Posts belonging to Category Carbon nanotubes



Polymeric Materials Outperform Natural Antibodies

Experts from the Biotechnology Group led by Professor Sergey Piletsky at the University of Leicester (UK) in collaboration with the spin-off company MIP Diagnostics Ltd, have announced the development of polymeric materials with molecular recognition capabilities which hold the potential to outperform natural antibodies in various diagnostic applications.

chemical background

 In a newly released article ‘A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format’ the researchers successfully demonstrated that polymer nanoparticles produced by the molecular imprinting technique (MIP nanoparticles) can bind to the target molecule with the same or higher affinity and specificity than widely used commercially available antibodies and against challenging targets.

Additionally, their ease of manufacture, short lead time, high affinity and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

Professor Piletsky, from our Department of Chemistry, explained: “It is now well over twenty years since the first demonstration that molecularly imprinted polymers can be used as the recognition material in assays for clinically significant drugs“. 

Source: https://www2.le.ac.uk/

Breathing in Delhi air equivalent to smoking 44 cigarettes a day

It was early on the morning when residents in the Indian capital of Delhi first began to notice the thick white haze that had descended across the city. Initially viewed as a mild irritant, by mid-week its debilitating effects were evident to all, as the city struggled to adapt to the new eerie, martian-like conditions brought about by the pollution.

The World Health Organization considers anything above 25 to be unsafe. That measure is based on the concentration of fine particulate matter, or PM2.5, per cubic meter. The microscopic particles, which are smaller than 2.5 micrometers in diameter, are considered particularly harmful because they are small enough to lodge deep into the lungs and pass into other organs, causing serious health risks.
With visibility severely reduced, trains have been canceled, planes delayed and cars have piled into each other, with multiple traffic accidents reported across the city. On the afternoon, city chiefs closed all public and private schools, requesting instead that the city’s tens of thousands of school-aged children remain indoors; they banned incoming trucks and halted civil construction projects; while they announced new plans to begin implementing a partial ban on private car use as of next week. But as the city woke up to a fourth straight day of heavy pollution, practical considerations were being overtaken by more serious concerns, with journalists and doctors warning residents of the long-term health implications.

Air quality readings in the Indian capital have reached frightening levels in recent days, at one point topping the 1,000 mark on the US embassy air quality index. Across the capital, doctors reported a surge in patients complaining of chest pain, breathlessness and burning eyes. “The number of patients have increased obviously,” said Deepak Rosha, a pulmonologist at Apollo Hospital, one of the largest private hospitals in Delhi. “I don’t think it’s ever been so bad in Delhi. I’m very angry that we’ve had to come to this.”
Breathing in air with a PM2.5 content of between 950 to 1,000 is considered roughly equivalent to smoking 44 cigarettes a day, according to the independent Berkeley Earth science research group.

Sophia The Robot Says: ‘I have feelings too’

Until recently, the most famous thing that Sophia the robot had ever done was beat Jimmy Fallon a little too easily in a nationally televised game of rock-paper-scissors.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

But now, the advanced artificial intelligence robot — which looks like Audrey Hepburn, mimics human expressions and may be the grandmother of robots that solve the world’s most complex problems — has a new feather in her cap:

Citizenship.

The kingdom of Saudi Arabia officially granted citizenship to the humanoid robot last week during a program at the Future Investment Initiative, a summit that links deep-pocketed Saudis with inventors hoping to shape the future.

Sophia’s recognition made international headlines — and sparked an outcry against a country with a shoddy human rights record that has been accused of making women second-class citizens.

Source: https://www.washingtonpost.com/

Smart Paper Conducts Electricity, Detects Water

In cities and large-scale manufacturing plants, a water leak in a complicated network of pipes can take tremendous time and effort to detect, as technicians must disassemble many pieces to locate the problem. The American Water Works Association indicates that nearly a quarter-million water line breaks occur each year in the U.S., costing public water utilities about $2.8 billion annually.

A University of Washington (UW) team wants to simplify the process for discovering detrimental leaks by developing “smartpaper that can sense the presence of water. The paper, laced with conductive nanomaterials, can be employed as a switch, turning on or off an LED light or an alarm system indicating the absence or presence of water.

Water sensing is very challenging to do due to the polar nature of water, and what is used now is very expensive and not practical to implement,” said lead author Anthony Dichiara, a UW assistant professor of bioresource science and engineering in the School of Environment and Forest Sciences. “That led to the reason to pursue this work.”

Along with Dichiara, a team of UW undergraduate students in the Bioresource Science and Engineering program successfully embedded nanomaterials in paper that can conduct electricity and sense the presence of water. Starting with pulp, they manipulated the wood fibers and carefully mixed in nanomaterials using a standard process for papermaking, but never before used to make sensing papers.

