Articles from August 2016

Microscope’s Electron Beam Writes Data Onto A Hard Disk

Every day we upload over a billion photos to the Internet. Even when photos are online they are generally stored on computer hard disk drives, but these drives have limited lifetimes.


How are we going to be able to store all that information and know that we can leave it there effectively in perpetuity and recall it in 50 years time, in 500 years time? Those are big challenges“, says Porfessor Simon Ringer,  from the Faculty of engineering and information technologies, University of Sydney (Australia). A young PhD student at the University is rising to that challenge. Zibin Chen was examining ferroelectric materials under an electron microscope. He wanted to know if any could be used for data storage, when he made a chance discovery. He noticed the electron beam of the microscope could actually write data onto a disk.

When we discovered this phenomenon we were so excited about it, because we think this is the first time ever in the world to find that the electron beam can actually write very small information on this material“, adds Zibin chen Ph.D candidate at the Faculty of engineering and information technologies, University of Sydney.

The conventional hard disk drive found in most personal computers stores our photos, videos and music as a stream of zeros and ones on a magnetic surface. But hard disk drives are prone to failure, and if they get bumped, the head will scratch the platter, and the data is lost. The University of Sydney‘s system uses an electron beam to write on ceramic material. There are no moving parts, so little risk of scratching. Still in the laboratory stage, the team expects the first use of this technology will be to help store photos and documents in the Cloud. It currently stores 10 times the amount of data as a conventional hard drive, but Chen’s supervisor is confident they can take it much further.

What we’ve done here at the University of Sydney is a breakthrough that has a roadmap of a 100 times change in the computer memory capacity“, comments Professor Ringer.  As the number of photos taken each day keeps growing, Chen’s chance discovery could offer a new way to store our precious memories for generations to come.


Smart Nanoparticles Fight Multidrug-resistant Cancer

Multidrug resistance (MDR) is the mechanism by which many cancers develop resistance to chemotherapy drugs, resulting in minimal cell death and the expansion of drug-resistant tumors. To address the problem of resistance, researchers have developed nanoparticles that simultaneously deliver chemotherapy drugs to tumors and inhibit the MDR proteins that pump the therapeutic drugs out of the cell. The process is known as chemosensitization, as blocking this resistance renders the tumor highly sensitive to the cancer-killing chemotherapy.

smart nanoparticlesMDR is a major factor in the failure of many chemotherapy drugs. The problem affects the treatment of a wide range of blood cancers and solid tumors, including breast, ovarian, lung, and colon cancers. Researchers at the National Institute of Biomedical Imaging and Bioengineering (NIBIB), a part of the National Institutes of Health (NIH), are engineering multi-component nanoparticles that significantly enhance the killing of cancer cells.
Success in this medically important endeavor has required a team with a wide range of expertise to engineer nanoparticles that survive the journey to the tumor site, enter the tumor, and successfully perform the multiple functions for chemosensitization”, says Xiaoyuan Chen, Ph.D., who is the Senior Investigator, and has lead the work. His collaborators include scientists and engineers in China at Southeast University, Shenzhen University, Guangxi Medical University, and Shanghai Jiao Tong University, in addition to chemical engineers at the University of Leeds, United Kingdom.

The results of their experiments are reported in recent articles in Scientific Reports and Applied Materials & Interfaces.


Very Cheap Long-Lasting Batteries

Chemists at the University of Waterloo (Canada) have developed a long-lasting zinc-ion battery that costs half the price of current lithium-ion batteries and could help enable communities to shift away from traditional power plants and into renewable solar and wind energy production. Professor Linda Nazar and her colleagues from the Faculty of Science at Waterloo made the important discovery, which appears in the journal, Nature Energy.

The battery uses safe, non-flammable, non-toxic materials and a pH-neutral, water-based salt. It consists of a water-based electrolyte, a pillared vanadium oxide positive electrode and an inexpensive metallic zinc negative electrode. The battery generates electricity through a reversible process called intercalation, where positively-charged zinc ions are oxidized from the zinc metal negative electrode, travel through the electrolyte and insert between the layers of vanadium oxide nanosheets in the positive electrode. This drives the flow of electrons in the external circuit, creating an electrical current. The reverse process occurs on charge.

The cell represents the first demonstration of zinc ion intercalation in a solid state material that satisfies four vital criteria: high reversibility, rate and capacity and no zinc dendrite formation. It provides more than 1,000 cycles with 80 per cent capacity retention and an estimated energy density of 450 watt-hours per litre. Lithium-ion batteries also operate by intercalation—of lithium ions—but they typically use expensive, flammable, organic electrolytes.

zinc-ion batteries

The worldwide demand for sustainable energy has triggered a search for a reliable, low-cost way to store it,” said Nazar, a University Research Professor in the Department of Chemistry. “The aqueous zinc-ion battery we’ve developed is ideal for this type of application because it’s relatively inexpensive and it’s inherently safe.”



