Articles from April 2016



Hydrogen Electric Car Powered By Fuel Cells 4 Times More Efficient

Inspired by the humble cactus, a new type of membrane has the potential to significantly boost the performance of fuel cells and transform the electric vehicle industry. The membrane, developed by scientists from CSIRO (Australia) and Hanyang University in Korea, was described today in the journal Nature . The paper shows that in hot conditions the membrane, which features a water repellent skin, can improve the efficiency of fuel cells by a factor of four.

According to CSIRO researcher and co-author Dr Aaron Thornton, the skin works in a similar way to a cactus plant, which thrives by retaining water in harsh and arid environments.

cactus

Fuel cells, like the ones used in electric vehicles, generate energy by mixing together simple gases, like hydrogen and oxygen. However, in order to maintain performance, proton exchange membrane fuel cells – or PEMFCs – need to stay constantly hydrated,” Dr Thornton said.

At the moment this is achieved by placing the cells alongside a radiator, water reservoir and a humidifier. The downside is that when used in a vehicle, these occupy a large amount of space and consume significant power,” he added.

According to CSIRO researcher and co-author Dr Cara Doherty, the team’s new cactus-inspired solution offers an alternative. A cactus plant has tiny cracks, called stomatal pores, which open at night when it is cool and humid, and close during the day when the conditions are hot and arid. This helps it retain water,” Dr Doherty said. “This membrane works in a similar way. Water is generated by an electrochemical reaction, which is then regulated through nano-cracks within the skin. The cracks widen when exposed to humidifying conditions, and close up when it is drier. This means that fuel cells can remain hydrated without the need for bulky external humidifier equipment. We also found that the skin made the fuel cells up to four times as efficient in hot and dry conditions,” she added.

Professor Young Moo Lee from Hanyang University, who led the research, said that this could have major implications for many industries, including the development of electric vehicles.

Source: http://www.csiro.au/

Polymer Solar Cells, Low-Cost Alternative To Silicon

Polymer solar cells could be even cheaper and more reliable thanks to a breakthrough by researchers at Linköping University (Sweden) and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes. In recent years, polymer solar cells have emerged as a low cost alternative to silicon solar cells. In order to obtain high efficiency, fullerenes are usually required in polymer solar cells to separate charge carriers. However, fullerenes are unstable under illumination, and form large crystals at high temperatures.

Now, a team of chemists led by Professor Jianhui Hou at the CAS has set a new world record for fullerene-free polymer solar cells by developing a unique combination of a polymer called PBDB-T and a small molecule called ITIC. With this combination, the sun’s energy is converted with an efficiency of 11%, a value that strikes most solar cells with fullerenes, and all without fullerenes. Feng Gao, together with his colleagues Olle Inganäs and Deping Qian at Linköping University, have characterized the loss spectroscopy of photovoltage (Voc), a key figure for solar cells, and proposed approaches to further improving the device performance.

fulleren160

We have demonstrated that it is possible to achieve high efficiency without using fullerene, and that such solar cells are also highly stable to heat. Because solar cells are working under constant solar radiation, good thermal stability is very important,” says Feng Gao, a physicist at the Department of Physics, Chemistry and Biology, Linköping University.

The combination of high efficiency and good thermal stability suggests that polymer solar cells, which can be easily manufactured using low-cost roll-to-roll printing technology, now come a step closer to commercialization,” says Feng Gao.
The results have been published in the journal Advanced Materials.

Source: http://liu.se/

Friendly Alternative To Li-Ion Battery

An unexpected discovery has led to a rechargeable battery that’s as inexpensive as conventional car batteries, but has a much higher energy density. The new battery could become a cost-effective, environmentally friendly alternative for storing renewable energy and supporting the power grid.

A team based at the Department of Energy’s Pacific Northwest National Laboratory (PNNL) identified this energy storage gem after realizing the new battery works in a different way than they had assumed. The journal Nature Energy published a paper today that describes the battery.

