And on Wednesday, researchers at the Broad Institute of MIT and Harvard launched a coordinated blitz with two big reports that move CRISPR in that safer and more precise direction.
In a paper published in Science, researchers described an entirely new CRISPR-based gene editing tool that targets RNA, DNA’s sister, allowing for transient changes to genetic material. In Nature, scientists described how a more refined type of CRISPR gene editing can alter a single bit of DNA without cutting it — increasing the tool’s precision and efficiency.

The first paper, out Wednesday in Science, describes a new gene editing system. This one, from researchers at MIT and Harvard, focuses on tweaking human RNA instead of DNA.

Our cells contain chromosomes made up of chemical strands called DNA, which carry genetic information. Those genes have recipes for proteins that lead to a bunch of different traits. But to carry out the instructions in any one recipe, DNA needs another type of genetic material called RNA to get involved.

RNA is ephemeral: It acts like a middleman, or a messenger. For a gene to become a protein, that gene has to be transcribed into RNA in the cell, and the RNA is then read to make the protein. If the DNA is permanent — the family recipe book passed down through generations — the RNA is like your aunt’s scribbled-out recipe on a Post-It note, turning up only when it’s needed and disappearing again.

With the CRISPR/Cas9 system, researchers are focused on editing DNA. (For more on how that system works, read this Vox explainer.) But the new Science paper describes a novel gene editing tool called REPAIR that’s focused on using a different enzyme, Cas13, to edit that transient genetic material, the RNA, in cells. REPAIR can target specific RNA letters, or nucleosides, that are involved in single-base changes that regularly cause disease in humans.

This is hugely appealing for one big reason: With CRISPR/Cas9, the changes to the genome, or the cell’s recipe book, are permanent. You can’t undo them. With REPAIR, since researchers can target single bits of ephemeral RNA, the changes they make are transient, even reversible. So this system could fix genetic mutations without actually touching the genome (like throwing away your aunt’s Post-It note recipe without adding it to the family recipe book).

Source: https://www.vox.com/

How To Detect Lead In Water

Gitanjali Rao, 11-year-old girl, is “America’s Top Young Scientist” of this year, with her invention of Tethys, a device that detects lead in water.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Tethys, the Greek goddess of fresh water, is a lead detection tool. What you do is first dip a disposable cartridge, which can easily be removed and attached to the core device in the water you wish to test. Once you do that, that’s basically the manual part. Then you just pull out an app on your phone and check your status and it looks like the water in this container is safe. So that’s just very simple, about like a 10 to 15 second process,” says Gitanjali Rao . The young girl was affected by the Flint, Michigan water catastrophe when the city started using the Flint River for water in 2014, sparking a crisis that was linked to an outbreak of Legionnaires’ disease, at least 12 deaths and dangerously high lead levels in children.

I was most affected about Flint, Michigan because of the amount of people that were getting affected by the lead in water. And I also realized that it wasn’t just in Flint, Michigan and there were over 5,000 water systems in the U.S. alone. In the beginning of my final presentation at the event, I talked about a little boy named Opemipo, he’s 10 years old and lives in Flint, Michigan. And he has 1 percent elevated lead levels in his blood. And he’s among the thousands of adults and children exposed to the harmful effects of lead in water. So it’s a pretty big deal out there today,” remembers Rao. The seventh-grader said it took her five months to make Tethys from start to finish.

My first couple of times when I was doing my experimentation and test, I did fail so many times and it was frustrating, but I knew that it was just a learning experience and I could definitely develop my device further by doing even more tests and getting advice from my mentor as well. So, never be afraid to try,” explains Rao, who  won the 2017 Discovery Education 3M Young Scientist Challenge, along with a $25,000 prize.

