Articles from October 2015



Restore Your Hair Growth

Inhibiting a family of enzymes inside hair follicles that are suspended in a resting state restores hair growth, a new study from researchers at Columbia University Medical Center has found.

In experiments with mouse and human hair follicles, Angela M. Christiano, PhD, and colleagues found that drugs that inhibit the Janus kinase (JAK) family of enzymes promote rapid and robust hair growth when applied to the skin.

The study raises the possibility that JAK inhibitors could be used to restore hair growth in forms of hair loss induced by male pattern baldness, and other types of hair loss that occur when hair follicles are trapped in a resting state.  Two JAK inhibitors have been approved by the U.S. Food and Drug Administration. One is approved for treatment of blood diseases (ruxolitinib) and the other for rheumatoid arthritis (tofacitinib). Both are being tested in clinical trials for the treatment of plaque psoriasis and alopecia areata, an autoimmune disease that causes hair loss.

long-hairstyles

What we’ve found is promising, though we haven’t yet shown it’s a cure for pattern baldness,” said Dr. Christiano. “More work needs to be done to test if JAK inhibitors can induce hair growth in humans using formulations specially made for the scalp.”
Christiano and her colleagues serendipitously discovered the effect of JAK inhibitors have on hair follicles when they were studying alopecia areata, a form of hair loss that’s caused by an autoimmune attack on the hair follicles. Christiano and colleagues reported last year that JAK inhibitors shut off the signal that provokes the autoimmune attack, and that oral forms of the drug restore hair growth in some people with the disorder.

The research was published today in the online edition of Science Advances.

Source: http://newsroom.cumc.columbia.edu/

Biodegradable Implants Heal Broken Bones

A plastic derived from cornstarch combined with a volcanic ash compound, Montmorillonite clay, could help heal the bones of hundreds of thousands of patients with orthopedic injuries who need bone replacement after tumor removal, spinal fusion surgery or fracture repair.
Using a synthetic material will likely lead to a reduction in the surgery complication rate. The patient will only need to heal from one surgery because harvesting bone would not be necessary.Researchers at Beaumont Hospital – Royal Oak will publish their preclinical findings in the journal Nanomedicine. Kevin Baker, Ph.D., director, Beaumont Orthopaedic Research Laboratories, worked on the study with Rangaramanujam Kannan, Ph.D., of Johns Hopkins, formerly with Wayne State University.
Traditional bone graft procedures require surgeons to remove bone from another part of the patient’s body to heal the affected area and encourage new bone growth. Harvesting a patient’s bone can result in complications at the harvest site. Some surgeons also use bone donated from cadavers. However, there is a limited supply of donor bones available.

The goal is to use the material without any additional permanent hardware placed in a patient’s body. Current procedures often require a metal or non-resorbable plastic implant because traditional bone grafts are not strong enough without the added support.

brokenLEG

This improves outcomes for the patient because internal hardware can pose a challenge with respect to being a potential site for infection, and can complicate MRI and CT imaging tests. In addition, from the surgeon’s perspective, not having to worry about a large piece of metal or hard plastic in the area may make future procedures easier,” Baker says.

The biodegradable polymer, reinforced with Montmorillonite clay nanoparticles for strength, dissolves in the body within 18 months. As the material dissolves, new bone formation takes its place.

Source: http://www.beaumont.edu/

Stabilized Perovskite Solar Cells Clear the Way To The Market

UCLA professor Yang Yang, member of the California NanoSystems Institute, is a world-renowned innovator of solar cell technology whose team in recent years has developed next-generation solar cells constructed of perovskite, which has remarkable efficiency converting sunlight to electricity.

Despite this success, the delicate nature of perovskite — a very cheap, very light, flexible, organic-inorganic hybrid material — stalled further development toward its commercialized use. When exposed to air, perovskite cells broke down and disintegrated within a few hours to few days. The cells deteriorated even faster when also exposed to moisture, mainly due to the hydroscopic nature of the perovskite.

Now Yang’s team has conquered the primary difficulty of perovskite by protecting it between two layers of metal oxide. This is a significant advance toward stabilizing perovskite solar cells. Their new cell construction extends the cell’s effective life in air by more than 10 times, with only a marginal loss of efficiency converting sunlight to electricity.

perovskite solar panel

There has been much optimism about perovskite solar cell technology,” Meng said. In less than two years, the Yang team has advanced perovskite solar cell efficiency from less than 1 percent to close to 20 percent. “But its short lifespan was a limiting factor we have been trying to improve on since developing perovskite cells with high efficiency.”