PNNL batteryPNNL’s improved aqueous zinc-manganese oxide battery offers a cost-effective, environmentally friendly alternative for storing renewable energy and supporting the power grid.

“The idea of a rechargeable zinc-manganese battery isn’t new; researchers have been studying them as an inexpensive, safe alternative to lithium-ion batteries since the late 1990s,” said PNNL Laboratory Fellow Jun Liu, the paper’s corresponding author. “But these batteries usually stop working after just a few charges. Our research suggests these failures could have occurred because we failed to control chemical equilibrium in rechargeable zinc-manganese energy storage systems.”

After years of focusing on rechargeable lithium-ion batteries, researchers are used to thinking about the back-and-forth shuttle of lithium ions. Lithium-ion batteries store and release energy through a process called intercalation, which involves lithium ions entering and exiting microscopic spaces in between the atoms of a battery’s two electrodes.

This concept is so engrained in energy storage research that when PNNL scientists, collaborating with the University of Washington, started considering a low-cost, safe alternative to lithium-ion batteries − a rechargeable zinc-manganese oxide battery − they assumed zinc would similarly move in and out of that battery’s electrodes. After a battery of tests, the team was surprised to realize their device was undergoing an entirely different process. Instead of simply moving the zinc ions around, their zinc-manganese oxide battery was undergoing a reversible chemical reaction that converted its active materials into entirely new ones.

Source: http://www.pnnl.gov/

How To Harvest Heat In The Dark To Produce Electricity

Physicists have discovered radical new properties in a nanomaterial, opening new possibilities for highly efficient thermophotovoltaic cells that could one day harvest heat in the dark and turn it into electricity. The research team from the Australian National University (ANU/ARC Centre of Excellence CUDOS) and the University of California Berkeley demonstrated a new artificial material, or metamaterial, that glows in an unusual way when heated.

The findings could drive a revolution in the development of cells which convert radiated heat into electricity, known as thermophotovoltaic cells. “Thermophotovoltaic cells have the potential to be much more efficient than solar cells,” said Dr Sergey Kruk from the ANU Research School of Physics and Engineering.

thermophotovoltaic

Our metamaterial overcomes several obstacles and could help to unlock the potential of thermophotovoltaic cells.”

Thermophotovoltaic cells have been predicted to be more than twice as efficient as conventional solar cells. They do not need direct sunlight to generate electricity, and instead can harvest heat from their surroundings in the form of infrared radiation. They can also be combined with a burner to produce on-demand power or can recycle heat radiated by hot engines. The team’s metamaterial, made of tiny nanoscopic structures of gold and magnesium fluoride, radiates heat in specific directions. The geometry of the metamaterial can also be tweaked to give off radiation in specific spectral range, in contrast to standard materials that emit their heat in all directions as a broad range of infrared wavelengths. This makes the new material ideal for use as an emitter paired with a thermophotovoltaic cell.

The project started when Dr Kruk predicted the new metamaterial would have these surprising properties. The ANU team then worked with scientists at the University of California Berkeley, who have unique expertise in manufacturing such materials.

To fabricate this material the Berkeley team were operating at the cutting edge of technological possibilities,” Dr Kruk said. “The size of an individual building block of the metamaterial is so small that we could fit more than 12,000 of them on the cross-section of a human hair.

The research is published in Nature Communications.

Source: http://www.anu.edu.au/

Battery That Could Be Recharged 200,000 Times

Scientists have long sought to use nanowires in batteries. Thousands of times thinner than a human hair, they’re highly conductive and feature a large surface area for the storage and transfer of electrons. However, these filaments are extremely fragile and don’t hold up well to repeated discharging and recharging, or cycling. In a typical lithium-ion battery, they expand and grow brittle, which leads to cracking.

Researchers fron the University of California Irvine (UCI) have solved this problem by coating a gold nanowire in a manganese dioxide shell and encasing the assembly in an electrolyte made of a Plexiglas-like gel. The combination is reliable and resistant to failure.

