Posts belonging to Category Carbon nanotubes



Powerful Anti-Aging Cream Using Nanotechnology

Wrinkle-smoothing hyaluronic acid can now be introduced into the skin without injections, thanks to an Israeli research team that spent years developing a nanotechnology for this purpose. Facial wrinkles, lines and sagging result from the body’s gradual loss of its ability to produce hyaluronic acid. In the past, treatments of hyaluronic acid couldn’t get into the skin’s deepest layers except by injection or in a powder form that must be mixed with water and therefore loses its potency.

That problem was solved by a research team headed by Prof. Rachel Lubart and Prof. Aharon Gedanken from the departments of chemistry and physics and Bar-Ilan University’s Institute for Nanotechnology and Advanced Materials (BINA). The Israeli scientists achieved this breakthrough by micronizingbreaking down its particles to the size of a micronhyaluronic acid. Based on this development, Israeli cosmetic pharmaceuticals pioneer Hava Zingboim has created Prophecy, the first-ever cream formula that allows hyaluronic acid to penetrate into the deeper skin layers.

Once they reach nano size, the hyaluronic acid molecules are transferred into the formula, which enables them to remain nano-sized throughout the process. The effect of the micronized hyaluronic acid applied to the skin is identical to the effect achieved when injecting hyaluronic acid into the skin, with the benefits of enhanced skin texture and a younger look.
According to a university statement, this is the only technology in the world capable of creating small molecules that remain small even when applied to the skin.

Source: https://www.israel21c.org/
A
ND
http://reshet.tv/

Startup Promises Immortality Through AI, Nanotechnology, and Cloning

One of the things humans have plotted for centuries is escaping death, with little to show for it, until now. One startup called Humai has a plan to make immortality a reality. The CEO, Josh Bocanegra says when the time comes and all the necessary advancements are in place, we’ll be able to freeze your brain, create a new, artificial body, repair any damage to your brain, and transfer it into your new body. This process could then be repeated in perpetuityHUMAI stands for: Human Resurrection through Artificial Intelligence. The technology to accomplish this isn’t here now, but on the horizon. Bocanegra says they’ll reach this Promethean feat within 30 years. 2045 is currently their target date. So how do they plan to do it?

We’re using artificial intelligence and nanotechnology to store data of conversational styles, behavioral patterns, thought processes and information about how your body functions from the inside-out. This data will be coded into multiple sensor technologies, which will be built into an artificial body with the brain of a deceased human, explains the website.

Source: https://www.facebook.com/humaitech/
AND
http://bigthink.com/

Rechargeable Lithium Metal Battery

Rice University scientists have created a rechargeable lithium metal battery with three times the capacity of commercial lithium-ion batteries by resolving something that has long stumped researchers: the dendrite problem.

The Rice battery stores lithium in a unique anode, a seamless hybrid of graphene and carbon nanotubes. The material first created at Rice in 2012 is essentially a three-dimensional carbon surface that provides abundant area for lithium to inhabit. Lithium metal coats the hybrid graphene and carbon nanotube anode in a battery created at Rice University. The lithium metal coats the three-dimensional structure of the anode and avoids forming dendrites.

The anode itself approaches the theoretical maximum for storage of lithium metal while resisting the formation of damaging dendrites or “mossy” deposits.

Dendrites have bedeviled attempts to replace lithium-ion with advanced lithium metal batteries that last longer and charge faster. Dendrites are lithium deposits that grow into the battery’s electrolyte. If they bridge the anode and cathode and create a short circuit, the battery may fail, catch fire or even explode.

Rice researchers led by chemist James Tour found that when the new batteries are charged, lithium metal evenly coats the highly conductive carbon hybrid in which nanotubes are covalently bonded to the graphene surface. As reported in the American Chemical Society journal ACS Nano, the hybrid replaces graphite anodes in common lithium-ion batteries that trade capacity for safety.

Lithium-ion batteries have changed the world, no doubt,” Tour said, “but they’re about as good as they’re going to get. Your cellphone’s battery won’t last any longer until new technology comes along.

He said the new anode’s nanotube forest, with its low density and high surface area, has plenty of space for lithium particles to slip in and out as the battery charges and discharges. The lithium is evenly distributed, spreading out the current carried by ions in the electrolyte and suppressing the growth of dendrites.

Source: http://news.rice.edu

Asthma: Graphene-Based Sensor Improves Treatment

Scientists from Rutgers University have created a graphene-based sensor that could lead to earlier detection of looming asthma attacks and improve the management of asthma and other respiratory diseases, preventing hospitalizations and deaths.

The sensor paves the way for the development of devices – possibly resembling fitness trackers like the Fitbit – which people could wear and then know when and at what dosage to take their medication.


