Articles from May 2015



Nanotechnology Prevents Bone Infection

Leading scientists at the University of Sheffield (UK) have discovered nanotechnology could hold the key to preventing deep bone infections, after developing a treatment which prevents bacteria and other harmful microorganisms growing.

The pioneering research, led by the University of Sheffield’s School of Clinical Dentistry, showed applying small quantities of antibiotic to the surface of medical devices, from small dental implants to hip replacements, could protect patients from serious infection.

Scientists used revolutionary nanotechnology to work on small polymer layers inside implants which measure between 1 and 100 nanometers (nm) – a human hair is approximately 100,000 nm wide.

bone infectionLead researcher Paul Hatton, Professor of Biomaterials Sciences at the University of Sheffield, said: “Microorganisms can attach themselves to implants or replacements during surgery and once they grab onto a non-living surface they are notoriously difficult to treat which causes a lot of problems and discomfort for the patient.

“By making the actual surface of the hip replacement or dental implant inhospitable to these harmful microorganisms, the risk of deep bone infection is substantially reduced.

“Our research shows that applying small quantities of antibiotic to a surface between the polymer layers which make up each device could prevent not only the initial infection but secondary infection – it is like getting between the layers of an onion skin.”

Bone infection affects thousands of patients every year and results in a substantial cost to the NHS.

Source: http://www.sheffield.ac.uk/

Thoughs Control Bionic Leg

Gummi Olafsson doesn’t have to think about how his foot moves. That’s despite sporting a bionic prosthethic leg. He felt the new sense of control over his bionic limb almost instantly.  “As soon as I put my foot on, it took me about 10 minutes to get control of it. I could stand up and just walk away.” It’s all thanks to tiny sensors in his remaining leg muscle picking up the brain’s signals to nerve-endings and linked to a receiver in his prosthesis.

bionic legCLICK ON THE IMAGE TO ENJOY THE VIDEO

We put sensors into the muscles, and the muscles would pick up the signals, and the signals move their way into the prosthetics, and then the prosthetics react as your brain wants,” says Thorvaldur Ingvarsson,  Director of Research and orthopaedic surgeon,  from the company Ossur (Iceland).
Ossur, a prosthetics specialist, uses implanted myoelectric sensors developed in the United States combined with its own bionic limbs.

The Icelandic company says it’s the first time amputees have ever been able to control lower-limb prostheses subconsciously. Patients will soon be able to ‘upgrade‘ existing prosthetics and control them using their minds. In the future, the sensors could be developed to react to the environment.
Our ultimate goal is to replace the function of the lost limb. The next step might be to get sensing from the environment so you have a feedback loop,” adds Ingvarsson.

For now, Gummi’s body is still adapting to the responsive prosthetic.  Gummi comments: “Everyday if you are using it, you’re always getting more and more control over what you’re doing with your foot, so in a way, everyday you’re learning more about how to walk properly with the foot, how to use it to go downhill, uphill, downstairs, upstairs, even sitting down and standing up from a chair.
The company plans to extend trials of their mind-controlled bionic limb beyond Gummi and a second patient. They say it brings amputees a step closer to truly integrating their prostheses with their bodies.

Source: http://www.reuters.com/
A
ND
http://www.ossur.com/

Barcelona, The Sun And Wind City

Barcelona‘s beach is being lit up with new-look street lights. The six innovative lamp posts are each fitted with two solar panels, a wind turbine and a battery. As a result, the environmentally-friendly lights generate enough energy to run for ten hours overnight. The new product has been designed by the company Eolgreen with the collaboration of a research team from the Universitat Politecnica de Catalunya (UPC).

Eolgreen

click on the image to enjoy the video

Compared to a traditional street lighting system, these six street lights that we have set up emit two tonnes less CO2 per year than sodium vapour or mercury vapour bulbs we see in conventional systems,” says Pedro Montes leads research at developers Eolgreen. The company also says its lights are 20 percent cheaper to run than conventional lights because they use LED technology and are independent from the electricity grid. While solar-powered LED street lighting is used elsewhere, Eolgreen‘s system is unique because its graphene turbines turn with even a gentle breeze.

