Articles from February 2016



Nanostructure of Humboldt Penguins Feather Makes Them Ice-Proof

Humboldt penguins live in places that dip below freezing in the winter, and despite getting wet, their feathers stay sleek and free of ice. Researchers from Beihang University in Beijing (China)  have now figured out what could make that possible. The key is in the microstructure of penguins’ feathers. Based on their findings, the scientists replicated the architecture in a nanofiber membrane that could be developed into an ice-proof material.

penguins ChinaThe range of Humboldt penguins extends from coastal Peru to the tip of southern Chile. Some of these areas can get frigid, and the water the birds swim in is part of a cold ocean current that sweeps up the coast from the Antarctic. Their feathers keep them both warm and ice-free. Scientists had suspected that penguin feathers’ ability to easily repel water explained why ice doesn’t accumulate on them: Water would slide off before freezing. But research has found that under high humidity or ultra-low temperatures, ice can stick to even superhydrophobic surfaces. So Jingming Wang and colleagues sought another explanation.

The researchers closely examined Humboldt penguin feathers using a scanning electron microscope. They found that the feathers were comprised of a network of barbs, wrinkled barbules and tiny interlocking hooks. In addition to being hydrophobic, this hierarchical architecture with grooved structures is anti-adhesive. Testing showed ice wouldn’t stick to it. Mimicking the feathers’ microstructure, the researchers developed an icephobic polyimide fiber membrane. They say it could potentially be used in applications such as electrical insulation.

Source: http://www.acs.org/
A
ND
http://mysteriousuniverse.org/

World’s First Thermal Imaging Phone Camera

It’s billed as the world’s first thermal imaging phone. Until now users wanting to access thermal imaging on their smartphone required an accessory to clip onto it. Developed by UK firm Bullitt, it’s branded by construction equipment maker Caterpillar.

thermal imaging phone cameraCLICK ON THE IMAGE TO ENJOY THE VIDEO

You can capture the temperature of a point. We can do that at multiple points as well, so we can capture multiple points on the screen at the same time. The temperature range at the side of the screen gives you the minimum and maximum temperature in that scene at the time,” says Pete Cunningham. senior projet manager, Bullit company.

The Cat S60 has a fully integrated sensor developed in a microcamera by tech firm FLIR. The phone is primarily aimed at tradespeople.

They want builders and electricians and mechanics and they can use that device and you can do simple diagnostics with it, so you can hold it up to a wall, you can see if a pipe’s leaking, you can hold it up looking at an engine and you can see where gas is leaking. You can look at a wall and see where the cavities are“, comments Ben Wood, chief of research, CCS Insight.
If I want to buy a new house then I can go around and I can check to see whether there is damp patches around or whether the current owners have painted over and tried to hide any issues with leaks or damp patches, so that’s another great example,” adds Pete Cunningham.

Its makers say the phone could also be used by dog owners to locate their pet during night walks or fussy consumers wanting to find the freshest loaf at the baker’s. The Cat S60 goes on sale in June for 599 dollars.

Source:  http://www.reuters.com/

New Efficient Materials For Solar Fuel Cells

University of Texas at Arlington (UTA) chemists have developed new high-performing materials for cells that harness sunlight to split carbon dioxide and water into useable fuels like methanol and hydrogen gas. These “green fuels” can be used to power cars, home appliances or even to store energy in batteries.

solar fuel cells

Technologies that simultaneously permit us to remove greenhouse gases like carbon dioxide while harnessing and storing the energy of sunlight as fuel are at the forefront of current research,” said Krishnan Rajeshwar, UTA distinguished professor of chemistry and biochemistry and co-founder of the University’s Center of Renewable Energy, Science and Technology. “Our new material could improve the safety, efficiency and cost-effectiveness of solar fuel generation, which is not yet economically viable,” he added.

The new hybrid platform uses ultra-long carbon nanotube networks with a homogeneous coating of copper oxide nanocrystals. It demonstrates both the high electrical conductivity of carbon nanotubes and the photocathode qualities of copper oxide, efficiently converting light into the photocurrents needed for the photoelectrochemical reduction process. Morteza Khaledi, dean of the UTA College of Science, said Rajeshwar’s work is representative of the University’s commitment to addressing critical issues with global environmental impact under the Strategic Plan 2020.