Exhaled breath condensate (tiny droplets of liquid) are rapidly analyzed by a graphene-based nanoelectronic sensor that detects nitrite, a key inflammatory marker in the inner lining of the respiratory airway.

Our vision is to develop a device that someone with asthma or another respiratory disease can wear around their neck or on their wrist and blow into it periodically to predict the onset of an asthma attack or other problems,” said Mehdi Javanmard, an assistant professor in the Department of Electrical and Computer Engineering. “It advances the field of personalized and precision medicine.

Javanmard and a diverse team of RutgersNew Brunswick experts describe their invention in a study published online today in the journal Microsystems & Nanoengineering.

Asthma, which causes inflammation of the airway and obstructs air flow, affects about 300 million people worldwide. About 17.7 million adults and 6.3 million children in the United States were diagnosed with asthma in 2014. Symptoms include coughing, wheezing, shortness of breath, and chest tightness. Other serious lung ailments include chronic obstructive pulmonary disease (COPD), which encompasses emphysema and chronic bronchitis.

Measuring biomarkers in exhaled breath condensatetiny liquid droplets discharged during breathing – can contribute to understanding asthma at the molecular level and lead to targeted treatment and better disease management. The Rutgers researchers’ miniaturized electrochemical sensor accurately measures nitrite in exhaled breath condensate using reduced graphene oxide. Reduced graphene oxide resists corrosion, has superior electrical properties and is very accurate in detecting biomarkers.

Source: http://news.rutgers.edu/

Harvest: How To Increase The Production By Up To 40%

Nanolabs, a company specialised in nanotechnology, has been able to increase the production of melons by up to 40% on a farm in Almeria (Spain), thanks to the installation of ASAR systems in the irrigation system of the farm.
In 2015, 30,000 kilos were harvested, while in the same period of 2016, this figure increased to 50,000 kilos; a 40% growth.
To achieve this, Nanolabs applies nanotechnology through its ASAR solution, which acts physically on water, emitting a quantum of energy that stimulates hydrogen bonds. As a result, these become more active, which translates into a better transport of nutrients to the crops and a significant improvement in the use of the nutrients present in the substrate. The increase in production has not been the only benefit of the project; it has also made it possible to improve the quality of the fruit and has reduced both the consumption of water for irrigation and the use of fertilisers and phytosanitary products by 20%.
For Javier Llanes, CEO of Nanolabs, “the dramatic increase in the melon production is just one example of the great benefits that nanotechnology can bring to the agricultural sector. At Nanolabs, we apply technology to promote sustainability and we work on innovative projects with impressive results in both production improvement and savings in water consumption.”

Source: http://www.freshplaza.com/

Self-Healing Lithium-Ion Batteries

Researchers at the University of Illinois have found a way to apply self-healing technology to lithium-ion batteries to make them more reliable and last longer.

The group developed a battery that uses a silicon nanoparticle composite material on the negatively charged side of the battery and a novel way to hold the composite together – a known problem with batteries that contain silicon.

Materials science and engineering professor Nancy Sottos and aerospace engineering professor Scott White led the study published in the journal Advanced Energy Materials.

“This work is particularly new to self-healing materials research because it is applied to materials that store energy,” White said. “It’s a different type of objective altogether. Instead of recovering structural performance, we’re healing the ability to store energy.”

The negatively charged electrode, or anode, inside the lithium-ion batteries that power our portable devices and electric cars are typically made of a graphite particle composite. These batteries work well, but it takes a long time for them to power up, and over time, the charge does not last as long as it did when the batteries were new.

Silicon has such a high capacity, and with that high capacity, you get more energy out of your battery, except it also undergoes a huge volume expansion as it cycles and self-pulverizes,” Sottos explained.

Past research found that battery anodes made from nanosized silicon particles are less likely to break down, but suffer from other problems.

You go through the charge-discharge cycle once, twice, three times, and eventually you lose capacity because the silicon particles start to break away from the binder,” White said.

To combat this problem, the group further refined the silicon anode by giving it the ability to fix itself on the fly. This self-healing happens through a reversible chemical bond at the interface between the silicon nanoparticles and polymer binder.

Source: https://news.illinois.edu/

Blood Cells Deliver Drugs To Kill Cancer

For the first time, WSU researchers have demonstrated a way to deliver a drug to a tumor by attaching it to a blood cell. The innovation could let doctors target tumors with anticancer drugs that might otherwise damage healthy tissues.

To develop the treatment, a team led by Zhenjia Wang, an assistant professor of pharmaceutical sciences, worked at the microscopic scale using a nanotherapeutic particle so small that 1,000 of them would fit across the width of a hair. By attaching a nanoscale particle to an infection-fighting white blood cell, the team showed they can get a drug past the armor of blood vessels that typically shield a tumor. This has been a major challenge in nanotechnology drug delivery.

