Articles from January 2016



Revolution In The Nanotechnology Industry

After six years of painstaking effort, a group of University of Wisconsin-Madison (UW-Madison) materials scientists believe their breakthrough in growing tiny sheets of zinc oxide could have huge implications for the future of nanomaterial manufacturing—and in turn, on a host of electronic and biomedical devices.
The group, led by Xudong Wang, an associate professor of science and engineering at UW-Madison, and postdoctoral researcher Fei Wang, has developed a novel technique for synthesizing two-dimensional nanosheets from compounds that do not naturally form the atomic-layer-thick materials. Essentially the microscopic equivalent of a single sheet of paper, a 2D nanosheet is a material that is constrained to up to only a few atomic layers in one direction. Nanomaterials—materials that are constrained in at least one dimension to a maximum of a handful of atomic layers—have unique physical properties that alter their electronic and chemical properties in relation to their compositionally identical but conventional, and larger, material counterparts.

newnanosheet

What’s nice with a 2D nanomaterial is that because it’s a sheet, it’s much easier for us to manipulate compared to other types of nanomaterials,” says Xudong Wang. Xudong Wang first had the idea for using a surfactant to grow nanosheets during a lecture he was giving in a course on nanotechnology in 2009. “The course includes a lecture about self-assembly of monolayers,” adds Xudong Wang. “Under the correct conditions, a surfactant will self-assemble to form a monolayer. This is a well-known process that I teach in class. So while teaching this I wondered why we wouldn’t be able to reverse this method and use the surfactant monolayer first to grow the crystalline face.

It is the first time such a technique has been successful, and the researchers described their findings in the journal Nature Communications.

Soource: https://www.engr.wisc.edu/

Robots Replace Human Hand To Pick Fruits

Fruit is delicate, so picking it is still often done by human hand. But this robotic system is smart enough to autonomously sort and move different fruits without damaging them. Developers Cambridge Consultants say it has the cognitive ability to work out how to best handle items that vary in shape.

robot fruit pickerCLICK ON THE IMAGE TO ENJOY THE VIDEO

Traditional robotic systems typically pick up exactly the same object from exactly the same place and move it to somewhere new; always doing the same action over and over again. But there are places, there are applications where robotics aren’t used at the moment where they could be if you can build in this capability of dealing with natural variations and small changes in the environment into the robotic system itself“, says Chris Roberts, head of industrial robotics at Cambridge Consultants.

The robot uses low-cost and easily available hardware, such as Microsoft‘s Kinect image sensor, that takes into account not only size and shape, but also colour. Its intuitive algorithms help it recognise the correct objects and calculate the order in which to pick them. The claw-like gripper uses sensor-packed vacuum tubes that adapt to handle the fruit securely without damaging it.
Roberts explains: “And only applying a vacuum to the ones that gripped, the ones where there’s a seal, we can spread the pressure across the fruit so we’re not bruising it but we still apply a consistent pressure that allows us to pick up heavier objects.” Similar ‘smart’ robots could transform many industrial and commercial processes, and collaborate better with humans.  “When robots come to interact with people, people aren’t as predictable as a production line. So the robot needs to be able to deal with changes in the environment and if someone moves an object from one place to another the robot needs to cope with that,” he adds.
Humans co-operating with robots in the workplace might still be some way off. But ever more advanced processing power means it’s closer than ever to being within our grasp.

Source: http://www.reuters.com/

Bionic Human

A new  program from the Defense Advanced Research Project Agency (DARPA) aims to develop an implantable neural interface able to provide unprecedented signal resolution and data-transfer bandwidth between the human brain and the digital world. The interface would serve as a translator, converting between the electrochemical language used by neurons in the brain and the ones and zeros that constitute the language of information technology. The goal is to achieve this communications link in a biocompatible device no larger than one cubic centimeter in size, roughly the volume of two nickels stacked back to back.