Source: https://www.uta.edu/

How To Kill Ocular Cancer

Researchers at the University of Michigan Kellogg Eye Center have developed a new nanoparticle that uses a tumor cell’s protective mechanism against itselfshort-circuiting tumor cell metabolism and killing tumor cells.

eye cancer

This image shows the disruption of the tumor cell due to treatment with nanoparticles and visible light

Our work uses a semiconducting nanoparticle with an attached platinum electrode to drive the synthesis of an anti-cancer compound when illuminated by light,” says Howard R. Petty, Ph.D., Professor of Ophthalmology and Visual Sciences and of Microbiology and Immunology. “The nanoparticle mimics the behavior of NADPH oxidase, an enzyme used by immune cells to kill tumor cells and infectious agents. Since tumor cells typically use NADPH to protect themselves from toxins, the more NADPH they synthesize for protection, the faster they die.

In a four-year study conducted on the mouse model in advanced breast cancer metastasis in the eye’s anterior chamber, Dr. Petty and colleagues found that the new nanoparticle not only killed tumor cells in the eye, but also extended the survival of experimental mice bearing 4T1 tumors, a cell line that is extremely difficult to kill. “Previous monotherapies have not extended the lifetimes of mice bearing this type of tumor,” says Dr. Petty. “Our work has shown that we can extend survival of the mice.”

This treatment offers many advantages,” adds Dr. Petty. “The nanoparticle produces about 20 million toxins per hour in each cell. Also, the nanoparticle is activated by light, so it can be turned on and off simply by exposing it to the correct color of visible light.”

This nanotechnology also has the potential to be used for multiple applications in ophthalmology and other disciplines.

Source: http://www.kellogg.umich.edu/

Compact, Ultra Sensitive BioSensor Gives Infos From A Blood Drop

Imagine a hand-held environmental sensor that can instantly test water for lead, E. coli, and pesticides all at the same time, or a biosensor that can perform a complete blood workup from just a single drop. That’s the promise of nanoscale plasmonic interferometry, a technique that combines nanotechnology with plasmonics—the interaction between electrons in a metal and light.

Now researchers from Brown University’s School of Engineering have made an important fundamental advance that could make such devices more practical. The research team has developed a technique that eliminates the need for highly specialized external light sources that deliver coherent light, which the technique normally requires. The advance could enable more versatile and more compact devices.

  • FluorescencePlasmonicInterferometryPlasmonic interferometers that have light emitters within them could make for better, more compact biosensors.

It has always been assumed that coherent light was necessary for plasmonic interferometry,” said Domenico Pacifici, a professor of engineering who oversaw the work with his postdoctoral researcher Dongfang Li, and graduate student Jing Feng. “But we were able to disprove that assumption.”

The research is described in Nature Scientific Reports.

Source: https://news.brown.edu/

New Immunotherapy Destroys Almost All Types Of Blood Cancer

cancer in bloodExperimental, living T-cell* therapy shows promise for treating advanced disease, making immunotherapy a ‘pillar’ of cancer care. Fred Hutch’s Dr. Stan Riddell and colleagues are making significant strides in this exciting field, and continue to refine ways to use the human immune system to overcome cancer and other diseases.

Twenty-seven out of 29 patients (more than 93%) with an advanced blood cancer who received an experimental, “living immunotherapy as part of a clinical trial experienced sustained remissions, according to preliminary results of the ongoing study at Fred Hutchinson Cancer Research Center.

Some of the patients in the trial, which began in 2013, were originally not expected to survive for more than a few months because their disease had previously relapsed or was resistant to other treatments, said Dr. Stanley Riddell, an immunotherapy researcher and oncologist Fred Hutch. Today, there is no sign of disease.

He shared the results as part of an update on new adoptive T-cell therapy strategies for cancer at the annual meeting of the American Association for the Advancement of Science in Washington, D.C. Riddell, who has studied how to empower the immune system to effectively treat human disease for more than 25 years, said that progress now being made, underscored by these latest results, is finally making immunotherapya pillar of cancer therapy.” But, he cautioned, “Much like chemotherapy and radiotherapy, it’s not going to be a save-all.” Some patients may require other treatments. The trial is designed to test the safety of the latest iteration of an experimental immunotherapy in which a patient’s own T cells are reprogrammed to eliminate his or her cancer. The reprogramming involves genetically engineering the T cells with synthetic molecules called chimeric antigen receptors, or CARs, that enable them to target and destroy tumor cells bearing a particular target. Trial participants include patients with acute lymphoblastic leukemia, non-Hodgkin lymphoma and chronic lymphocytic leukemia.