Ramon Bargallo, researcher at the UPC, who helped  design the independently-powered lights adds:  “It was a big challenge as generators often need high speed winds to turn, between 1500 rpm and 3000 rpm. But we needed a generator able to work with only four or five rpm. Also generators are normally more efficient the higher the wind speed and less efficient at low wind speeds, so we had to design it in the opposite way.” Barcelona’s planners aim to roll out the new lighting system across the whole city. It’s part of their drive to achieve energy self-sufficiency in the next 40 years. Eolgreen intends to ramp up production to 700 streetlights by the end of the year. While the sustainable energy developers continue to improve efficiency, they hope their system will soon be brightening streets all over Spain.

Source: http://www.upc.edu/
AND
http://www.eolgreen.com/

Nanotherapy Against Myeloma

Researchers at Washington University School of Medicine in St. Louis have developed a nanotherapy that is effective in treating mice with multiple myeloma, a cancer of bone marrow immune cells.
Multiple myeloma is a cancer that affects plasma cells. These cells are part of the immune system, manufacturing antibodies that fight off infection. But in multiple myeloma, plasma cells grow out of control in the bone marrow, crowding out healthy cells. While treatments exist, only about 50 percent of patients with the disease survive five years past diagnosis.
Targeted specifically to the malignant cells, these new nanoparticles protect their therapeutic cargo from degradation in the bloodstream and greatly enhance drug delivery into the cancer cells. These are longtime hurdles in the development of this class of potential cancer drugs.

Plasmacytoma“We’re excited about our results because there was no guarantee the nanotherapy would increase survival,” said oncologist Michael H. Tomasson, MD, associate professor of medicine. “We injected the nanoparticles intravenously, and they found the tumors throughout the body, whether they were in the bone marrow, the spleen or elsewhere.”

The nanoparticles carry a drug compound that blocks a protein called Myc that is active in many types of cancer, including multiple myeloma. So-called Myc inhibitors are extremely potent in a petri dish. But when injected into the blood, they degrade immediately. Consequently, the prospect that Myc inhibitors could be a viable treatment in patients has been problematic because past research in animals has shown that the compounds degrade too quickly to have any effect against cancer.

The new study is the first to show that Myc inhibitors can be effective in animals with cancer, as long as the drugs have a vehicle to protect and deliver them into cancer cells. When injected into mice with multiple myeloma, the targeted nanoparticles carrying the Myc inhibitor increased survival to 52 days compared with 29 days for mice receiving nanoparticles not carrying the drug.

The study appears online in the journal Molecular Cancer Therapy.

Source: https://news.wustl.edu/

First Truly Electronic Textile

Ground-breaking research has successfully created the world’s first truly electronic textile, using the wonder material Graphene. An international team of scientists, including Professor Monica Craciun from the University of Exeter (United Kingdom) , have pioneered a new technique to embed transparent, flexible graphene electrodes into fibres commonly associated with the textile industry. The discovery could revolutionise the creation of wearable electronic devices, such as clothing containing computers, phones and MP3 players, which are lightweight, durable and easily transportable.

The international collaborative research, which includes experts from the Centre for Graphene Science at the University of Exeter, the Institute for Systems Engineering and Computers, Microsystems and Nanotechnology (INESC-MN) in Lisbon, the Universities of Lisbon and Aveiro in Portugal and the Belgian Textile Research Centre (CenTexBel), is published in the leading scientific journal Scientific Reports.

mode2015

This is a pivotal point in the future of wearable electronic devices. The potential has been there for a number of years, and transparent and flexible electrodes are already widely used in plastics and glass, for example. But this is the first example of a textile electrode being truly embedded in a yarn. The possibilities for its use are endless, including textile GPS systems, to biomedical monitoring, personal security or even communication tools for those who are sensory impaired.  The only limits are really within our own imagination,” said Professor Monica Craciun, co-author of the research.

At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for the use in wearable electronic devices in recent years.

This new research has identified that ‘monolayer graphene’, which has exceptional electrical, mechanical and optical properties, make it a highly attractive proposition as a transparent electrode for applications in wearable electronics. In this work graphene was created by a growth method called chemical vapour deposition (CVD) onto copper foil, using a state-of-the-art nanoCVD system recently developed by Moorfield.