Electric Car: Nanofiber Electrodes Boost Fuel Cells By 30 Percent

At the same time Honda and Toyota are introducing fuel cell cars to the U.S. market, a team of researchers from Vanderbilt University, Nissan North America and Georgia Institute of Technology have teamed up to create a new technology designed to give fuel cells more oomph. The project is part of a $13 million Department of Energy program to advance fuel cell performance and durability and hydrogen storage technologies announced last month.

hydrogen fuel cells

Fuel cells were invented back in 1839 but their first real world application wasn’t until the 1960’s when NASA used them to power the Apollo spacecraft. Fuel cells need fuel and air to run, like a gasoline engine, but they produce electricity, like a battery. In hydrogen/air fuel cells, hydrogen flows into one side of the device. Air is pumped into the other side. At the anode, the hydrogen is oxidized into protons. The protons flow to the cathode where the air is channeled, reducing the oxygen to form water. Special catalysts in the anode and cathode allow these reactions to occur spontaneously, producing electricity in the process. Fuel cells convert fuel to electricity with efficiencies ranging from 40 percent to 60 percent. They have no moving parts so they are very quiet. With the only waste product being water, they are environmentally friendly.The $2.5 million collaboration is based on a new nanofiber mat technology developed by Peter Pintauro, Professor of Chemical Engineering at Vanderbilt, that replaces the conventional electrodes used in fuel cells. The nanofiber electrodes boost the power output of fuel cells by 30 percent while being less expensive and more durable than conventional catalyst layers. The technology has been patented by Vanderbilt and licensed to Merck KGaA in Germany, which is working with major auto manufacturers in applying it to the next generation of automotive fuel cells.

Conventional fuel cells use thin sheets of catalyst particles mixed with a polymer binder for the electrodes. The catalyst is typically platinum on carbon powder. The Vanderbilt approach replaces these solid sheets with mats made from a tangle of polymer fibers that are each a fraction of the thickness of a human hair made by a process called electrospinning. Particles of catalyst are bonded to the fibers. The very small diameter of the fibers means that there is a larger surface area of catalyst available for hydrogen and oxygen gas reactions during fuel cell operation. The pores between fibers in the mat electrode also facilitate the removal of the waste water. The unique fiber electrode structure results in higher fuel cell power, with less expensive platinum.

Eye Test detects Parkinson’s Before Symptoms develop

A newly developed eye test offers the hope of far earlier diagnosis of Parkinson’s disease, a devastating condition usually discovered too late in patients for effective treatment.
This new eye test could detect Parkinson’s disease before symptoms develop. Developed at the University College London (UCL), Institute of Ophthalmology it looks for changes in patients’ retinas before brain alteration occurs. Researchers induced Parkinson’s in rats by injecting them with a chemical called rotenone. Having observed retinal changes, they treated the rodents with a new version ofRosiglitaz anti-diabetic drug Rosiglitazone.


The preliminary results were that we were able to see evidence of Parkinson’s in the retina well in advance compared to the Parkinsonian events in the brain. Furthermore, by injecting the Rosiglitazone in these rats we were able to see a rescue effect of Rosiglitazone in this model, first in the eye and then in the brain“, says Dr. Eduardo Normando, UCL constant opthalmologist. Human clinical trials will begin soon. Earlier diagnosis could have a major impact on future patient outcomes

If you’ve seen the effects in the retina well before you see those effects in the brain then actually you could shorten the length of clinical trials and you could use this as a very good marker of treatment success. But in the long run what we think is that it could be a way of trying to see if patients are ever going to get Parkinson’s disease“, adds UCL Professor of glaucoma and retinal neurodegeneration, Francesca Cordeiro.

The degenerative condition affects 1 in 500 people, causing muscle stiffness, slowness of movement, tremors and a reduced quality of life. Symptoms typically become apparent once more than 70 percent of the brain’s dopamine-producing cells have been destroyed.


Nano Device Cleans Germs from Water In 20 Minutes

In many parts of the world, the only way to make germy water safe is by boiling, which consumes precious fuel, or by putting it out in the sun in a plastic bottle so ultraviolet rays will kill the microbes. But because UV rays carry only 4 percent of the sun’s total energy, the UV method takes six to 48 hours, limiting the amount of water people can disinfect this way.