The program, Neural Engineering System Design (NESD), stands to dramatically enhance research capabilities in neurotechnology and provide a foundation for new therapies.

artificial intelligence

Today’s best brain-computer interface systems are like two supercomputers trying to talk to each other using an old 300-baud modem,” said Phillip Alvelda, the NESD program manager. “Imagine what will become possible when we upgrade our tools to really open the channel between the human brain and modern electronics.”

To familiarize potential participants with the technical objectives of NESD, DARPA will host a Proposers Day meeting that runs Tuesday and Wednesday, February 2-3, 2016, in Arlington, Va. The Special Notice announcing the Proposers Day meeting is available at https://www.fbo.gov/.
More details about the Industry Group that will support NESD is available at https://www.fbo.gov/.
A Broad Agency Announcement describing the specific capabilities sought is available at: http://go.usa.gov/.

Source: http://www.darpa.mil/

Molecules Tell Bone To Repair Itself

Scientists at the University of Michigan have developed a polymer sphere that delivers a molecule to bone wounds that tells cells already at the injury site to repair the damage. Using the polymer sphere to introduce the microRNA molecule into cells elevates the job of existing cells to that of injury repair by instructing the cellshealing and bone-building mechanisms to switch on, said Peter Ma, professor of dentistry and lead researcher on the project. It’s similar to a new supervisor ordering an office cleaning crew to start constructing an addition to the building, he said.

Using existing cells to repair wounds reduces the need to introduce foreign cells — a very difficult therapy because cells have their own personalities, which can result in the host rejecting the foreign cells, or tumors. The microRNA is time-released, which allows for therapy that lasts for up to a month or longer, said Ma, who also has appointments in the College of Engineering.

nano-shells-deliver-molecules-that-tell-bone-to-repair-itselfThe polymer sphere delivers the microRNA into cells already at the wound site, which turns the cells into bone repairing machines

The new technology we have been working on opens doors for new therapies using DNA and RNA in regenerative medicine and boosts the possibility of dealing with other challenging human diseases,” Ma said. It’s typically very difficult for microRNA to breach the fortress of the cell wall, Ma added. The polymer sphere developed by Ma’s lab easily enters the cell and delivers the microRNA. The technology can help grow bone in people with conditions like oral implants, those undergoing bone surgery or joint repair, or people with tooth decay.

Bone repair is especially challenging in patients with healing problems, but Ma’s lab was able to heal bone wounds in osteoporotic mice, he said. Millions of patients worldwide suffer from bone loss and associated functional problems, but growing and regenerating high-quality bone for specific applications is still very difficult with current technology.

The findings have been published in the journal Nature Communications.

Source: http://ns.umich.edu/

Very Cheap Solar Cells With Very Good Efficiency

Some of the most promising solar cells today use light-harvesting films made from perovskites – a group of materials that share a characteristic molecular structure. However, perovskite-based solar cells use expensive “hole-transporting” materials, whose function is to move the positive charges that are generated when light hits the perovskite film.

Perovskite cheap Publishing in Nature Energy,  scientists from Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland have now engineered a considerably cheaper hole-transporting material that costs only a fifth of existing ones while keeping the efficiency of the solar cell above 20%.

As the quality of perovskite films increases, researchers are seeking other ways of improving the overall performance of solar cells. Inadvertently, this search targets the other key element of a solar panel, the hole-transporting layer, and specifically, the materials that make them up. There are currently only two hole-transporting materials available for perovskite-based solar cells. Both types are quite costly to synthesize, adding to the overall expense of the solar cell.

To address this problem, a team of researchers led by Mohammad Nazeeruddin at EPFL developed a molecularly engineered hole-transporting material, called FDT, that can bring costs down while keeping efficiency up to competitive levels. Tests showed that the efficiency of FDT rose to 20.2% – higher than the other two, more expensive alternatives. And because FDT can be easily modified, it acts as a blueprint for an entire generation of new low-cost hole-transporting materials.

The best performing perovskite solar cells use hole transporting materials, which are difficult to make and purify and are prohibitively expensive, costing over €300 per gram, preventing market penetration,” says Nazeeruddin. “By comparison, FDT is easy to synthesize and purify, and its cost is estimated to be a fifth of that for existing materials – while matching, and even surpassing their performance.”