The collaborative team established a technique to transfer graphene from the copper foils to a polypropylene fibre already commonly used in the textile industry.

electronic clothingDr Helena Alves who led the research team from INESC-MN and the University of Aveiro, and researcher at Exeter explains: “The concept of wearable technology is emerging, but so far having fully textile-embedded transparent and flexible technology is currently non-existing. Therefore, the development of processes and engineering for the integration of graphene in textiles would give rise to a new universe of commercial applications. We are surrounded by fabrics, the carpet floors in our homes or offices, the seats in our cars, and obviously all our garments and clothing accessories. The incorporation of electronic devices on fabrics would certainly be a game-changer in modern technology. “All electronic devices need wiring, so the first issue to be address in this strategy is the development of conducting textile fibres while keeping the same aspect, comfort and lightness. The methodology that we have developed to prepare transparent and conductive textile fibres by coating them with graphene will now open way to the integration of electronic devices on these textile fibres.”

Dr Isabel De Schrijver, an expert of smart textiles from CenTexBel said: “Successful manufacturing of wearable electronics has the potential for a disruptive technology with a wide array of potential new applications”.

Professor Saverio Russo, co-author and also from the University of Exeter, added: “This breakthrough will also nurture the birth of novel and transformative research directions benefitting a wide range of sectors ranging from defence to health care. “

Source: http://www.exeter.ac.uk/

How To Inhibit Breast Cancer Metastasis

Researchers at Case Western Reserve University combined finely crafted nanoparticles with one of nature’s potent disrupters to prevent the spread of triple-negative breast cancer in mouse models. The highly aggressive cancer subtype is difficult to manage and, currently, the FDA has no approved targeted treatments. But striking results from a new study, published in the journal Cancer Research make the researchers optimistic they have a potential game-changer for triple negative cancer and more.


breast cancer

There are multiple targets within a cell,” said William Schiemann, professor of oncology at the Case Western Reserve School of Medicine and the Case Comprehensive Cancer Center, and a leader of the research. “With this technology, we can target any gene or any location, for other cancers, more diseases—potentially even immunology-based diseases.”

Regular injections of nanoparticles carrying siRNA,  silenced the gene that regulates expression of the protein β3 integrin. Expression of β3 integrin in the cell-development process called the endothelial-mesenchymal transition (EMT), is essential for the cancer to spread from its primary tumor.

Nearly 15 percent of breast cancers in the United States are triple negative, and the subtype is most prevalent among African-American women in their 20s and 30s. According to the National Cancer Institute, the five-year survival rate for women whose cancer is discovered early and contained to a primary tumor is 98 percent. But, the survival rate for those diagnosed with distant metastases plummets to less than 25 percent.

To try to tackle metastasis, Schiemann teamed with Zheng-Rong Lu, the M. Frank and Margaret Domiter Rudy Professor of Biomedical Engineering at Case Western Reserve, Jenny Parvani, now a postdoctoral investigator, PhD student Maneesh Gujrati and undergraduate student Margaret Mack. Lu’s lab has been developing lipid-based nanoparticles to deliver medicines to specific targets in the body for a decade. Lipids include fats and oils, but these organic molecules are also building blocks in cell structures and functions.

In this study, five mice with a mouse version of triple-negative breast cancer were injected with particles every five days for 14 weeks. Compared to control mice, the treated mice’s tumors shrunk significantly, but more importantly, the treatment significantly inhibited metastasisFour weeks after treatment was stopped, the treated mice remained tumor free while cancer continued to grow in untreated controls. No significant difference in body weight across treatment groups and controls were found, indicating low toxicity of the treatments.

Source: http://blog.case.edu/

How To Produce Massively Nanofibers

Researchers at the University of Georgia (UGA) have developed an inexpensive way to manufacture extraordinarily thin polymer strings commonly known as nanofibers. These polymers can be made from natural materials like proteins or from human-made substances to make plastic, rubber or fiber, including biodegradable materials. The new method, dubbed “magnetospinning” by the researchers, provides a very simple, scalable and safe means for producing very large quantities of nanofibers that can be embedded with a multitude of materials, including live cells and drugs. Many thousands of times thinner than the average human hair, nanofibers are used by medical researchers to create advanced wound dressings—and for tissue regeneration, drug testing, stem cell therapies and the delivery of drugs directly to the site of infection. They are also used in other industries to manufacture fuel cells, batteries, filters and light-emitting screens.

nanofibersCarnegieMellon
The process we have developed makes it possible for almost anyone to manufacture high-quality nanofibers without the need for expensive equipment,” said Sergiy Minko, study co-author and the Georgia Power Professor of Polymers, Fibers and Textiles in UGA‘s College of Family and Consumer Sciences. “This not only reduces costs, but it also makes it possible for more businesses and researchers to experiment with nanofibers without worrying too much about their budget.”