Now researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have created a nanostructured device, about half the size of a postage stamp, that disinfects water much faster than the UV method by also making use of the visible part of the solar spectrum, which contains 50 percent of the sun’s energy.

clean waterA researcher holds a small, nanostructured device that uses sunlight to disinfect water. By harnessing a broad spectrum of sunlight, it works faster than devices that use only ultraviolet rays

In experiments reported today in Nature Nanotechnology, sunlight falling on the little device triggered the formation of hydrogen peroxide and other disinfecting chemicals that killed more than 99.999 percent of bacteria in just 20 minutes. When their work was done the killer chemicals quickly dissipated, leaving pure water behind.

Our device looks like a little rectangle of black glass. We just dropped it into the water and put everything under the sun, and the sun did all the work,” said Chong Liu, lead author of the report. She is a postdoctoral researcher in the laboratory of Yi Cui, a SLAC/Stanford associate professor and investigator with SIMES, the Stanford Institute for Materials and Energy Sciences at SLAC.

Under an electron microscope the surface of the device looks like a fingerprint, with many closely spaced lines. Those lines are very thin films – the researchers call them “nanoflakes” – of molybdenum disulfide that are stacked on edge, like the walls of a labyrinth, atop a rectangle of glass. In ordinary life, molybdenum disulfide is an industrial lubricant. But like many materials, it takes on entirely different properties when made in layers just a few atoms thick. In this case it becomes a photocatalyst.

By making their molybdenum disulfide walls in just the right thickness, the scientists got them to absorb the full range of visible sunlight. And by topping each tiny wall with a thin layer of copper, which also acts as a catalyst, they were able to use that sunlight to trigger exactly the reactions they wanted – reactions that produce “reactive oxygen species” like hydrogen peroxide, a commonly used disinfectant, which kill bacteria in the surrounding water.


How To Stop The Bleeding

Whether  occurs on the battlefield or the highway, saving lives often comes down to stopping the bleeding as quickly as possible. Many methods for controlling external bleeding exist, but at this point, only surgery can halt blood loss inside the body from injury to internal organs. Now, researchers have developed nanoparticles that congregate wherever injury occurs in the body to help it form blood clots, and they’ve validated these particles in test tubes and in vivo.

stopping the bleeding

Nanoparticles (green) help form clots in an injured liver. The researchers added color to the scanning electron microscopy image after it was taken

When you have uncontrolled internal bleeding, that’s when these particles could really make a difference,” says Erin B. Lavik, Sc.D. “Compared to injuries that aren’t treated with the nanoparticles, we can cut bleeding time in half and reduce total blood loss.

Trauma remains a top killer of children and younger adults, and doctors have few options for treating internal bleeding. To address this great need, Lavik’s team developed a nanoparticle that acts as a bridge, binding to activated platelets and helping them join together to form clots. To do this, the nanoparticle is decorated with a molecule that sticks to a glycoprotein found only on the activated platelets.

The researchers have presented their work at the 252nd National Meeting & Exposition of the American Chemical Society (ACS).


Nanoparticles Detect Dirty Nuclear Bomb

One of the most critical issues the United States faces today is preventing terrorists from smuggling nuclear weapons into its ports. To this end, the U.S. Security and Accountability for Every Port Act mandates that all overseas cargo containers be scanned for possible nuclear materials or weapons.

Detecting neutron signals is an effective method to identify nuclear weapons and special nuclear materials. Helium-3 gas is used within detectors deployed in ports for this purpose. The catch? While helium-3 gas works well for neutron detection, it’s extremely rare on Earth. Intense demand for helium-3 gas detectors has nearly depleted the supply, most of which was generated during the period of nuclear weapons production during the past 50 years. It isn’t easy to reproduce, and the scarcity of helium-3 gas has caused its cost to skyrocket recently — making it impossible to deploy enough neutron detectors to fulfill the requirement to scan all incoming overseas cargo containersHelium-4 is a more abundant form of helium gas, which is much less expensive, but can’t be used for neutron detection because it doesn’t interact with neutrons.