Working with colleagues in Spokane and China, Wang implanted a tumor on the flank of a mouse commonly chosen as a model for human diseases. The tumor was exposed to near-infrared light, causing an inflammation that released proteins to attract white blood cells, called neutrophils, into the tumor. The researchers then injected the mouse with gold nanoparticles treated with antibodies that mediate the union of the nanoparticles and neutrophils. When the tumor was exposed to infrared light, the light’s interaction with the gold nanoparticles produced heat that killed the tumor cells, Wang said. In the future, therapists could attach an anticancer drug like doxorubicin to the nanoparticle. This could let them deliver the drug directly to the tumor and avoid damaging nearby tissues, Wang said.

We have developed a new approach to deliver therapeutics into tumors using the white blood cells of our body,” Wang said. “This will be applied to deliver many anticancer drugs, such as doxorubicin, and we hope that it could increase the efficacy of cancer therapies compared to other delivery systems.”

Wang and Chu’s colleagues on the research are postdoctoral researcher Dafeng Chu, Ph.D. student Xinyue Dong, Jingkai Gu of Jilin University and Jingkai Gu of the University of Macau.

The researchers reported on the technique in the latest issue of the journal Advanced Materials.

Source: https://news.wsu.edu/

3D Printing Art And Design in Paris

Do you plan  to travel to Paris? In this case do not miss to visit the Centre Pompidou,  this huge museum, located in the center of Paris and dedicated to modern Art.  You can assist to  “Mutations/Créations“: a new event decidedly turned towards the future and the interaction between digital technology and creation; a territory shared by art, innovation and science.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Drawing on all the disciplines in a mix of research, art and engineering, the first edition of this annual event calls upon music, design and architecture. It consists of two exhibitions (“Imprimer le monde“ and “Ross Lovegrove“), an Art/Innovation Forum entitled “Vertigo“, and various study days and get-togethers. Each year, thematic and monographic exhibitions will be staged around meetings and workshops that turn the Centre Pompidou into an “incubator“: a place for demonstrating prototypes, carrying out artistic experiments in vivo, and talking with designers. This platform will also be a critical observatory and a tool for analysing the impact of creation on society. How have the various forms of creation begun using digital technologies to open up new industrial perspectives? How do they question the social, economic and political effects of these industrial developments, and their ethical limits? What formal transformations have come about in music, art, design and architecture with regard to technical and scientific progress?


In the same space,  you can see a  new retrospective devoted to British designer Ross Lovegrove, which shows how the artist has introduced a fresh dialogue between nature and technology, where art and science converge. He employs a “holistic“ idea of design through a visionary practice that began incorporating digital changes during the 1990s, rejecting the productivism of mass industry and replacing it with a more economical approach to materials and forms. This exhibition emphasises the role of design in the postindustrial era, now that we are seeing a significant shift from mechanics to organics: a changeover symptomatic of our times, which these “digital forms“ endeavour to highlight.

Source: https://www.centrepompidou.fr/

Wood Mixed With Nanoparticles Filters Toxic Water

Engineers at the University of Maryland have developed a new use for wood: to filter water. Liangbing Hu of the Energy Research Center and his colleagues added nanoparticles to wood, then used it to filter toxic dyes from water.

The team started with a block of linden wood, which they then soaked in palladium – a metal used in cars’ catalytic converters to remove pollutants from the exhaust. In this new filter, the palladium bonds to particles of dye. The wood’s natural channels, that once moved water and nutrients between the leaves and roots, now allow the water to flow past the nanoparticles for efficient removal of the toxic dye particles. The water, tinted with methylene blue, slowly drips through the wood and comes out clear.

VIDEO: Wood filter removes toxic dye from water

This could be used in areas where wastewater contains toxic dye particles,” said Amy Gong, a materials science graduate student, and co-first author of the research paper.

The purpose of the study was to analyze wood via an engineering lens. The researchers did not compare the filter to other types of filters; rather, they wanted to prove that wood can be used to remove impurities.

We are currently working on using a wood filter to remove heavy metals, such as lead and copper, from water,’ said Liangbing Hu, the lead researcher on the project. “We are also interested in scaling up the technology for real industry applications.” Hu is a professor of materials science and a member of the University of Maryland’s Energy Research Center.

Source: http://www.mse.umd.edu/

Bubbles And The Future Of Electric Cars

With about three times the energy capacity by weight of today’s lithium-ion batteries, lithium-air batteries could one day enable electric cars to drive farther on a single charge. But the technology has several holdups, including losing energy as it stores and releases its charge. If researchers could better understand the basic reactions that occur as the battery charges and discharges electricity, the battery’s performance could be improved. One reaction that hasn’t been fully explained is how oxygen blows bubbles inside a lithium-air battery when it discharges. The bubbles expand the battery and create wear and tear that can cause it to fail.