Source: http://www.reuters.com/

Self-regulating Nanoparticles Treat Cancer

Scientists from the University of Surrey have developed ‘intelligentnanoparticles which heat up to a temperature high enough to kill cancerous cells – but which then self-regulate and lose heat before they get hot enough to harm healthy tissue. The self-stopping nanoparticles could soon be used as part of hyperthermic-thermotherapy to treat patients with cancer, according to an exciting new study reported in NanoscaleThermotherapy has long been used as a treatment method for cancer, but it is difficult to treat patients without damaging healthy cells. However, tumour cells can be weakened or killed without affecting normal tissue if temperatures can be controlled accurately within a range of 42°C to 45°C.

Scientists from Surrey’s Advanced Technology Institute have worked with colleagues from the Dalian University of Technology in China to create nanoparticles which, when implanted and used in a thermotherapy session, can induce temperatures of up to 45°C. The Zn-Co-Cr ferrite nanoparticles produced for this study are self-regulating, meaning that they self-stop heating when they reach temperatures over 45°C. Importantly, the nanoparticles are also low in toxicity and are unlikely to cause permanent damage to the body.

This could potentially be a game changer in the way we treat people who have cancer. If we can keep cancer treatment sat at a temperature level high enough to kill the cancer, while low enough to stop harming healthy tissue, it will prevent some of the serious side effects of vital treatment. It’s a very exciting development which, once again, shows that the University of Surrey research is at the forefront of nanotechnologies – whether in the field of energy materials or, in this case, healthcare,” said Professor Ravi Silva, Head of the Advanced Technology Institute at the University of Surrey.

Dr. Wei Zhang, Associate Professor from Dalian University of Technology explains: “Magnetic induced hyperthermia is a traditional route of treating malignant tumours. However, the difficulties in temperature control has significantly restricted its usage If we can modulate the magnetic properties of the nanoparticles, the therapeutic temperature can be self-regulated, eliminating the use of clumsy temperature monitoring and controlling systems.

“By making magnetic materials with the Curie temperature falling in the range of hyperthermia temperatures, the self-regulation of therapeutics can be achieved. For the most magnetic materials, however, the Curie temperature is much higher than the human body can endure. By adjusting the components as we have, we have synthesized the nanoparticles with the Curie temperature as low as 34oC. This is a major nanomaterials breakthrough.”

Source: https://www.surrey.ac.uk/

Using Brain-Machine Interfaces, Mental Power Can Move Objects

A unique citizen science project in which volunteers will be trained to move a piece of steel machinery using the power of their mind begins on October 27. The Mental Work project uses brain-machine interfaces developed at EPFL (Ecole polytechnique fédérale de Lausanne) in Switzerland, a convergence of science, art, and design .

CLICK ON THE IMAGE TO ENJOY THE VIDEO

At the mental work factory the public can come and we equip them with an EEG helmet which will read the mental activity, the electrical activity, that’s in their brain. These helmets are dry, so we don’t need gel for conductivity and they’re also wireless so they can walk through the mental factory and engage with four of our machines activating them with only their mental activity,  explains Michael Mitchell , who is one of the three co-founders of Mental Work.

The data that will be collected during the mental worker’s trajectory throughout our factory floor will then be made anonymous and given to the brain machine interface community to improve the interfaces for the future. “We think that we’re on the cusp of a cognitive revolution. Now a cognitive revolution is going to be a world where our brains are intimately connected to our physical world around us. With the development of these brain machine interfaces we think that we are really at the beginning of a moment in time where man is going to become the centre of all this technology. His brain activity is going to interact with the physical world around him in ways that we can hardly imagine today. “So I think it’s understandable if people are a little apprehensive about this technology because some people may think ‘oh, it can read my thoughts and then what are we going to do with those thoughts. Where’s the privacy level here?’ But in fact we’re only asking you to modulate your brain activity according to your own will. So it’s as simple as sending a command to a computer using a mouse or a keyboard. But this time we’re using asking you to use your brain. Now we want to bring this technology to the public at a early phase of its development so that we can create a dialogue about what kind of relationship we want to have with this technology in particular but also with man’s relationship to technology in general.