Mya Le Thai

The study leader, UCI doctoral candidate Mya Le Thai, cycled the testing electrode up to 200,000 times over three months without detecting any loss of capacity or power and without fracturing any nanowires. The findings were published today in the American Chemical Society’s Energy Letters. Hard work combined with serendipity paid off in this case, according to senior author Reginald Penner.

Mya was playing around, and she coated this whole thing with a very thin gel layer and started to cycle it,” said Penner, chair of UCI’s chemistry department. “She discovered that just by using this gel, she could cycle it hundreds of thousands of times without losing any capacity”.

That was crazy,” he added, “because these things typically die in dramatic fashion after 5,000 or 6,000 or 7,000 cycles at most.

Source: https://news.uci.edu/

In 2029 Immortality May Be Possible

Scientist Ray Kurzweil (Google‘s Director of Engineering) reckons man could become immortal in just a few years’ time. The 61-year-old American – dubbed the smartest futurist on Earth by Microsoft founder Bill Gates – has consistently predicted new technologies many years before they arrived. Here, Ray explains why he believes today’s 60-year-olds could go on to live forever. We are living through the most exciting period of human historyComputer technology and our understanding of genes — our body’s software programs — are accelerating at an incredible rate. He and many other scientists now believe that in around 20 years we will have the means to reprogramme our bodies’ stone-age software so we can halt, then reverse, ageing. Then nano-technology will let us live for ever.

Already, blood cell-sized submarines cnanorobotsalled nanobots are being tested in animals. These will soon be used to destroy tumours, unblock clots and perform operations without scars.

Ultimately, nanobots will replace blood cells and do their work thousands of times more effectively. Within 25 years we will be able to do an Olympic sprint for 15 minutes without taking a breath, or go scuba-diving for four hours without oxygen. Heart-attack victims — who haven’t taken advantage of widely available bionic hearts — will calmly drive to the doctors for a minor operation as their blood bots keep them alive. Nanotechnology will extend our mental capacities to such an extent we will be able to write books within minutes. If we want to go into virtual-reality mode, nanobots will shut down brain signals and take us wherever we want to go. Virtual sex will become commonplace. And in our daily lives, hologram-like figures will pop up in our brain to explain what is happening.

These technologies should not seem at all fanciful. Our phones now perform tasks we wouldn’t have dreamed possible 20 years ago. In 1965, an university’s only computer cost £7million and was huge. Today your mobile phone is a million times less expensive and a thousand times more powerful. That’s a billion times more capable for the same price.

According to Kurrzweil’s theory — the Law of Accelerating Returns — we will experience another billion-fold increase in technological capability for the same cost in the next 25 years. So we can look forward to a world where humans become cyborgs, with artificial limbs and organs. This might sound far-fetched, but remember, diabetics already have artificial pancreases and Parkinson’s patients have neural implants. As we approach the 21st Century’s second decade, stunning medical breakthroughs are a regular occurrence.

In 2008 we discovered skin cells can be transformed into the equivalent of embryonic cells. So organs will soon be repaired and eventually grown. In a few years most people will have their entire genetic sequences mapped. Before long, we will all know the diseases we are susceptible to and gene therapies will mean virtually no genetic problems that can’t be erased. It’s important to ensure we get to take advantage of the upcoming technologies by living well and not getting hit by a bus.

By the middle of this century we will have back-up copies of the information in our bodies and brains that make us who we are. Then we really will be immortal.

Source: https://www.theguardian.com
AND
http://www.thesun.co.uk/

Diabetes: How To Avoid Amputation

Scientists from Tomsk Polytechnic University (TPU) in Russia along with National Autonomous Mexico University develop techniques to treat diabetic foot syndrome with silver nano-particles which special insoles are treated with. The techniques help to fight ulcers appearing on feet in diabetic patients, facilitates their healing and disinfection, reducing the risk of amputation.