Source: https://actu.epfl.ch/

Smart Windows Clean Themselves, Save Energy

A revolutionary new type of smart window could cut window-cleaning costs in tall buildings while reducing heating bills and boosting worker productivity. Developed by University College London (UCL) with support from EPSRC, prototype samples confirm that the glass can deliver three key benefits:
Self-cleaning: The window is ultra-resistant to water, so rain hitting the outside forms spherical droplets that roll easily over the surface – picking up dirt, dust and other contaminants and carrying them away. This is due to the pencil-like, conical design of nanostructures engraved onto the glass, trapping air and ensuring only a tiny amount of water comes into contact with the surface.
 Energy-saving: The glass is coated with a very thin (5-10nm) film of window-cleaning of vanadium dioxide which during cold periods stops thermal radiation escaping and so prevents heat loss; during hot periods it prevents infrared radiation from the sun entering the building.
 Anti-glare: The design of the nanostructures also gives the windows the same anti-reflective properties found in the eyes of moths and other creatures that have evolved to hide from predators.

self cleaning windowA scanning electron miscroscope photograph shows the pyramid-like nanostructures engraved onto glass: at 200nm they are 100 times smaller than a human hair. Controlling the surface morphology at the nanoscale allows scientists to tailor how the glass interacts with liquids and light with high precision

This is the first time that a nanostructure has been combined with a thermochromic coating. The bio-inspired nanostructure amplifies the thermochromics properties of the coating and the net result is a self-cleaning, highly performing smart window, said Dr Ioannis Papakonstantinou of UCL. The UCL team calculate that the windows could result in a reduction in heating bills of up to 40 per cent.

Source: https://www.epsrc.ac.uk/

Bubble-Pen To Build Nanocomputer, Sensor, Solar Panel…

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have solved a problem in micro- and nanofabrication — how to quickly, gently and precisely handle tiny particles — that will allow researchers to more easily build tiny machines, biomedical sensors, optical computers, solar panels and other devices. They have developed a device and technique, called bubble-pen lithography, that can efficiently handle nanoparticles — the tiny pieces of gold, silicon and other materials used in nanomanufacturing. The new method relies on microbubbles to inscribe, or write, nanoparticles onto a surface.

A research team led by Texas Engineering assistant professor Yuebing Zheng has invented a way to handle these small particles and lock them into position without damaging them. Using microbubbles to gently transport the particles, the bubble-pen lithography technique can quickly arrange particles in various shapes, sizes, compositions and distances between nanostructures.

bubble-pen litho

The ability to control a single nanoparticle and fix it to a substrate without damaging it could open up great opportunities for the creation of new materials and devices,” Zheng said. “The capability of arranging the particles will help to advance a class of new materials, known as metamaterials, with properties and functions that do not exist in current natural materials.

The team, which includes Cockrell School associate professor Deji Akinwande and professor Andrew Dunn, describe their patented device and technique in a paper published in Nano Letters.

Source: https://news.utexas.edu/

Brain Injury: How To Monitor Temperature, Pressure

 A new class of small, thin electronic sensors can monitor temperature and pressure within the skullcrucial health parameters after a brain injury or surgery – then melt away when they are no longer needed, eliminating the need for additional surgery to remove the monitors and reducing the risk of infection and hemorrhage.

Nanoparticles Destroy Antibiotic-Resistant “Superbugs”

In the ever-escalating evolutionary battle with drug-resistant bacteria, humans may soon have a leg up thanks to adaptive, light-activated nanotherapy developed by researchers at the University of Colorado Boulder (CU-Boulder). Antibiotic-resistant bacteria such as Salmonella, E. Coli and Staphylococcus infect some 2 million people and kill at least 23,000 people in the United States each year. Efforts to thwart these so-called “psuperbugs” have consistently fallen short due to the bacteria’s ability to rapidly adapt and develop immunity to common antibiotics such as penicillin.  New research from CU-Boulder, however, suggests that the solution to this big global problem might be to think small—very small.