A group of Texas Tech University researchers led by Professors Hongxing Jiang and Jingyu Lin report this week in Applied Physics Letters, from AIP Publishing, that they have developed an alternative materialhexagonal boron nitride semiconductors — for neutron detection. This material fulfills many key requirements for helium gas detector replacements and can serve as a low-cost alternative in the future. The group’s concept was first proposed to the Department of Homeland Security’s Domestic Nuclear Detection Office and received funding from its Academic Research Initiative program six years ago. By using a 43-micron-thick hexagonal boron-10 enriched nitride layer, the group created a thermal neutron detector with 51.4 percent detection efficiency, which is a record high for semiconductor thermal neutron detectors.

nuclear radiation

“Higher detection efficiency is anticipated by further increasing the material thickness and improving materials quality,” explained Professor Jiang, Nanophotonics Center and Electrical & Computer Engineering, Whitacre College of Engineering, Texas Tech University. “Our approach of using hexagonal boron nitride semiconductors for neutron detection centers on the fact that its boron-10 isotope has a very large interaction probability with thermal neutrons,” Jiang continued. “This makes it possible to create high-efficiency neutron detectors with relatively thin hexagonal boron nitride layers. And the very large energy bandgap of this semiconductor — 6.5 eV — gives these detectors inherently low leakage current densities.

The key significance of the group’s work? This is a completely new material and technology that offers many advantages. “Compared to helium gas detectors, boron nitride technology improves the performance of neutron detectors in terms of efficiency, sensitivity, ruggedness, versatile form factor, compactness, lightweight, no pressurization … and it’s inexpensive,” Jiang said.

This means that the material has the potential to revolutionize neutron detector technologies.

Beyond special nuclear materials and weapons detection, solid-state neutron detectors also have medical, health, military, environment, and industrial applications,” he added. “The material also has applications in deep ultraviolet photonics and two-dimensional heterostructures. With the successful demonstration of high-efficiency neutron detectors, we expect it to perform well for other future applications.”

The main innovation behind this new type of neutron detector was developing hexagonal boron nitride with epitaxial layers of sufficient thickness — which previously didn’t exist. “It took our group six years to find ways to produce this new material with a sufficient thickness and crystalline quality for neutron detection,” Jiang noted. “It’s surprising to us that the detector performs so well, despite the fact that there’s still a little room for improvement in terms of material quality,” he said. “These devices must be capable of detecting nuclear weapons from distances tens of meters away, which requires large-size detectors,” Jiang added. “There are technical challenges to overcome, but we’re working toward this goal.”


The Rise Of The Electric Trucks

Nikola Motor, a company based in Salt Lake City, has announced that its  advanced R&D team has achieved 100% zero emissions on the Nikola One commercial class 8 truck. Working electric truck prototype will be unveiled on December 2 in Salt Lake City.


While other companies have recently announced battery-powered semi-trucks, those trucks are restricted to a range of only a couple hundred miles and four to eight hours of charging between stops,” said Founder and CEO Trevor Milton. “Nikola has engineered the holy grail of the trucking industry. We are not aware of any zero emission truck in the world that can haul 80,000 pounds more than 1,000 miles and do it without stopping. The Nikola One requires only 15 minutes of downtime before heading out for the next 1,000 miles.” “Imagine what this could do for the air in every city in America. We knew our emissions would be low, but to have the ability to achieve true zero emissions is revolutionary for the worldwide trucking industry,” Milton added.

When asked why no one had accomplished this before, Milton said, “It requires a specific zero emission refinement process of fuel and gutsy engineering and product execution. A traditional manufacturer would have to partner with an oil company, environmental group, electric vehicle engineering firm, a broad spectrum of suppliers and a world-class consulting firm to have figured it out. At Nikola, all of our development and talent is under one roof”.

In addition to the zero emission semi-truck, Nikola has initiated the first steps to manufacture emission-free power plants that range from 50 kilowatts to 50 megawatts, cutting power generation costs in half. Nikola believes this technology not only has the ability to transform America’s roadways, but how the world will migrate towards zero-emission energy going forward.

Two months ago, Nikola announced more than $2.3 billion in reservations, totaling more than 7,000 truck reservations with deposits. The Nikola One truck leasing program costs $4000 to $5000 per month, depending on which truck configuration and options the customer chooses. The first million miles of fuel under the lease is included with each truck sale, potentially offsetting 100% of the monthly cost. An average diesel burns approximately $400,000 in fuel and can rack up over $100,000 in maintenance costs over 1,000,000 miles. These costs are eliminated with the Nikola One lease. Now companies can have a zero emission truck with a return on their investment in the first month.



The First Satellite Using Quantum Cryptography Is Chinese

Congratulations are in order for China: by launching the world’s first quantum communications satellite, the country has achieved an interesting — if somewhat difficult to explain — milestone in space and cryptography.

quantum dots

Quantum Experiments at Space Scale (QUESS), nicknamed Micius after the philosopher, lifted off from Jiuquan Satellite Launch Center at 1:40 AM local time (late yesterday in the U.S.) and is currently maneuvering itself into a sun-synchronous orbit at 500 km.