The study was published online in the journal Nature Nanotechnology. Researchers Jingbi You and Lei Meng from the Yang Lab were the lead authors on the paper.

Source: http://newsroom.ucla.edu/

HIV New Treatment: Once per Year

Protease inhibitors are a class of antiviral drugs that are commonly used to treat HIV, the virus that causes AIDS. Scientists at the University of Nebraska Medical Center designed a new delivery system for these drugs that, when coupled with a drug developed at the University of Rochester School of Medicine and Dentistry, rid immune cells of HIV and kept the virus in check for long periods. The results appear in the journal Nanomedicine: Nanotechnology, Biology and Medicine.

While current HIV treatments involve pills that are taken daily, the new regimens’ long-lasting effects suggest that HIV treatment could be administered perhaps once or twice per year.

Nebraska researcher Howard E. Gendelman designed the investigational drug delivery system–a so-called “nanoformulated” protease inhibitor. The nanoformulation process takes a drug and makes it into a crystal, like an ice cube does to water.  Next, the crystal drug is placed into a fat and protein coat, similar to what is done in making a coated ice-cream bar.  The coating protects the drug from being degraded by the liver and removed by the kidney.

When tested together with URMC-099, a new drug discovered in the laboratory of UR scientist Harris A. (“Handy”) Gelbard M.D., Ph.D., the nanoformulated protease inhibitor completely eliminated measurable quantities of HIV. URMC-099 boosted the concentration of the nanoformulated drug in immune cells and slowed the rate at which it was eliminated, thereby prolonging its therapeutic effect.

HIV virus

The chemical marriage between URMC-099 and antiretroviral drug nanoformulations could increase drug longevity, improve patient compliance, and reduce general toxicities,” said Gendelman, lead study author and professor and chair of the Dept.  of Pharmacology and Neuroscience at Nebraska, who has collaborated with Gelbard for 24 years. “We are excited about pursing this research for the treatment and eradication of HIV infections.

Source: https://www.urmc.rochester.edu/

New Cheap Catalyst To Produce Hydrogen From Water

Graphene doped with nitrogen and augmented with cobalt atoms has proven to be an effective, durable catalyst for the production of hydrogen from water, according to scientists at Rice University. The Rice lab of chemist James Tour and colleagues at the Chinese Academy of Sciences, the University of Texas at San Antonio and the University of Houston have reported the development of a robust, solid-state catalyst that shows promise to replace expensive platinum for hydrogen generation.

Tucson fuel cell

Catalysts can split water into its constituent hydrogen and oxygen atoms, a process required for fuel cells. Hydrogen electric cars as the Tucson from Hyundai are powered by fuel cells.
The latest discovery, detailed in Nature Communications, is a significant step toward lower-cost catalysts for energy production, according to the researchers.

What’s unique about this paper is that we show not the use of metal particles, not the use of metal nanoparticles, but the use of atoms,” Tour said. “The particles doing this chemistry are as small as you can possibly get.
We’re getting away with very little cobalt to make a catalyst that nearly matches the best platinum catalysts.” In comparison tests, he said the new material nearly matched platinum’s efficiency to begin reacting at a low onset voltage, the amount of electricity it needs to begin separating water into hydrogen and oxygen.

Source: http://news.rice.edu/

How To Manipulate Light

Electrons are so 20th century. In the 21st century, photonic devices, which use light to transport large amounts of information quickly, will enhance or even replace the electronic devices that are ubiquitous in our lives today. But there’s a step needed before optical connections can be integrated into telecommunications systems and computers: researchers need to make it easier to manipulate light at the nanoscale.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have done just that, designing the first on-chip metamaterial with a refractive index of zero, meaning that the phase of light can travel infinitely fast.

This new metamaterial was developed in the lab of Eric Mazur, the Balkanski Professor of Physics and Applied Physics and Area Dean for Applied Physics at SEAS, and is described in the journal Nature Photonics.

manipulated light

New zero-index material made of silicon pillar arrays embedded in a polymer matrix and clad in gold film creates a constant phase of light, which stretches out in infinitely long wavelengths

Light doesn’t typically like to be squeezed or manipulated but this metamaterial permits you to manipulate light from one chip to another, to squeeze, bend, twist and reduce diameter of a beam from the macroscale to the nanoscale,” said Mazur. “It’s a remarkable new way to manipulate light.”