Discovering that the paper could detect the presence of water came by way of a fortuitous accident. Water droplets fell onto the conductive paper the team had created, causing the LED light indicating conductivity to turn off. Though at first they thought they had ruined the paper, the researchers realized they had instead created a paper that was sensitive to water.
The researchers described their discovery in a paper appearing in the Journal of Materials Chemistry A.

Source: http://www.washington.edu/

Nanocompounds Enhance Microbial Activity On Soil, Enrich Crops

We live in a world where day to day objects seems to be getting smaller and better. The advent of nanotechnology is a major contributing factor to this phenomenon. Defined as the “engineered construction of matter at the molecular level”, nanotechnology has applications and uses in a multitude of fields. From medicine, electronics, food, clothing, batteries and environment, nanotechnology seems to be pushing the limits of all these fields. Now, scientist have discovered yet another novel application of nanotechnologyfacilitating soil microbial growth.

Indian scientists from the G. B. Pant University of Agriculture and Technology, Pantnangar, Indian Veterinary Research Institute, Izatnagar, and State Council for Science & Technology, Dehradun, studied the impact of three nanocompounds on soil microbial activity and the health of plants being cultivated.

The scientists found that supplementing agricultural soils with nanocompounds like nanoclay, nanochitosan and nanozeolite led to a higher growth of microbial populations in the soil. And such an increased microbial population further led to increased levels of phosphorus, organic carbon and nitrogen in the soils, all of which are known to improve the health of crops being cultivated. Additionally, the scientists also observed increased levels of microbial enzyme activity in the soil, as well as a 50% rise in the total protein content of the soil.

Although nanoclay had the least effect on the soil’s pH, nanozeolite was found to best facilitate the growth of soil microbes. An increase in soil microbial activity along with all the other downstream benefits, caused by these nanocompounds, are all an indicator of enhanced soil health. Therefore, supplementing soils with such nanocompounds could go a long way in improving the agricultural soils, plant health and ultimately, the crop yields of the country.

Source: http://onlinelibrary.wiley.com/

Acupuncture And Nanotechnology Married To Cure Cancer

DGIST (Daegu Gyeongbuk Institute of Science and Technology) in South Korea announced that Professor Su-Il In’s research team from the department of Energy Science and Engineering has presented the possibility of cancer treatment, including colorectal cancer, using acupuncture needles that employ nanotechnology for the first time in the world.

The research team of Professor Su-Il In, through joint research with Dr. Eunjoo Kim of Companion Diagnostics & Medical Technology Research Group at DGIST and Professor Bong-Hyo Lee’s research team from the College of Oriental Medicine at Daegu Haany University, has published a study showing that the molecular biologic indicators related to anticancer effects are changed only by the treatment of acupuncture, which is widely used in oriental medicine.

In oriental medicine, treatment using acupuncture needles has been commonly practiced for thousands of years in the fields of treating musculoskeletal disorders, pain relief, and addiction relief. Recently, it has emerged as a promising treatment for brain diseases, gastrointestinal disorders, nausea, and vomiting, and studies are under way to use acupuncture to treat severe diseases.

SURFACE IMAGES OF (A) CONVENTIONAL ACUPUNCTURE NEEDLE (CN) AND, (B) THE NANOPOROUS ACUPUNCTURE NEEDLE (PN) WITH ITS (C AND D) HIGH RESOLUTION IMAGES

Not only that, Professor In’s team discovered that acupuncture needles can be used for cancer treatment which is difficult to treat in modern medicine. In this study, the researchers developed nanoporous needles with microscopic holes in the surface of the needles ranging from nanopores (nm = one billionth of a meter) to micrometers (μm = one millionth of a meter) by applying relatively simple electrochemical nanotechnology. By increasing the surface area of the needle by a factor of ten, the nanoporous needles doubled the electrophysiological signal generation function by needle stimulus.

As a result of AOM administration in rats, the rats receiving periodic acupuncture treatment with nanoporous needles were found to have a much lower incidence of abnormal vascular clusters as a precursor to colorectal cancer in the initiation stage than those in the control group.

Source: https://www.eurekalert.org/

Thin Films Power Electronics Mixed In Fabrics

Scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) reported significant advances in the thermoelectric performance of organic semiconductors based on carbon nanotube thin films that could be integrated into fabrics to convert waste heat into electricity or serve as a small power source.

The research demonstrates significant potential for semiconducting single-walled carbon nanotubes (SWCNTs) as the primary material for efficient thermoelectric generators, rather than being used as a component in a “compositethermoelectric material containing, for example, carbon nanotubes and a polymer. The discovery is outlined in the new Energy & Environmental Science paper, Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films.