* T cells are white blood cells that can detect foreign or abnormal cells, including cancerous ones, and initiate a process that targets those abnormal cells for attack. But even when triggered, the natural immune response to a tumor is often neither strong nor persistent enough to overcome cancer cells.

Source: https://www.fredhutch.org/

2D Nanomaterials Boost Computers Speed

University of Utah engineers have discovered a new kind of 2D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.

The semiconductor, made of the elements tin and oxygen, or tin monoxide (SnO), is a layer of 2D material only one atom thick, allowing electrical charges to move through it much faster than conventional 3D materials such as silicon. This material could be used in transistors, the lifeblood of all electronic devices such as computer processors and graphics processors in desktop computers and mobile devices. The material was discovered by a team led by University of Utah materials science and engineering associate professor Ashutosh Tiwari.

material

Transistors and other components used in electronic devices are currently made of 3D materials such as silicon and consist of multiple layers on a glass substrate. But the downside to 3D materials is that electrons bounce around inside the layers in all directions.

The benefit of 2D materials, which is an exciting new research field that has opened up only about five years ago, is that the material is made of one layer the thickness of just one or two atoms. Consequently, the electronscan only move in one layer so it’s much faster,” says Tiwari.

While researchers in this field have recently discovered new types of 2D material such as graphene, molybdenun disulfide and borophene. In order to create an electronic device, however, you need semiconductor material that allows the movement of both negative electrons and positive charges known as “holes.” The tin monoxide material discovered by Tiwari and his team is the first stable P-type 2D semiconductor material ever in existence.
Transistors made with Tiwari’s semiconducting material could lead to computers and smartphones that are more than 100 times faster than regular devices.

A paper describing the research was published online in the journal, Advanced Electronic Materials.

Source: http://unews.utah.edu/

Color Printer Uses A Colorless Ink

From dot-matrix to 3-D, printing technology has come a long way in 40 years. But all of these technologies have created hues by using dye inks, which can be taxing on the environment. Now a team reports in ACS Nano the development of a colorless, non-toxic ink for use in inkjet printers. Instead of relying on dyes, the team exploits the nanostructure of this ink to create color on a page with inkjet printing.

squirrelThis image of a squirrel was printed in color by controlling the thickness of a colorless ink deposited on a thin film

Current technologies blend dyes — think CMYK or RGB — to print in color. But these substances can harm the environment. Aleksandr V. Yakovlev, Alexandr V. Vinogradov and colleagues at ITMO University (Russia) wanted to develop a nanostructure color printing technology that is “greener” and can be printed on a wide variety of surfaces.

The team found that a colorless titanium dioxide-based colloidal ink was the best suited for the job. It does not require high temperature fixing and can be deposited on many surfaces. The researchers can control the color produced on surfaces by varying the thickness of ink deposition from a normal inkjet printer. Creating a vibrant color red with this method and this very narrow angle of coloring remains a challenge. This method, however, has generated the first reported “green” ink that is both safe for the ecosystem and does not fade from UV exposure, the researchers say.

Source: http://www.acs.org/

Very Efficient Nanowires Store Solar Energy

California is committed to 33 percent energy from renewable resources by 2020. With that deadline fast approaching, researchers across the state are busy exploring options. Solar energy is attractive but for widespread adoption, it requires transformation into a storable form. This week in ACS Central Science, researchers report that nanowires made from multiple metal oxides could put solar ahead in this race. One way to harness solar power for broader use is through photoelectrochemical (PEC) water splitting that provides hydrogen for fuel cells. Many materials that can perform the reaction exist, but most of these candidates suffer from issues, ranging from efficiency to stability and cost. Peidong Yang from Berkeley University of California  and colleagues designed a system where nanowires from one of the most commonly used materials (TiO2) acts as a “host” for “guestnanoparticles from another oxide called BiVO4.

nanowires splitting waterTIO2 NANOWIRES ACT AS HOSTS FOR BIVO4 GUESTS IN A WATER-SPLITTING REACTION

BiVO4 is a newly introduced material that is among the best ones for absorbing light and performing the water splitting reaction, but does not carry charge well while TiO2 is stable, cheap and an efficient charge carrier but does not absorb light well. Together with a unique studded nanowire architecture, the new system works better than either material alone. The authors state their approach can be used to improve the efficiencies of other photoconversion materials.

Source: http://www.eurekalert.org/
A
ND
http://nanowires.berkeley.edu/

How To 3D Print Bones, Muscles, Cartilage

A new method of 3D printing can produce human-sized bone, muscle, and cartilage templates that survive when implanted into animals, researchers report.