Diabetic foot syndrome is one of the latest and most serious complications of diabetes. Due to the large amount of sugar in the body there are changes in peripheral nerves, blood vessels, skin and soft tissues, bones and joints of the patient. Infections, ulcers, suppurations and so on are emerging. Up to 15% of people with diabetes have the risk of developing ulcers on feet. In the advanced form diabetic foot syndrome can lead to amputation. Silver preparations being developed by Tomsk Polytechnic University jointly with Novosibirsk and Mexican counterparts are able to reduce such risks.

diabetes

 

The research has shown silver’s antibacterial properties facilitate rapid healing of ulcers and suppurations in patients with diabetic foot syndrome. Together with colleagues from Mexico, where the problem is particularly acute, we are working to create special insoles for diabetic patients. The development has passed clinical tests. In patients who had used the insoles impregnated with silver nanoparticles, leg ulcers healed up, the risk of amputations significantly reduced“, says TPU Professor Alexey Pestryakov, Head of the Department of Physical and Analytical Chemistry.

 Source: http://tpu.ru/

Solar Hubs Provide Clean Water, Electricity & Internet to 3000 people

The Italian company Watly aims to deliver a hat trick of very needful things to the developing world, in the form of both a standalone unit and as a network of units. The team of this ambitious company describes their creation as the “biggest solar-powered computer in the world,” which combines solar photovoltaics (PV) and battery storage for powering the unit (and for charging external devices), with a water filtration system and an internet connectivity and telecommunications hub. The Watly system, which has been in the works for the last few years, and has now attracted the attention of The Discovery Channel, was run as a pilot program at a village in Ghana, where the 2.0 version of the device was successfully deployed to deliver clean drinking water to residents.

watly solar hub

The next step, however, is to build out the Watly 3.0 system, which is the full-sized version of the device, measuring some 40 meters long, and which is expected to be able to provide as much as 5000 liters of water per day, every day, for at least 15 years, along with producing solar electricity and charging services to as many as 3000 people. According to the company, one unit could offset the emissions equivalent of 2500 barrels of oil over the course of those 15 years, along with providing clean water and an off-grid power source. To get to that next step, Watly has turned to – wait for it – crowdfunding with an Indiegogo campaign that seeks to raise money for the installation of the 3.0 version as a pilot program in Africa (location TBD).

Along with the solar power and drinking water, Watly aims to provide an internet/telecom hub for local residents, with an onboard system for connecting to 3G/4G, radio link data systems, and/or satellites, as well as to communicate with other Watly units to act as a node in an “EnergyNet.”

Watly is a powerful communication device that can collect and send any kind of data (videos, images, audios, texts, ratios, etc.) to the Internet as well as to any other compatible communication device. A single Watly is a standing alone machine, but two or more Watlys become a network where each node is auto-powered, self-sustained and multi-functional.

Source: https://watly.co/

Root, the Code-Teaching Robot

In the digital age, computing fuels some of the fastest-growing segments of the economy, making programming an increasingly important part of an American education. But the words “computer literacy” do not exactly excite the imaginations of most grade schoolers. So how to engage young minds with coding? One answer, say researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering, is a robot named Root.

Root teaches kids codingCLICK ON THE IMAGE TO ENJOY THE VIDEO

“Right now, coding is taught at a computer keyboard. It’s an abstract process that doesn’t have a relationship to the real world,” said Raphael Cherney, a research associate at the institute. “What Root does is bring coding to life in an extremely fun and approachable way. Kids with no experience in coding can be programming robots in a matter of minutes.

