Articles from July 2014

Thousand Miles Range Electric Car

Imagine owning an electric vehicle that can travel 1,000 miles (1610 km) before needing to be recharged. Now imagine that same vehicle being able to be charged to capacity in less than 5 minutes. Or, imagine owning a smart phone that only needs to be charged once a week and that charge taking less than one minute. Now a little start-up company, HyCarb, led by Sigrid Cottrell, is working to allow that imaginary world to come true. Hyper efficient supercapacitors & batteries are designed by utilizing Nanotechnology and nano-super structure technologies in order to power the next generation of consumer electronics, electric vehicles, military equipment and medical devices. They function as both a battery and a supercapacitor. They provide the long, steady power output comparable to a conventional battery, as well as a supercapacitor’s quick burst of high energy.

2014 Renault

HyCarb, Inc. is a Florida-based, for-profit, small business, headquartered at the UCF Business Incubator in Research Park. The team of researchers has already filed 3 patents protecting the system of processes required to generate a Hy-Carb supercapictor battery develops nanostructured materials using high-throughput combinatorial electrochemical methods and other proprietary techniques.

Nano-engineered battery/super capacitor is lightweight, ultra thin, completely flexible, and geared toward meeting the trickiest design and energy requirements of tomorrow’s gadgets, electric vehicles, implantable medical equipment and any number of other applications. aligned carbon nanotubes, which will give the device its black color. The nanotubes act as electrodes and allow the storage devices to conduct electricity.
The creation of this unique nano-composite surface drew from a diverse pool of disciplines, requiring expertise in materials science, energy storage, and chemistry. Along with use in small handheld electronics, the batteries’ lighter weight could make them ideal for use in automobiles, aircraft, and even boats. The Hy-Carb Supercapicitor could also be manufactured into different shapes, such as a car door, which would enable important new engineering innovations. .

Very Efficient Dust-Mite Allergy Vaccine

If you’re allergic to dust mites (and chances are you are), help may be on the way.
Researchers at the University of Iowa (UI) have developed a vaccine that can combat dust-mite allergies by naturally switching the body’s immune response. In animal tests, the nano-sized vaccine package lowered lung inflammation by 83 percent despite repeated exposure to the allergens, according to the paper, published in the AAPS (American Association of Pharmaceutical Scientists) Journal. One big reason why it works, the researchers contend, is because the vaccine package contains a booster that alters the body’s inflammatory response to dust-mite allergens.
What is new about this is we have developed a vaccine against dust-mite allergens that hasn’t been used before,” says Aliasger Salem, professor in pharmaceutical sciences at the UI and a corresponding author on the paper.
Dust mites are ubiquitous, microscopic buggers who burrow in mattresses, sofas, and other homey spots. They are found in 84 percent of households in the United States, according to a published, national survey. Preying on skin cells on the body, the mites trigger allergies and breathing difficulties among 45 percent of those who suffer from asthma, according to some studies. Prolonged exposure can cause lung damage.
Usual treatment is limited to getting temporary relief from inhalers or undergoing regular exposure to build up tolerance, which is long term and holds no guarantee of success.
Our research explores a novel approach to treating mite allergy in which specially-encapsulated miniscule particles are administered with sequences of bacterial DNA that direct the immune system to suppress allergic immune responses,” says Peter Thorne, public health professor at the UI and a contributing author on the paper. “This work suggests a way forward to alleviate mite-induced asthma in allergy sufferers.”


Face Recognition Approaches One Hundred Percent Accuracy

A research team at the Chinese University of Hong Kong, led by Professor Xiaoou Tang, announced 99.15% face recognition accuracy achieved in Labeled Faces in the Wild (LFW) database (a database of face photographs designed for studying the problem of unconstrained face recognition).
The technology developed by Xiaoou Chen’s team is called DeepID, which is more accurate than visual identification.

face recognition
LFW is the most widely used face recognition benchmarks. Experimental results show that, if only the central region of the face is given, with the naked eye in the LFW person recognition rate is 97.52%

The three face recognition algorithms developed by Xiaoou Chen’s team now occupies the top three LFW recognition accuracy rate, followed by Facebook’s Deepface.