Source: https://actu.epfl.ch/

Gene Researchers Have Created Green Mice

These are no Frankenstein mice. Their green feet come courtesy of a fluorescent green jelly fish gene added to their own genome. This allows a team of British scientists to test out gene editing using CRISPR-Cas9 technology.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

“We take what were or would have been green embryos and we make them into non-green embryos, so it’s a really great way of demonstrating the method“, said Dr. Anthony Perry, reproductive biologist at the University of Bath.

The technique uses the ribonucleic acid molecule CRISPR together with the Cas9 protein enzyme. CRISPR guides the Cas9 protein to a defective part of a genome where it acts like molecular scissors to cut out a specific part of the DNA. This could revolutionise how we treat diseases with a genetic component, like sickle cell anaemia. The technique is being pioneered in the U.S.
We now have a technology that allows correction of a sequence that would lead to normally functioning cells. And I think you know the opportunities with this are really exciting and really profound. There are many diseases that are have known genetic causes that we now have in principle a way to cure,“explains Jennifer Doudna, Professor of cell biology at the University of Berkeley.
Last year two teams of U.S. based scientists used CRISPR-Cas9 technology in mice to correct the genetic mutation that causes sickle cell disease. Although researchers aren’t yet close to using CRISPR-Cas9 to edit human embryos for implantation into the womb – some are already warning against it.

Dr David King, Director of  Human Genetics Alert, comments: “It will immediately create this new form of what we call consumer eugenics, that’s to say eugenics driven by the free market and consumer preferences in which people choose the cosmetic characteristics and the abilities of their children and try to basically enhance their children to perform better than other people’s children.” Other potential applications of the technology could be to make food crops and livestock animal species disease-resistant. The British team say CRISPR-Cas9 presents a golden opportunity to prevent genetic disease.

Source: http://www.reuters.com/
A
ND
http://www.bath.ac.uk/

How To Track Blood Flow In Tiny Vessels

Scientists have designed gold nanoparticles, no bigger than 100 nanometres, which can be coated and used to track blood flow in the smallest blood vessels in the body. By improving our understanding of blood flow in vivo the nanoprobes represent an opportunity to help in the early diagnosis of diseaseLight microscopy is a rapidly evolving field for understanding in vivo systems where high resolution is required. It is particularly crucial for cardiovascular research, where clinical studies are based on ultrasound technologies which inherently have lower resolution and provide limited information.

The ability to monitor blood flow in the sophisticated vascular tree (notably in the smallest elements of the microvasculaturecapillaries) can provide invaluable information to understand disease processes such as thrombosis and vascular inflammation. There are further applications for the improved delivery of therapeutics, such as targeting tumours.

Currently, blood flow in the microvasculature is poorly understood. Nanoscience is uniquely placed to help understand the processes happening in the micron-dimensioned vessels. Designing probes to monitor blood flow is challenging because of the environment; the high protein levels in plasma and the high red blood cell concentrations are detrimental to optical imaging. Conventional techniques rely on staining red blood cells, using organic dyes with short-lived usage due to photobleaching, as the tracking motif. The relatively large size of the red blood cells (7-8 micrometres), which are effectively the probes, limits the resolution in imaging and analysis of flow dynamics of the smallest vessels which are of a similar width. Therefore, to have more detailed resolution and information about the blood flow in the microvasculature, even smaller probes are required.

The key to these iridium-coated nanoparticles lies in both their small size, and in the characteristic luminescent properties. The iridium gives a luminescent signal in the visible spectrum, providing an optical window which can be detected in blood. It is also long-lived compared to organic fluorophores, while the tiny gold particles are shown to be ideal for tracking flow and detect clearly in tissues“, explains Professor Zoe Pikramenou, from the School of Chemistry at  the University of Birmingham.

The findings have been published in the journal Nanomedicine.