Although this infinitely high velocity sounds like it breaks the rule of relativity, it doesn’t. Nothing in the universe travels faster than light carrying information — Einstein is still right about that. But light has another speed, measured by how fast the crests of a wavelength move, known as phase velocity. This speed of light increases or decreases depending on the material it’s moving through.

When light passes through water, for example, its phase velocity is reduced as its wavelengths get squished together. Once it exits the water, its phase velocity increases again as its wavelength elongates. How much the crests of a light wave slow down in a material is expressed as a ratio called the refraction index — the higher the index, the more the material interferes with the propagation of the wave crests of light. Water, for example, has a refraction index of about 1.3.

When the refraction index is reduced to zero, really weird and interesting things start to happen.

Source: https://www.seas.harvard.edu

How To Move Ten Times Faster in Water

Scientists at the University College London (UCL) have identified a new and potentially faster way of moving molecules across the surfaces of certain materials.

The team carried out sophisticated computer simulations of tiny droplets of water as they interact with graphene surfaces. These simulations reveal that the molecules can “surf” across the surface whilst being carried by the moving ripples of graphene.

moving fast in water

The study, published in Nature Materials, demonstrates that because the molecules were swept along by the movement of strong ripples in the carbon fabric of graphene, they were able to move at an exceedingly fast rate, at least ten times faster than previously observed.

Furthermore, the researchers found that by altering the size of the ripples, and the type of molecules on the surface, they could achieve fast and controlled motion of molecules other than water. This opens up a range of possibilities for industrial applications such as improved sensors and filters.

graphene and water

Professor Angelos Michaelides, from the Thomas Young Centre and London Centre for Nanotechnology (LCN) at UCL, lead researcher of the study, explained: “Atoms and molecules usually move across materials by hopping from one point on their surface to the next. However, through computer simulations we have uncovered an interesting new diffusion mechanism for motion across graphene that is inherently different from the usual random movements we see on other surfaces.

Source: https://www.ucl.ac.uk/

3D Printing Applied To Nanotechnology = Revolution

It seems that the in the area of technology, the new age will belong a combination of nanotechnology and 3D printing, informed Professor Hari Kishan Sahajwani during a re-union meeting of 1966-68 batch of M.Sc.-physics of Kurukshetra University (India).
3D printing
Applying 3D printing concepts to nanotechnology are doing to revolutionize nanofabrication in terms of manufacturing speed, minimizing of waste and reduction of cost. In all kinds of human services, the manufacturing technologies will be dependent on the combination of nanotechnology and 3D printing,” said Sahjwani, who goes around the country to make presentations and delivering lectures on nanotechnology.

The UK scientists have developed nanoscale specks of semiconductor called ‘Quantum Dots‘ to restore vision lost due to damaged retinas. He added that this was indication how nanotechnology aided by 3D printing will bring new vistas in medical science and treatment of diseases.

quantum dotsQuantum dots are said to have the advantages that no external power source is needed for their functioning and can be coated with a bioactive material that causes them to become lodged in only specific tissues in the retina without any side effects.

He told that 3D-printing has been successfully used to generate replicas of bioimplants like living human cartilage and future seems be bright with advanced 3D printing techniques capable of creating nanoscale complex structures.

The efforts are on to develop the techniques for more precise and accurate 3D control of electro-spun nano-jets to take current nanofabrication technologies to a new height. With research and invention, sophisticated methods and precise methods to control the nano-jets will be able to realize rapid 3D printing usable for bioscaffolds and nanofilters to have inroads into all aspects of life, it is being felt.

Source: http://www.merinews.com/

Nanoscope Sees Images 100,000 Times Smaller Than A Human Hair

A microscope that produces images a hundred-thousand times smaller than the width of a human hair wasn’t quite enough for Dr David Dowsett. At the Luxembourg Institute of Science and Technology (LIST), Dowsett and his team added a specially designed prototype spectrometer. They say their secondary ion mass spectrometer – or SIMS – analysis tool, is one of the most powerful in the world.