3D ear

It has been challenging to produce human scale tissues with 3D printing because larger tissues require additional nutrition,” said Dr. Anthony Atala from Wake Forest School of Medicine, Winston-Salem, North Carolina.

His team developed a process they call “the integrated tissue and organ printing system,” or ITOP for short. ITOP produces a network of tiny channels that allows the printed tissue to be nourished after being implanted into a living animal. The researchers produced three types of tissuebone, cartilage, and muscle – and transplanted it into rats and mice. Five months after implantation, the bone tissue looked similar to normal bone, complete with blood vessels and with no dead areas, the research team reported in Nature Biotechnology.

Results with 3D-printed skeletal muscle were equally impressive. Not only did the implants look like normal muscle when examined two weeks after implantation, but the implants also contracted like immature, developing muscle when stimulated.

It is often frustrating for physicians to have patients receive a plastic or metal part during surgery knowing that the best replacement would have been the patient’s own tissue,” Dr. Atala said. “The results of this study bring us closer to the reality of using 3D printing to repair defects using the patient’s own engineered tissue.” “We are also using similar strategies to print solid organs”,  he added.

Source: http://www.reuters.com/

How To Kill Liver Cancer Cells

An experimental nanoparticle therapy that combines low-density lipoproteins (LDL) and fish oil preferentially kills primary liver cancer cells without harming healthy cells, UT Southwestern Medical Center researchers report.

liver cancerPrimary liver cancer, or hepatocellular carcinoma, is the sixth most prevalent type of cancer and third-leading cause of cancer-related deaths worldwide, according to the National Cancer Institute (NCI). Incidence of the disease is rising in the U.S., principally in relation to the spread of hepatitis C virus infection

This approach offers a potentially new and safe way of treating liver cancer, and possibly other cancers,” said study senior author Dr. Ian Corbin, Assistant Professor in the Advanced Imaging Research Center (AIRC) and of Internal Medicine at UT Southwestern. “The method utilizes the cholesterol carrier LDL, combined with fish oil to produce a unique nanoparticle that is selectively toxic to cancer cells.”

Fish oils are particularly rich in omega-3 fatty acids such as docosahexaenoic acid, also known as DHA. A 2012 study in Gastroenterology found that consumption of fish rich in omega-3 fatty acids was associated with protection against the development of liver cancer in patients with hepatitis B or hepatitis C infections. In the UT Southwestern study, conducted in rats, the newly formulated LDL-DHA nanoparticles were injected into the artery leading to the liver, the site of the cancer, he said.

This research study clearly demonstrates the anticancer potential of omega-3 fatty acids,” he said, adding that while the study showed significant cancer cell toxicity, it is too soon to tell whether the approach is able to kill every cancer cell.

The study was published in the February issue of the journal Gastroenterology.

Source: http://www.utsouthwestern.edu/

China: A Cheap And Frugal Electric Car

Renault-Nissan will develop an affordable electric car for China because the alliance’s current offering, the Nissan Leaf, is too expensive for the local market. Nissan sold just 1,273 units of the Venucia e30, a local version of the Leaf, in China last year, according to the China Association of Automobile Manufacturers (CAAM). The car starts at 242,800 yuan ($36,900).

Venucia-Viwa-500x283I am unhappy with Venucia sales. We envisaged much more than that. We know price is a handicap,” said Carlos Ghosn, Chief Excecutive Officer of Renault-Nissan. “For me the solution will be a very cheap electric car,” Ghosn told journalists at the opening of Renault’s plant here in central China.. Ghosn did not comment on possible sales in markets outside China such as Europe or the size of the car.

China’s market for cars termed ‘new energy vehicles‘ — pure EVs and plug-in hybrids — has rapidly expanded in the last few years to reach 379,000 in 2015, according to government figures quoted by the China Daily newspaper. Ghosn said that despite the incentives, most sales were very cheap electric vehicles made by local brands costing between 30,00050,000 yuan ($4,600$7,000). The biggest selling electric car last year was the tiny Kandi EV city car with 16,736 sold, according to CAAM.

The government is saying we want more electric cars. The public is saying ‘yes, but we want them cheap‘, Ghosn said. He added Renault-Nissan would start development of an affordable electric car but the automakers first had to define what the public would accept. “We need to work out what are the best compromises between acceptable performance and lowest price possible“.

Source: http://europe.autonews.com/