Currently, the most common nanofiber manufacturing technique—electrospinning—uses high-voltage electricity and specially designed equipment to produce the polymer strings. Equipment operators must have extensive training to use the equipment safely.

In contrast to other nanofiber spinning devices, most of the equipment used in our device is very simple,” Minko said. “Essentially, all you need is a magnet, a syringe and a small motor.”

Source: http://news.uga.edu/

Printing 3-D Graphene For Tissue Engineering

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, and ultra-strong and lightweight structure, graphene has potential for many applications in electronics, energy, the environment, and even medicine.

Now a team of Northwestern University researchers has found a way to print three-dimensional structures with graphene nanoflakes. The fast and efficient method could open up new opportunities for using graphene printed scaffolds regenerative engineering and other electronic or medical applications.
Led by Ramille Shah, assistant professor of materials science and engineering at the McCormick School of Engineering and of surgery in the Feinberg School of Medicine, and her postdoctoral fellow Adam Jakus, the team developed a novel graphene-based ink that can be used to print large, robust 3-D structures.

3D-Printed-cell-structure-597x264
People have tried to print graphene before,” Shah said. “But it’s been a mostly polymer composite with graphene making up less than 20 percent of the volume.

With a volume so meager, those inks are unable to maintain many of graphene’s celebrated properties. But adding higher volumes of graphene flakes to the mix in these ink systems typically results in printed structures too brittle and fragile to manipulate. Shah’s ink is the best of both worlds. At 60-70 percent graphene, it preserves the material’s unique properties, including its electrical conductivity. And it’s flexible and robust enough to print robust macroscopic structures. The ink’s secret lies in its formulation: the graphene flakes are mixed with a biocompatible elastomer and quickly evaporating solvents

It’s a liquid ink,” Shah explained. “After the ink is extruded, one of the solvents in the system evaporates right away, causing the structure to solidify nearly instantly. The presence of the other solvents and the interaction with the specific polymer binder chosen also has a significant contribution to its resulting flexibility and properties. Because it holds its shape, we are able to build larger, well-defined objects.
An expert in biomaterials, Shah said 3-D printed graphene scaffolds could play a role in tissue engineering and regenerative medicine as well as in electronic devices. Her team populated one of the scaffolds with stem cells to surprising results. Not only did the cells survive, they divided, proliferated, and morphed into neuron-like cells.

Source:  http://www.mccormick.northwestern.edu/

Black Silicon Solar Cells Efficiency Jump

Researchers from Aalto University (Finland) together with colleagues from Universitat Politècnica de Catalunya (Spain) have obtained the record-breaking efficiency of 22.1% on nanostructured silicon solar cells as certified by Fraunhofer ISE CalLab. An almost 4% absolute increase to their previous record is achieved by applying a thin passivating film on the nanostructures by Atomic Layer Deposition, and by integrating all metal contacts on the back side of the cell.black_silicon_solar_cell_hele_savin_aalto_university_en

The surface recombination has long been the bottleneck of black silicon solar cells and has so far limited the cell efficiencies to only modest values. The new record cells consists of a thick back-contacted structure that is known to be highly sensitive to the front surface recombination. The certified external quantum efficiency of 96% at 300nm wavelength demonstrates that the increased surface recombination problem no longer exists and for the first time the black silicon is not limiting the final energy conversion efficiency. The energy conversion efficiency is not the only parameter that we should look at, explains Professor Hele Savin from Aalto University, who coordinated the study. Due to the ability of black cells to capture solar radiation from low angles, they generate more electricity already over the duration of one day as compared to the traditional cells.

The results were published online 18.5.2015 in Nature Nanotechnology.
Source: http://www.aalto.fi/

Artificial Synapses Operate Image Classification

In what marks a significant step forward for artificial intelligence, researchers at UC Santa Barbara have demonstrated the functionality of a simple artificial neural circuit. For the first time, a circuit of about 100 artificial synapses was proved to perform a simple version of a typical human task: image classification.