So what’s in the package that’s so exciting?

QUESS is an experiment in the deployment of quantum cryptography — specifically, a prototype that will test whether it’s possible to perform this delicate science from space. Inside QUESS is a crystal that can be stimulated into producing two photons that are “entangled” at a subatomic, quantum level. Entangled photons have certain aspects — polarization, for example — that are the same for both regardless of distance; if one changes, the other changes. The trouble is that photons are rather finicky things, and tend to be bounced, absorbed, and otherwise interfered with when traveling through fibers, air, and so on. QUESS will test whether sending them through space is easier, and whether one of a pair of entangled photons can be successfully sent to the surface while the other remains aboard the satellite.

If this is possible, the entangled photons can be manipulated in order to send information; the satellite could, for example, send binary code by inverting its photon’s polarization, one way for 1, the other way for 0. The ground station would see its photon switching back and forth and record the resulting data. This process would be excruciatingly slow, but fast enough for, say, key creation and exchange — after which data can be exchanged securely by more ordinary means. The critical thing about this is that there is no transmission involved, or at least not one we understand and can intercept.


Nanotechnology To Save Polluted Lakes

Peruvian scientist Marino Morikawa, known for his work revitalizing polluted wetlands in the North of Lima using nanotechnology, now plans to try to clean up Lake Titicaca and the Huacachina lagoon, an oasis south of Lima. El Cascajo, an ecosystem of 123 acres in Chancay district, located north of Lima, began its recovery process in 2010 with two inventions that Morikawa came up with using his own resources and money..The project started after he got a call from Morikawa’s father, who informed him that El Cascajo, where he had gone fishing in so many occasion as a child, was “in very bad shape,” Morikawa explains.

The scientist set out to find a way to decontaminate the wetlands without using chemicals. His first invention was a micro nanobubbling system, consisting of bubbles10,000 times smaller than those in soda – which help trap and paralyze viruses and bacteria, causing them to evaporate. He also designed biological filters to retain inorganic pollutants, such as heavy metals and minerals that adhere to surfaces and are decomposed by bacteriaIn just 15 days, the effort led to a revival of the wetlands, a process that in the laboratory had taken six months.


Nature does its job. All I do is give it a boost to speed up the process,” Morikawa adds.

By 2013, about 60 percent of the wetlands was repopulated by migratory birds, that use El Cascajo as a layover on their route from Canada to Patagonia. Now, Morikawa has helped recover 30 habitats around the world, but has his sights on two ecosystems that are emblematic in Peru.

The first, scheduled for 2018, is the recovery of Lake Titicaca, the largest lake in South America, located 4,000 meters (13,115 feet) above sea level between Peru and Bolivia. The second project aims to restore the Huacachina lagoon near the southern city of Ica, where water stopped seeping in naturally in the 1980s.


Legions Of Nanorobots Attack Cancerous Cells

Researchers from Polytechnique Montréal, Université de Montréal and McGill University have just achieved a spectacular breakthrough in cancer research. They have developed new nanorobotic agents capable of navigating through the bloodstream to administer a drug with precision by specifically targeting the active cancerous cells of tumours. This way of injecting medication ensures the optimal targeting of a tumour and avoids jeopardizing the integrity of organs and surrounding healthy tissues. As a result, the drug dosage that is highly toxic for the human organism could be significantly reduced.

legions of nanorobots attack cancerous cells

These legions of nanorobotic agents were actually composed of more than 100 million flagellated bacteria – and therefore self-propelled – and loaded with drugs that moved by taking the most direct path between the drug’s injection point and the area of the body to cure,” explains Professor Sylvain Martel,  Director of the Polytechnique Montréal Nanorobotics Laboratory, who heads the research team’s work. “The drug’s propelling force was enough to travel efficiently and enter deep inside the tumours.”

When they enter a tumour, the nanorobotic agents can detect in a wholly autonomous fashion the oxygen-depleted tumour areas, known as hypoxic zones, and deliver the drug to them. This hypoxic zone is created by the substantial consumption of oxygen by rapidly proliferative tumour cells. Hypoxic zones are known to be resistant to most therapies, including radiotherapy.

But gaining access to tumours by taking paths as minute as a red blood cell and crossing complex physiological micro-environments does not come without challenges. So Professor Martel and his team used nanotechnology to do it.


This scientific breakthrough has just been published in the prestigious journal Nature Nanotechnology in an article titled “Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions.” The article notes the results of the research done on mice, which were successfully administered nanorobotic agents into colorectal tumours.