nanoscope list

A human hair is about 50 to 100 microns in diameter. The resolution of our microscope images is half a nanometer and the resolution of our SIMS images is about 10 nanometres. So, that’s about 100,000 times smaller than the diameter of a human hair“, says Dr. David Dowsett, Senior research & Technology Associate at the  Luxembourg Institute of  Science and  Technology (LIST). And it’s attracting interest from big business for it’s immense imaging and chemical mapping capabilities… including from cosmetic companies.  “So when they say ‘this is the science bit’ – that’s actually us. We’ve worked for a least one of the big pharmaceutical companies developing shampoo, so looking at whether the shampoo really penetrates into the hair,” he adds.
The precision tool’s impact could be huge for many industries, including the development of new semiconductors and Lithium ion batteries. It could also play a vital role in the the improvement and development of medicine.
We can follow where those nanoparticles have been uptaken into, for example, human cells. And also we can see whether or not a labelled drug is present within the cell, in the same place as the nanoparticle; so we can really start to test whether a delivery system is effective“, concludes Dowsett. Now he is working with his team on an improved version of the device and investigating possibilities to commercialise the development.

Source: http://www.reuters.com/

Powered by plants your phone is charged in 2 hours

It’s a common problem across the world. Too many smartphones and not enough electrical sockets to charge them. But thanks to three engineering students from Chile, charging your device may soon be as easy as plugging it into your favorite household plant. The idea sprouted back in 2009 during a chaotic exam week. Desperate to charge their devices, the students stepped outside to the school garden to catch a breath of fresh air and quell their frustrations. That’s when they realized that the plants producing the oxygen they were breathing also produce energy.

biocircuit_buried_in_the_soilCLICK ON THE IMAGE TO ENJOY THE VIDEO
After that, we thought, why don’t they have a socket? Because there are so many plants and living things which have the potential to produce energy, why not?” asks Evelyn Aravena,  electrical engineering and industrial automation student at  Duoc Institute in Valparaiso (Chile).

The trio began prototyping a device they call E-Kaia. It’s a biocircuit buried in the soil that harnesses energy produced by plants during photosynthesis and converts it into electricity. The team explains that the device feeds off the natural energy cycle of a plant.  “There is a complete cycle of the plant and when making this cycle, we decided to incorporate into it, then we would not affect the plant’s growth. And the biocircuit makes an acquisition and transforms it into energy to later make charges of low consumption“, adds Camila Rupchich, also student at Duoc Insitute.

The device can fully charge a smartphone in under two hours. The team is currently fine tuning the biocircuit with the hopes of launching it commercially in late 2016.

The Rise Of The NanoRobots

Nanomachines – including nano-sized motors, rockets and even cars – are many orders of magnitude smaller than a human cell, but they have huge promise. In the future, they could deliver drugs anywhere in the body, clean up oil spills and might even be used as artificial muscle cells. Find out more about these molecular machines (and the challenges that nanobot researchers still face) in Reactions’ latest video, produced in collaboration with the University of Nebraska‘s SciPop series.


nanorobots
CLICK ON THE IMAGE TO ENJOY THE VIDEO

Source: http://www.acs.org/

 

How To Integrate Graphene To Produce Solar Cells

Binghamton University researchers have demonstrated an eco-friendly process that enables unprecedented spatial control over the electrical properties of graphene oxide. This two-dimensional nanomaterial has the potential to revolutionize flexible electronics, solar cells and biomedical instruments.

By using the probe of an atomic force microscope to trigger a local chemical reaction, Jeffrey Mativetsky, assistant professor of physics at Binghamton University, and PhD student Austin Faucett showed that electrically conductive features as small as four nanometers can be patterned into individual graphene oxide sheets. One nanometer is about one hundred thousand times smaller than the width of a human hair.

graphene solar cells
Our approach makes it possible to draw nanoscale electrically-conductive features in atomically-thin insulating sheets with the highest spatial control reported so far,” said Mativetsky. “Unlike standard methods for manipulating the properties of graphene oxide, our process can be implemented under ambient conditions and is environmentally-benign, making it a promising step towards the practical integration of graphene oxide into future technologies.

 

The 2010 Nobel Prize in Physics was awarded for the discovery of graphene, an atomically-thin, two-dimensional carbon lattice with extraordinary electrical, thermal and mechanical properties. Graphene oxide is a closely-related two-dimensional material with certain advantages over graphene, including simple production and processing, and highly tunable properties. For example, by removing some of the oxygen from graphene oxide, the electrically insulating material can be rendered conductive, opening up prospects for use in flexible electronics, sensors, solar cells and biomedical devices.

Source: http://www.sciencedirect.com/
AND
http://www.eurekalert.org/