His lab has been based on the latest technological breakthroughs to produce a complete set of facial image processing system (SDK), including face detection, face alignment of key points, face recognition, expression recognition, gender recognition, age estimation

Xiaoou Tang plans to provide face recognition technology for free to Android, iOS and Windows Phone developers; with the help of this FreeFace-SDK, the developer can develop a variety of applications based on face recognition on the phone.


Sniffing Out Explosives, Better Than Trained Dogs

Tel Aviv University researchers have built a groundbreaking sensor that detects miniscule concentrations of hazardous materials in the air. Security forces worldwide rely on sophisticated equipment, trained personnel, and detection dogs to safeguard airports and other public areas against terrorist attacks. A revolutionary new electronic chip with nano-sized chemical sensors is about to make their job much easier. The groundbreaking nanotechnology-inspired sensor, devised by Prof. Fernando Patolsky of Tel Aviv University‘s School of Chemistry and Center for Nanoscience and Nanotechnology, and developed by the Herzliya company Tracense, picks up the scent of explosives molecules better than a detection dog’s nose.
Existing explosives sensors are expensive, bulky and require expert interpretation of the findings. In contrast, the new sensor is mobile, inexpensive, and identifies in real time — and with great accuracy explosives in the air at concentrations as low as a few molecules per 1,000 trillion.
explosive detective dog
Using a single tiny chip that consists of hundreds of supersensitive sensors, we can detect ultra low traces of extremely volatile explosives in air samples, and clearly fingerprint and differentiate them from other non-hazardous materials,” said Prof. Patolsky, a top researcher in the field of nanotechnology. “In real time, it detects small molecular species in air down to concentrations of parts-per-quadrillion, which is four to five orders of magnitude more sensitive than any existing technological method, and two to three orders of magnitude more sensitive than a dog’s nose. “This chip can also detect improvised explosives, such as TATP (triacetone triperoxide), used in suicide bombing attacks in Israel and abroad,” Prof. Patolsky added.
Research on the sensor was recently published in the journal Nature Communications.


Using Nanocarriers, Drugs Attack Acute Lung Injury

Pulmonary inflammation can cause shallow breathing and the lungs to become brittle in patients who experience multiple blood transfusions, sepsis, lung surgery and acute lung trauma. This complication can leave patients on ventilators, which can further traumatize the lungs, and often results in a mortality rate of 30 to 40 percent. To date, no medication has been successful at preventing or mitigating the damage caused by lung inflammation. Now, a multidisciplinary research team led by David Eckmann, MD, PhD, Horatio C. Wood Professor of Anesthesiology at the University of Pennsylvania and professor of Bioengineering in Penn’s School of Engineering and Applied Science, has found that when delivered by a microscopic transporter called a nanocarrier, steroids can access the hard-to-reach lung endothelial cells that need it most and are successful at preventing inflammation in mice. This proof-of-concept study is published in PLOS One.

Acute Lung Injury

This is a treatment that benefits entirely from targeted delivery or it tends not to have any significant therapeutic benefit,” says Eckmann. “That’s part of the challenge with this disorder: we have been uncertain to this point whether it was the medication or its delivery mechanism that wasn’t working. Our results in mouse models show beyond a shadow of a doubt that the drugs can be effective, we just needed to improve delivery,” says Eckmann. Acute lung injury develops as a result of direct or indirect trauma to the lungs. It compromises the hard-to-reach pores that enable gas exchange between the epithelial and endothelial barriers in the lungs.


How To Embed Semiconductor Crystals Into A Nanowire

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Germany), the Vienna University of Technology (Austria) and the Maria Curie-Skłodowska University Lublin (Poland) have succeeded in embedding nearly perfect semiconductor crystals into a silicon nanowire. With this new method of producing hybrid nanowires, very fast and multi-functional processing units can be accommodated on a single chip (nanocomputer) in the future.
Nano-optoelectronics are considered the cornerstone of future chip technology. Scientists have now come a step closer to both these targets: they integrated compound semiconductor crystals made of indium arsenide (InAs) into silicon nanowires, which are ideally suited for constructing increasingly compact chips.