Source: https://www.birmingham.ac.uk/

How To Fix Duchenne Muscular Dystrophy

Scientists at the University of California, Berkeley, have engineered a new way to deliver CRISPR-Cas9 gene-editing technology inside cells and have demonstrated in mice that the technology can repair the mutation that causes Duchenne muscular dystrophy, a severe muscle-wasting disease. A new study shows that a single injection of CRISPR-Gold, as the new delivery system is called, into mice with Duchenne muscular dystrophy led to an 18-times-higher correction rate and a two-fold increase in a strength and agility test compared to control groups.

Since 2012, when study co-author Jennifer Doudna, a professor of molecular and cell biology and of chemistry at UC Berkeley, and colleague Emmanuelle Charpentier, of the Max Planck Institute for Infection Biology, repurposed the Cas9 protein to create a cheap, precise and easy-to-use gene editor, researchers have hoped that therapies based on CRISPR-Cas9 would one day revolutionize the treatment of genetic diseases. Yet developing treatments for genetic diseases remains a big challenge in medicine. This is because most genetic diseases can be cured only if the disease-causing gene mutation is corrected back to the normal sequence, and this is impossible to do with conventional therapeutics.

CRISPR/Cas9, however, can correct gene mutations by cutting the mutated DNA and triggering homology-directed DNA repair. However, strategies for safely delivering the necessary components (Cas9, guide RNA that directs Cas9 to a specific gene, and donor DNA) into cells need to be developed before the potential of CRISPR-Cas9-based therapeutics can be realized. A common technique to deliver CRISPR-Cas9 into cells employs viruses, but that technique has a number of complications. CRISPR-Gold does not need viruses.

In the new study, research lead by the laboratories of Berkeley bioengineering professors Niren Murthy and Irina Conboy demonstrated that their novel approach, called CRISPR-Gold because gold nanoparticles are a key component, can deliver Cas9 – the protein that binds and cuts DNA – along with guide RNA and donor DNA into the cells of a living organism to fix a gene mutation.

CRISPR-Gold is the first example of a delivery vehicle that can deliver all of the CRISPR components needed to correct gene mutations, without the use of viruses,” Murthy said.

The study was published in the journal Nature Biomedical Engineering.

Source: http://news.berkeley.edu/

One-Two Knockout Punch To Eradicate Super Bugs

Light-activated nanoparticles, also known as quantum dots, can provide a crucial boost in effectiveness for antibiotic treatments used to combat drug-resistant superbugs such as E. coli and Salmonella, new CU Boulder research shows. Multi-drug resistant pathogens, which evolve their defenses faster than new antibiotic treatments can be developed to treat them, cost the United States an estimated $20 billion in direct healthcare costs and an additional $35 billion in lost productivity in 2013. Rather than attacking the infecting bacteria conventionally, the dots release superoxide, a chemical species that interferes with the bacteria’s metabolic and cellular processes, triggering a fight response that makes it more susceptible to the original antibiotic.

We’ve developed a one-two knockout punch,” said Prashant Nagpal, an assistant professor in CU Boulder’s Department of Chemical and Biological Engineering (CHBE) and the co-lead author of the study. “The bacteria’s natural fight reaction [to the dots] actually leaves it more vulnerable.”

We are thinking more like the bug,” explains Anushree Chatterjee, an assistant professor in CHBE and the co-lead author of the study. “This is a novel strategy that plays against the infection’s normal strength and catalyzes the antibiotic instead.” The dots reduced the effective antibiotic resistance of the clinical isolate infections by a factor of 1,000 without producing adverse side effects.

The findings have been published today in the journal Science Advances.

Source: http://www.colorado.edu/

Nanogels For Heart Attack Patients

Heart disease and heart-related illnesses are a leading cause of death around the world, but treatment options are limited. Now, one group reports in ACS Nano that encapsulating stem cells in a nanogel could help repair damage to the heart.