Fitting somewhere between old-time remote-controlled toy trains and today’s video games, Root is a robot that is programmed using a tablet interface called Square. Root has light and color sensors, bumpers, and a touch surface that enable it to respond to the physical world. In a classroom setting, Root would “drive” along a magnetic dry-erase whiteboard at the front of the class, giving the young programmers an “instant, physical manifestation” of the code, according to Zivthan Dubrovsky, who leads the robotics platform at Wyss.
Source: http://news.harvard.edu/

Brain Implant Moves Paralyzed Arm

This is Ian Burkhart of Ohio. His hands and legs were permanently paralyzed in a diving accident when he was 19 years old. But now with the help of a new, breakthrough computer chip implanted in his brain – the, now, 24-year-old is playing guitar hero.

brain implant helps paralized limbsCLICK ON THE IMAGE TO ENJOY THE VIDEO
When we first hooked everything up, you know for the first time being able to move my hand, it was a big shock because you know it was something that I have not moved in three and half years at that point, now it’s more of something where I expect it to move“,  says  Ian Burkhat, the quadriplegic patient at Ohio State University Wexner Medical Center.  The small pea-sized computer chip relays signals from Burkhart’s brain through 130 electrodes to his forearm, allowing his mind guide his hands and fingers, bypassing his damaged spinal cord. On Wednesday, scientists and neurosurgeons describing this quadriplegic’s accomplishments as a milestone in the evolution of brain-computer interface technology.

This really provides hope, we believe, for many patients in the future as this technology evolves and matures“, comments Doctor Ali Rezai, from the Ohio State’s Center for NeuroModulation. Burkhart says the progress is moving along faster than he imagined: “The biggest dream would be to get full function of my hand back, both my hands, because that would allow you to be much more independent, not to have to rely on people for simple day to day tasks that you take for granted.”

Scientists are working to improve the technology, which for now can only be used in the laboratory, and move toward a wireless system bringing Burkhart another step closer to his dream.

Source: http://wexnermedical.osu.edu/

Robots That Feel And Touch Like Humans

Smart synthetic skins have the potential to allow robots to touch and sense what’s around them, but keeping them powered up and highly sensitive at low cost has been a challenge. Now scientists report in the journal ACS Nano a self-powered, transparent smart skin that is simpler and less costly than many other versions that have been developed.

mother robot

Endowing robots and prosthetics with a human-like sense of touch could dramatically advance these technologies. Toward this goal, scientists have come up with various smart skins to layer onto devices. But boosting their sensitivity has involved increasing the numbers of electrodes, depending on the size of the skin. This leads to a rise in costs. Other systems require external batteries and wires to operate, which adds to their bulk. Haixia Zhang and colleagues wanted to find a more practical solution.

The researchers created a smart skin out of ultra-thin plastic films and just four electrodes made from silver nanowires. Other prototypes contain up to 36 electrodes. Additionally, one component harvests mechanical energy — for example, from the movement of a prosthetic hand’s fingers — and turns it into an electric current.

Source: http://www.acs.org/

Electronic Circuits Applied To Paper From A Pen

The electronics of the future will be printed. Flexible circuits can be produced inexpensively on foil or paper using printing processes and permit futuristic designs with curved diodes or input elements. This requires printable electronic materials that can be printed and retain a high level of conductivity during usage in spite of their curved surfaces. Some tried and tested materials include organic, conductive polymers and nanoparticles made of conductive oxides (TCOs). Research scientists at INMLeibniz-Institute for New Materials (Germany) have now combined the benefits of organic and inorganic electronic materials in a new type of hybrid inks. This allows electronic circuits to be applied to paper directly from a pen, for example. To create their hybrid inks, the research scientists coated nanoparticles made of metals with organic, conductive polymers and suspended them in mixtures of water and alcohol. These suspensions can be applied directly on paper or foil using a pen and they dry without any further processing to form electrical circuits.

ink to print electronics

Electrically conductive polymers are used in OLEDs, for example, which can also be manufactured on flexible substrates,” explains Tobias Kraus, Head of the research group Structure Formation at INM. “The combination of metal and nano-particles that we introduce here combines mechanical flexibility with the robustness of a metal and increases the electrical conductivity.”

The developers will be demonstrating their results and the possibilities they offer at stand B46 in hall 2 at this year’s Hanover Trade Fair as part of the leading trade show Research & Technology which takes place from 25th to 29th April.

Source: http://www.leibniz-inm.de/