This integration of crystals was the greatest obstacle for such “hetero-nanowires” until now: beyond the nanometer range, crystal lattice mismatch always led to numerous defects. The researchers have now managed a near-perfect production and embedding of the InAs crystals into the nanowires for the first time.
iridium arsenide

Indium arsenide (green-cyan) is perfectly integrated into the silicon nanowire (blue). (Energy-dispersive X-ray spectroscopy). The energy-dispersive X-ray spectroscopy (colored pricture) was performed at École polytechnique fédérale de Lausanne, Switzerland.

The research results will be published in the journal Nano Research.


How To Extract Molecules From Live Cells

University of Houston (UH) researchers have devised a new method for extracting molecules from live cells without disrupting cell development, work that could provide new avenues for the diagnosis of cancer and other diseases. The researchers used magnetized carbon nanotubes to extract biomolecules from live cells, allowing them to retrieve molecular information without killing the individual cells.

Most current methods of identifying intracellular information result in the death of the individual cells, making it impossible to continue to gain information and assess change over time, said Zhifeng Ren, M.D. Anderson Chair professor of physics and principal investigator at the Center for Superconductivity at UH and lead author of the paper. The work was a collaboration between Ren’s lab and that of Paul Chu, T.L.L. Temple Chair of Science and founding director of the Texas Center for Superconductivity.
Other key researchers on the project included Xiaoliu Zhang, a cancer researcher with the UH Center for Nuclear Receptors and Cell Signaling, and Dong Cai, assistant professor of physics. Chu, a co-author of the paper, said the new technique will allow researchers to draw fundamental information from a single cell.
Now, (most) techniques break up many cells to extract the material inside the cells, so what you get is the average over many cells,” Zhifeng Ren said. “The individual cells may be different, but you cannot see exactly how they function.

A description of the work appears this week in the Proceedings of the National Academy of Sciences.

How To Detect Alzheimer’s 20 Years Before

Researchers, led by Dr. James Galvin, neurologist at New York University Langone Medical Center. announced the promising results of a study on a new test to pick up on the disease years – if not decades in advance. And they’re looking for signs in an unusual place: the eye.
These bright dots are proteins called beta amyloids visible in the retina of a patient diagnosed with Alzheimer’s diseases. Beta amyloids are typically found in the brain and have been known to be linked to Alzheimer’s.

Australian researcher Shaun Frost tested 40 people using a liquid form of curcumin, the natural substance that makes curry yellow. Curcumin sticks to beta amyloids, allowing doctors to spot the proteins with a simple eye test. Frost found that the test positively identified 100 percent of the participants who had Alzheimer’s.
Other studies have shown that Smell test may detect early stages of Alzheimer’s.


“What makes it unique is that the retina is actually an extension of the brain and so we think that a lot of the pathology that is occurring in the brain may also be occurring in the retina,” said Dr. Galvin.


Very Powerful Sensor Can Identify 20 Atoms Molecule

Nanophotonics experts at Rice University have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms.

The new imaging method, which is described this week in the journal Nature Communications, uses a form of Raman spectroscopy in combination with an intricate but mass reproducible optical amplifier. Researchers at Rice’s Laboratory for Nanophotonics (LANP) said the single-molecule sensor is about 10 times more powerful that previously reported devices.

molecular sensorRice‘s SECARS molecular sensor contains an optical amplifier made of four gold discs arranged in a diamond-shaped pattern. A two-coherent-laser setup amplifies the optical signatures of molecules in the center of the structure as much as 100 billion times
Ours and other research groups have been designing single-molecule sensors for several years, but this new approach offers advantages over any previously reported method,” said LANP Director Naomi Halas, the lead scientist on the study. “The ideal single-molecule sensor would be able to identify an unknown molecule — even a very small one — without any prior information about that molecule’s structure or composition. That’s not possible with current technology, but this new technique has that potential.”