There are some inherent advantages to doing things this way,” said Jeffrey Blackburn, a senior scientist in NREL’s Chemical and Materials Science and Technology center and co-lead author of the paper with Andrew Ferguson. These advantages include the promise of solution-processed semiconductors that are lightweight and flexible and inexpensive to manufacture. Other NREL authors are Bradley MacLeod, Rachelle Ihly, Zbyslaw Owczarczyk, and Katherine Hurst. The NREL authors also teamed with collaborators from the University of Denver and partners at International Thermodyne, Inc., based in Charlotte, N.C.

Ferguson, also a senior scientist in the Chemical and Materials Science and Technology center, said the introduction of SWCNT into fabrics could serve an important function for “wearable” personal electronics. By capturing body heat and converting it into electricity, the semiconductor could power portable electronics or sensors embedded in clothing.

Source: https://www.nrel.gov/

Invisible Glass

If you have ever watched television in anything but total darkness, used a computer while sitting underneath overhead lighting or near a window, or taken a photo outside on a sunny day with your smartphone, you have experienced a major nuisance of modern display screens: glare. Most of today’s electronics devices are equipped with glass or plastic covers for protection against dust, moisture, and other environmental contaminants, but light reflection from these surfaces can make information displayed on the screens difficult to see. Now, scientists at the Center for Functional Nanomaterials (CFN) — a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory — have demonstrated a method for reducing the surface reflections from glass surfaces to nearly zero by etching tiny nanoscale features into them.

Whenever light encounters an abrupt change in refractive index (how much a ray of light bends as it crosses from one material to another, such as between air and glass), a portion of the light is reflected. The nanoscale features have the effect of making the refractive index change gradually from that of air to that of glass, thereby avoiding reflections. The ultra-transparent nanotextured glass is antireflective over a broad wavelength range (the entire visible and near-infrared spectrum) and across a wide range of viewing angles. Reflections are reduced so much that the glass essentially becomes invisible.

This “invisible glass” could do more than improve the user experience for consumer electronic displays. It could enhance the energy-conversion efficiency of solar cells by minimizing the amount of sunlight lost to refection. It could also be a promising alternative to the damage-prone antireflective coatings conventionally used in lasers that emit powerful pulses of light, such as those applied to the manufacture of medical devices and aerospace components.

We’re excited about the possibilities,” said CFN Director Charles Black, corresponding author on the paper published online on October 30 in Applied Physics Letters. “Not only is the performance of these nanostructured materials extremely high, but we’re also implementing ideas from nanoscience in a manner that we believe is conducive to large-scale manufacturing.”

Our role in the CFN is to demonstrate how nanoscience can facilitate the design of new materials with improved properties,” concluded Black. “This work is a great example of that–we’d love to find a partner to help advance these remarkable materials toward technology.”

Source: https://www.eurekalert.org/

Robots Soon Will Share Our Private And Sex Life

Sex robot inventor Sergi Santos isn’t just changing how men pleasure themselves — he’s potentially changing society as we know it. The Spanish scientist believes it’s only a matter of time before human-and-robot marriage is commonplace, and he’s even hatched a plan for how he can have a baby with his mechanical temptress SamanthaSamantha is Santos’ 100-pound sex robot that boasts eight different programs and the ability to make “realistic” orgasm sounds.

Santos said he believes that in the next couple of decades, we won’t just be seeing these dolls hidden in a man’s closet or under the bed — they’ll be walking down the aisle to say “I do” to their human lovers.

Speaking from his home laboratory in Barcelona (Spain), he said: “People might look at Samantha as a weird thing you read about.” “But before they know it, these robots will be doing their jobs, and marrying their children, their grandchildren, and their friends.” “They need to remember that just a few years ago, mobile phones were seen as a non-essential item in society, but now we can’t function without them.” And Santos claims he will soon be able to have a baby with Samantha. He explained: “I can make them have a baby. It’s not so difficult. I would love to have a child with a robot.” His plan involves using thebrain” he has created for Samantha but upgrading it so it is functioning at full capability.

Source: http://nypost.com/
A
ND
http://syntheaamatus.com/

Self-regulating Nanoparticles Treat Cancer

Scientists from the University of Surrey have developed ‘intelligentnanoparticles which heat up to a temperature high enough to kill cancerous cells – but which then self-regulate and lose heat before they get hot enough to harm healthy tissue. The self-stopping nanoparticles could soon be used as part of hyperthermic-thermotherapy to treat patients with cancer, according to an exciting new study reported in NanoscaleThermotherapy has long been used as a treatment method for cancer, but it is difficult to treat patients without damaging healthy cells. However, tumour cells can be weakened or killed without affecting normal tissue if temperatures can be controlled accurately within a range of 42°C to 45°C.