A paper in Nature Nanotechnology provides the first step-by-step explanation of how lithium-air batteries form bubbles. The research was aided by a first-of-a-kind video that shows bubbles inflating and later deflating inside a nanobattery. Researchers had previously only seen the bubbles, but not how they were created.

If we fully understand the bubble formation process, we could build better lithium-air batteries that create fewer bubbles,” noted the paper’s corresponding author, Chongmin Wang, of the Department of Energy’s Pacific Northwest National Laboratory (PNNL). “The result could be more compact and stable batteries that hold onto their charge longer.”

Wang works out of EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science user facility located at PNNL. His co-authors include other PNNL staff and a researcher from Tianjin Polytechnic University in China.

The team’s unique video may be a silent black-and-white film, but it provides plenty of action. Popping out from the battery’s flat surface is a grey bubble that grows bigger and bigger. Later, the bubble deflates, the top turning inside of itself until only a scrunched-up shell is left behind.

The popcorn-worthy flick was captured with an in-situ environmental transmission electron microscope at EMSL. Wang and his colleagues built their tiny battery inside the microscope’s column. This enabled them to watch as the battery charged and discharged inside.

Video evidence led the team to propose that as the battery discharges, a sphere of lithium superoxide jets out from the battery’s positive electrode and becomes coated with lithium oxide. The sphere’s superoxide interior then goes through a chemical reaction that forms lithium peroxide and oxygen. Oxygen gas is released and inflates the bubble. When the battery charges, lithium peroxide decomposes, and leaves the former bubble to look like a deflated balloon.

Source: http://www.pnnl.gov/

 

Nanoparticle Shrinks Breast Tumor, Prevent Recurrence

A Mayo Clinic research team has developed a new type of cancer-fighting nanoparticle aimed at shrinking breast cancer tumors, while also preventing recurrence of the disease. A mice that received an injection with the nanoparticle showed a 70 to 80 percent reduction in tumor size. Most significantly, mice treated with these nanoparticles showed resistance to future tumor recurrence, even when exposed to cancer cells a month later.

The results show that the newly designed nanoparticle produced potent anti-tumor immune responses to HER2-positive breast cancers. Breast cancers with higher levels of HER2 protein are known to grow aggressively and spread more quickly than those without the mutation.

In this proof-of-concept study, we were astounded to find that the animals treated with these nanoparticles showed a lasting anti-cancer effect,” says Betty Y.S. Kim, M.D., Ph.D., principal investigator, and a neurosurgeon and neuroscientist who specializes in brain tumors at Mayo Clinic’s Florida campus. “Unlike existing cancer immunotherapies that target only a portion of the immune system, our custom-designed nanomaterials actively engage the entire immune system to kill cancer cells, prompting the body to create its own memory system to minimize tumor recurrence. These nanomedicines can be expanded to target different types of cancer and other human diseases, including neurovascular and neurodegenerative disorders.”

Dr. Kim’s team developed the nanoparticle, which she has named “Multivalent Bi-specific Nano-Bioconjugate Engager,” a patented technology with Mayo Clinic Ventures, a commercialization arm of Mayo Clinic.

The findings have been published in Nature Nanotechnology.

Source: https://newsnetwork.mayoclinic.org/

Nanostructured High-Strength LightWeight Concrete

Scientists from the Peter the Great Saint-Petersburg Polytechnic University (SPbPU) in Russia, have created several types of building blocks based on nanostructured high-strength lightweight concrete, reinforced with skew-angular composite coarse grids. The development has unique characteristics, enabling the increase of load-carrying capability by more than 200% and decrease in specific density of the construction by 80%. In addition, among the advantages, are resistance to corrosion, aggressive environments and excessive frost resistance.

Researchers calculated that the service life of the building structures, made with the use of this reinforcement system, will increase at least 2-3 times in comparison with its modern analogs.

Such system allows to ensure the structure integrity even in conditions of seismic activity, since the load is distributed throughout the structure as a whole, and not by individual reinforcement bars. The invention can be used in the construction of bridges and pedestrian crossings, non-metallic ships, low-rise residential buildings” says Alexander Rassokhin, graduate student at SPbPU. Andrey Ponomarev, Professor of the Institute of Civil Engineering is the co-inventor of the new  construction technology.

The fundamentals of the research have been described in an article “Hybrid wood-polymer composites in civil engineering” at the Magazine of Civil Engineering.

Source: https://www.eurekalert.org/