A Nanocomputer 200 Times Smaller Than A Pinhead

The nanocomputer measures 0.3 x 0.03 millimeters (0.009 square millimeters) in size. To compare with a pinhead whose surface is 2 square millimeters. That means the nanocomputer built by the MITRE-Harvard researchers is 200 times smaller than a pinhead.
The interdisciplinary team of scientists and engineers from The MITRE Corporation (a non for profit US governmental organization) and Harvard University has taken key steps toward ultra-small electronic computer systems that push beyond the imminent end of Moore’s Law, which states that the device density and overall processing power for computers will double every two to three years. In a paper that has been published in the Proceedings of the National Academy of Sciences, the team describes how they designed and assembled, from the bottom up, a functioning, ultra-tiny control computer that is the densest nanoelectronic system ever built.

In the nanocomputer, nanoswitches are assembled and organized into circuits on severaltiles” (modules). Together, the tiles route small electronic signals around the computer, enabling it to perform calculations and process signals that could be used to control tiny systems, such as miniscule medical therapeutic devices, other tiny sensors and actuators, or even insect-sized robots
Construction of this nanocomputer was made possible by significant advances in processes that assemble with extreme precision dense arrays of the many nanodevices required. These advances also made it possible to manufacture multiple copies.
It was a challenge to develop a system architecture and nanocircuit designs that would pack the control functions we wanted into such a very tiny system,” according to Shamik Das, chief architect of the nanocomputer, who is also principal engineer and group leader of MITRE’s Nanosystems Group. “Once we had those designs, though, our Harvard collaborators did a brilliant job innovating to be able to realize them.”


Electronics Enter The Nanocomputer Age

An UAlberta research team is developing atom-scale, ultra-low-power computing devices to replace transistor circuits. In the drive to get small, Robert Wolkow and his lab at the University of Alberta are taking giant steps forward. The digital age has resulted in a succession of smaller, cleaner and less power-hungry technologies since the days the personal computer fit atop a desk, replacing mainframe models that once filled entire rooms. Desktop PCs have since given way to smaller and smaller laptops, smartphones and devices that most of us carry around in our pockets. But as Wolkow points out, this technological shrinkage can only go so far when using traditional transistor-based integrated circuits. That’s why he and his research team are aiming to build entirely new technologies at the atomic scale.
Our ultimate goal is to make ultra-low-power electronics because that’s what is most demanded by the world right now,” said Wolkow, the iCORE Chair in Nanoscale Information and Communications Technology in the Faculty of Science. “We are approaching some fundamental limits that will stop the 30-year-long drive to make things faster, cheaper, better and smaller; this will come to an end soon. “An entirely new method of computing will be necessary.”

Wolkow and his team in the U of A’s physics department and the National Institute for Nanotechnology are working to engineer atomically precise technologies that have practical, real-world applications. His lab already made its way into the Guinness Book of World Records for inventing the world’s sharpest object—a microscope tip just one atom wide at its end.


Transplant New Brain Cells And Forget Alzheimer’s

A new study from the Gladstone Institutes has revealed a way to alleviate the learning and memory deficits caused by apoE4, the most important genetic risk factor for Alzheimer’s disease, improving cognition to normal levels in aged mice.

In the study, which was conducted in collaboration with researchers at UC San Francisco and published in the Journal of Neuroscience, scientists transplanted inhibitory neuron progenitors—early-stage brain cells that have the capacity to develop into mature inhibitory neurons—into two mouse models of Alzheimer’s disease, apoE4 or apoE4 with accumulation of amyloid beta, another major contributor to Alzheimer’s. The transplants helped to replenish the brain by replacing cells lost due to apoE4, regulating brain activity and improving learning and memory abilities.

Brain Cells

This is the first time transplantation of inhibitory neuron progenitors has been used in aged Alzheimer’s disease models,” said first author Leslie Tong, a graduate student at the Gladstone Institutes and UCSF. “Working with older animals can be challenging from a technical standpoint, and it was amazing to see that the cells not only survived but affected activity and behavior.

The success of the treatment in older mice, which corresponded to late adulthood in humans, is particularly important, as this would be the age that would be targeted were this method ever to be used therapeutically in people.