Myocardial infarction, also known as a heart attack, causes damage to the muscular walls of the heart. Scientists have tried different methods to repair this damage. For example, one method involves directly implanting stem cells in the heart wall, but the cells often don’t take hold, and sometimes they trigger an immune reaction. Another treatment option being explored is injectable hydrogels, substances that are composed of water and a polymer. Naturally occurring polymers such as keratin and collagen have been used but they are expensive, and their composition can vary between batches. So Ke Cheng, Hu Zhang, Jinying Zhang and colleagues wanted to see whether placing stem cells in inexpensive hydrogels with designed tiny pores that are made in the laboratory would work.

The team encapsulated stem cells in nanogels, which are initially liquid but then turn into a soft gel when at body temperature. The nanogel didn’t adversely affect stem cell growth or function, and the encased stem cells didn’t trigger a rejection response. When these enveloped cells were injected into mouse and pig hearts, the researchers observed increased cell retention and regeneration compared to directly injecting just the stem cells. In addition, the heart walls were strengthened. Finally, the group successfully tested the encapsulated stem cells in mouse and pig models of myocardial infarction.

Source: https://www.acs.org/
A
ND
https://global.ncsu.edu/

Biomaterial To Replace Plastics And Reduce Pollution

An inexpensive biomaterial that can be used to sustainably replace plastic barrier coatings in packaging and many other applications has been developed by Penn State researchers, who predict its adoption would greatly reduce pollution. Completely compostable, the material — a polysaccharide polyelectrolyte complex — is comprised of nearly equal parts of treated cellulose pulp from wood or cotton, and chitosan, which is derived from chitin — the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is the mountains of leftover shells from lobsters, crabs and shrimp consumed by humans.

These environmentally friendly barrier coatings have numerous applications ranging from water-resistant paper, to coatings for ceiling tiles and wallboard, to food coatings to seal in freshness, according to lead researcher Jeffrey Catchmark, professor of agricultural and biological engineering, College of Agricultural Sciences.

In the research, paperboard coated with the biomaterial exhibited strong oil and water barrier properties. The coating also resisted toluene, heptane and salt solutions and exhibited improved wet and dry mechanical and water vapor barrier properties.

The material’s unexpected strong, insoluble adhesive properties are useful for packaging as well as other applications, such as better performing, fully natural wood-fiber composites for construction and even flooring,” Jeffrey Catchmark said. “And the technology has the potential to be incorporated into foods to reduce fat uptake during frying and maintain crispness. Since the coating is essentially fiber-based, it is a means of adding fiber to diets.”

Source: http://news.psu.edu/

Nano Robots Build Molecules

Scientists at The University of Manchester have created the world’s first ‘molecular robot’ that is capable of performing basic tasks including building other molecules.

The tiny robots, which are a millionth of a millimetre in size, can be programmed to move and build molecular cargo, using a tiny robotic arm.

Each individual robot is capable of manipulating a single molecule and is made up of just 150 carbon, hydrogen, oxygen and nitrogen atoms. To put that size into context, a billion billion of these robots piled on top of each other would still only be the same size as a single grain of salt. The robots operate by carrying out chemical reactions in special solutions which can then be controlled and programmed by scientists to perform the basic tasks.

In the future such robots could be used for medical purposes, advanced manufacturing processes and even building molecular factories and assembly lines.

All matter is made up of atoms and these are the basic building blocks that form molecules. Our robot is literally a molecular robot constructed of atoms just like you can build a very simple robot out of Lego bricks, explains Professor David Leigh, who led the research at University’s School of Chemistry. “The robot then responds to a series of simple commands that are programmed with chemical inputs by a scientistIt is similar to the way robots are used on a car assembly line. Those robots pick up a panel and position it so that it can be riveted in the correct way to build the bodywork of a car. So, just like the robot in the factory, our molecular version can be programmed to position and rivet components in different ways to build different products, just on a much smaller scale at a molecular level.”

The research has been published in Nature.

Source: http://www.manchester.ac.uk/