“It’s a small, but important step,” said Dmitri Strukov, a professor of electrical and computer engineering. With time and further progress, the circuitry may eventually be expanded and scaled to approach something like the human brain’s, which has 1015 (one quadrillion) synaptic connections.

For all its errors and potential for faultiness, the human brain remains a model of computational power and efficiency for engineers like Strukov and his colleagues, Mirko Prezioso, Farnood Merrikh-Bayat, Brian Hoskins and Gina Adam. That’s because the brain can accomplish certain functions in a fraction of a second what computers would require far more time and energy to perform.

What are these functions? Well, you’re performing some of them right now. As you read this, your brain is making countless split-second decisions about the letters and symbols you see, classifying their shapes and relative positions to each other and deriving different levels of meaning through many channels of context, in as little time as it takes you to scan over this print. Change the font, or even the orientation of the letters, and it’s likely you would still be able to read this and derive the same meaning.

artificial synapses

In the researchers’ demonstration, the circuit implementing the rudimentary artificial neural network was able to successfully classify three letters (“z”, “v” and “n”) by their images, each letter stylized in different ways or saturated with “noise”. In a process similar to how we humans pick our friends out from a crowd, or find the right key from a ring of similar keys, the simple neural circuitry was able to correctly classify the simple images.

While the circuit was very small compared to practical networks, it is big enough to prove the concept of practicality,” said Merrikh-Bayat. According to Gina Adam, as interest grows in the technology, so will research momentum.

And, as more solutions to the technological challenges are proposed the technology will be able to make it to the market sooner,” she said.

The researchers’ findings are published in the journal Nature.

Source: http://www.news.ucsb.edu/

How To Produce Massively And Easily Solar Panels

Nanoscale materials feature extraordinary, billionth-of-a-meter qualities that transform everything from energy generation to data storage. But while a nanostructured solar cell may be fantastically efficient, that precision is notoriously difficult to achieve on industrial scales. The solution may be self-assembly, or training molecules to stitch themselves together into high-performing configurations.

Now, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have developed a laser-based technique to execute nanoscale self-assembly with unprecedented ease and efficiency.

solarPanelWe design materials that build themselves,” said Kevin Yager, a scientist at Brookhaven’s Center for Functional Nanomaterials (CFN). “Under the right conditions, molecules will naturally snap into a perfect configuration. The challenge is giving these nanomaterials the kick they need: the hotter they are, the faster they move around and settle into the desired formation. We used lasers to crank up the heat.”

Source: http://www.bnl.gov/

Remote-Controlled Cyborg Beetles

Hard-wiring beetles for radio-controlled flight turns out to be a fitting way to learn more about their biology. Cyborg insect research led by engineers at UC Berkeley and Singapore’s Nanyang Technological University (NTU) is enabling new revelations about a muscle used by beetles for finely graded turns.

Research video showing remote-controlled steering of a giant flower beetle flying untethered. By strapping nanocomputers and wireless radios onto the backs of giant flower beetles and recording neuromuscular data as the bugs flew untethered, scientists determined that a muscle known for controlling the folding of wings was also critical to steering. The researchers then used that information to improve the precision of the beetles’ remote-controlled turns.

This study, published in the journal Current Biology, showcases the potential of wireless sensors in biological research. Research in this field could also lead to applications such as tools to aid search-and-rescue operations in areas too dangerous for humans.
cyborg beetle
CLICK ON THE IMAGE TO ENJOY THE VIDEO
What things would you have to strip out in terms of genes or in terms neurosystems to be left with a chassis that is effectively a flyable chassis. Why is an insect not a flying robot, because it has stuff in there that you would like to knock out and then get yourself a chassis“, says Michele Maharbiz, an associate professor in UC Berkeley’s Department of Electrical Engineering and Computer Sciences and the study’s principal investigator.. A chassis like you would find in a car. But while cars were designed with the sole purpose of driving, evolution has hardwired beetles for multiple functions, like mating and eating. All of these need to taken into account when developing a remote controlled beetle. The researchers have made much progress over the years. They have proven they can control the beetles with stimulation to both the brain and muscles. Maharbiz thinks a combination of both techniques will probably be needed to create an ideal cyborg beetle. “At a short term practical level I think that we could stand to build controlled flyers at very small scales this way, in other words using the best of electronics and the best of the natural world,“, adds Maharbiz.
Source: http://newscenter.berkeley.edu/