Scientists from Surrey’s Advanced Technology Institute have worked with colleagues from the Dalian University of Technology in China to create nanoparticles which, when implanted and used in a thermotherapy session, can induce temperatures of up to 45°C. The Zn-Co-Cr ferrite nanoparticles produced for this study are self-regulating, meaning that they self-stop heating when they reach temperatures over 45°C. Importantly, the nanoparticles are also low in toxicity and are unlikely to cause permanent damage to the body.

This could potentially be a game changer in the way we treat people who have cancer. If we can keep cancer treatment sat at a temperature level high enough to kill the cancer, while low enough to stop harming healthy tissue, it will prevent some of the serious side effects of vital treatment. It’s a very exciting development which, once again, shows that the University of Surrey research is at the forefront of nanotechnologies – whether in the field of energy materials or, in this case, healthcare,” said Professor Ravi Silva, Head of the Advanced Technology Institute at the University of Surrey.

Dr. Wei Zhang, Associate Professor from Dalian University of Technology explains: “Magnetic induced hyperthermia is a traditional route of treating malignant tumours. However, the difficulties in temperature control has significantly restricted its usage If we can modulate the magnetic properties of the nanoparticles, the therapeutic temperature can be self-regulated, eliminating the use of clumsy temperature monitoring and controlling systems.

“By making magnetic materials with the Curie temperature falling in the range of hyperthermia temperatures, the self-regulation of therapeutics can be achieved. For the most magnetic materials, however, the Curie temperature is much higher than the human body can endure. By adjusting the components as we have, we have synthesized the nanoparticles with the Curie temperature as low as 34oC. This is a major nanomaterials breakthrough.”

Source: https://www.surrey.ac.uk/

Ultra-fast Data Processing At Nanoscale

Advancement in nanoelectronics, which is the use of nanotechnology in electronic components, has been fueled by the ever-increasing need to shrink the size of electronic devices like nanocomputers in a bid to produce smaller, faster and smarter gadgets such as computers, memory storage devices, displays and medical diagnostic tools.

While most advanced electronic devices are powered by photonics – which involves the use of photons to transmit informationphotonic elements are usually large in size and this greatly limits their use in many advanced nanoelectronics systems. Plasmons, which are waves of electrons that move along the surface of a metal after it is struck by photons, holds great promise for disruptive technologies in nanoelectronics. They are comparable to photons in terms of speed (they also travel with the speed of light), and they are much smaller. This unique property of plasmons makes them ideal for integration with nanoelectronics. However, earlier attempts to harness plasmons as information carriers had little success.

Addressing this technological gap, a research team from the National University of Singapore (NUS) has recently invented a novel “converter” that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

This innovative transducer can directly convert electrical signals into plasmonic signals, and vice versa, in a single step. By bridging plasmonics and nanoscale electronics, we can potentially make chips run faster and reduce power losses. Our plasmonic-electronic transducer is about 10,000 times smaller than optical elements. We believe it can be readily integrated into existing technologies and can potentially be used in a wide range of applications in the future,” explained Associate Professor Christian Nijhuis from the Department of Chemistry at the NUS Faculty of Science, who is the leader of the research team behind this breakthrough.

This novel discovery was first reported in the journal Nature Photonics.

Source: http://news.nus.edu.sg/

Lab-grown Diamonds

This shiny, sparkly diamond was made inside a laboratory – but it has the same chemical makeup as its counterpart found deep inside the earth.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

All the composition is exactly the same. It is a real diamond. What we’ve done is we’ve just taken what’s happened in nature and just put it in a lab,” said  Kelly Good, Director of Marketing of Pure Grown Diamonds.

Essentially, all diamonds are carbon. And inside a laboratory, scientists are using a method called microwave plasma chemical vapour deposition to grow the stones from a diamond seed. They do it by creating a plasma ball made of hydrogen inside a growth chamber. Methane, which is a carbon source, is added. The carbon mix rains down on the diamond seeds, layer by layer, creating a large, rough diamond that is cut and polished. The process takes about 10 to 12 weeks. Marketers tout the lab-grown diamonds as an eco-friendly, conflict-free alternative to mined diamonds. “Our consumer is millennials, anybody who is getting engaged are really buying the lab-grown diamonds. They also like the fact of the environmental aspect of it. That it’s grown in a greenhouse. There is less soil being moved. We have a less carbon footprint,” explains Kelly Good.

While similar in appearance, there are differences. David Weinstein, Executive Director of the International  Gemological Institute (New York), comments: “I have a crystal, a diamond and I’m looking at it and I see a peridot crystal, a green peridot crystal, I know right away, this wasn’t created in a machine. So the inclusions can really be very telling as to what the origins of the material is. And that’s what our gemologists look for.”
While lab-grown gems have been around for decades, but it’s only recently that the science and technology have made it possible to grow large, gem quality stones. And according to a report by Morgan Stanley, the lab-grown diamond market could grow by about 15 percent by the year 2020.

Source: http://www.reuters.com/