In findings published today in the journal Nature Materials, researchers at the Department of Chemical and Biological Engineering and the BioFrontiers Institute describe new light-activated therapeutic nanoparticles known as “quantum dots.” The dots, which are about 20,000 times smaller than a human hair and resemble the tiny semiconductors used in consumer electronics, successfully killed 92 percent of drug-resistant bacterial cells in a lab-grown culture.

salmonella bacteria

By shrinking these semiconductors down to the nanoscale, we’re able to create highly specific interactions within the cellular environment that only target the infection,” said Prashant Nagpal, an assistant professor in the Department of Chemical and Biological Engineering at CU-Boulder and a senior author of the study.

Source: http://www.colorado.edu/

Efficient Triboelectric Generator Embedded In A Shoe

A two-stage power management and storage system could dramatically improve the efficiency of triboelectric generators that harvest energy from irregular human motion such as walking, running or finger tapping. The system uses a small capacitor to capture alternating current generated by the biomechanical activity. When the first capacitor fills, a power management circuit then feeds the electricity into a battery or larger capacitor. This second storage device supplies DC current at voltages appropriate for powering wearable and mobile devices such as watches, heart monitors, calculators, thermometers – and even wireless remote entry devices for vehicles. By matching the impedance of the storage device to that of the triboelectric generators, the new system can boost energy efficiency from just one percent to as much as 60 percent.

Triboelectric shoes

llustration shows how a triboelectric generator embedded in a shoe would produce electricity as a person walked

With a high-output triboelectric generator and this power management circuit, we can power a range of applications from human motion,” said Simiao Niu, a graduate research assistant in the School of Materials Science and Engineering at the Georgia Institute of Technology. “The first stage of our system is matched to the triboelectric nanogenerator, and the second stage is matched to the application that it will be powering.

The research has been reported in the journal Nature Communications.

Source: http://www.news.gatech.edu/

Your Own Farm Indoors

Growing your own produce just got really easy. This is a farm cube – a fully enclosed ecosystem capable of growing hydroponic vegetables indoors.

growing vegetables indoorsCLICK ON THE IMAGE TO ENJOY THE VIDEO
In this one (Farm Cube), the one cycle, around six weeks, 200 pieces or 100 pieces depending on different vegetable”, says Jack Ting, CEO of the company Opcom (Taiwan). Seedlings are loaded into the cube. The growth cycle is then completely automated using farming software that monitors the plants and adjusts the environment accordingly, adding the perfect amount of air, light, and water needed for different stages of development. Not home and worried about your farm cube? There’s an App for that. Cameras and sensors allow you to monitor everything from the PH levels to the LED light settings from anywhere with an Internet connection. Its makers boast that the veg produced in their cubes are better for you than anything you can pick up at the market.

All water is UV light purified so it is very safe, even our vegetables, no need to wash“, adds Jack Ting. The company also makes the Farm Container. This solar powered multi-cube system can grow 2,000 plants at once…enough lettuce to feed an army of vegetarians with big appetites.

Source: http://www.reuters.com/

Virtual Hug

Skin care giant Nivea has allowed a mother and son to have a ‘virtual hug’ from two different countries thanks to its ‘Second Skin Project’ involving nanotechnology. However, all is not as it seems.

second skin
CLICK ON THE IMAGE TO ENJOY THE VIDEO

A video was created with Leo Burnett Madrid to highlight the importance of the human touch and initially discloses how nanotechnology helped the company recreate the effect from thousands of miles apart. A mother and son who were based in Uruguay and Spain were selected for the experiment, with Beiersdorf-owned Nivea using a ground-breaking fabric that is said to simulate human skin. According to the video, the material is woven with a number of sensors and can retain electrical impulses. As a result of this, when one person touches it, the other can feel the touch from thousands of miles away.

However, at the end of the video the project is ousted as not being real, and is instead a shrewd marketing campaign for the importance of the human touch, and, in effect, its skin cream. Watch the video, and get your tissues at the ready, to see it unfold.

Source: https://globalcosmeticsnews.com/