Articles from October 2017

Invisible Glass

If you have ever watched television in anything but total darkness, used a computer while sitting underneath overhead lighting or near a window, or taken a photo outside on a sunny day with your smartphone, you have experienced a major nuisance of modern display screens: glare. Most of today’s electronics devices are equipped with glass or plastic covers for protection against dust, moisture, and other environmental contaminants, but light reflection from these surfaces can make information displayed on the screens difficult to see. Now, scientists at the Center for Functional Nanomaterials (CFN) — a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory — have demonstrated a method for reducing the surface reflections from glass surfaces to nearly zero by etching tiny nanoscale features into them.

Whenever light encounters an abrupt change in refractive index (how much a ray of light bends as it crosses from one material to another, such as between air and glass), a portion of the light is reflected. The nanoscale features have the effect of making the refractive index change gradually from that of air to that of glass, thereby avoiding reflections. The ultra-transparent nanotextured glass is antireflective over a broad wavelength range (the entire visible and near-infrared spectrum) and across a wide range of viewing angles. Reflections are reduced so much that the glass essentially becomes invisible.

This “invisible glass” could do more than improve the user experience for consumer electronic displays. It could enhance the energy-conversion efficiency of solar cells by minimizing the amount of sunlight lost to refection. It could also be a promising alternative to the damage-prone antireflective coatings conventionally used in lasers that emit powerful pulses of light, such as those applied to the manufacture of medical devices and aerospace components.

We’re excited about the possibilities,” said CFN Director Charles Black, corresponding author on the paper published online on October 30 in Applied Physics Letters. “Not only is the performance of these nanostructured materials extremely high, but we’re also implementing ideas from nanoscience in a manner that we believe is conducive to large-scale manufacturing.”

Our role in the CFN is to demonstrate how nanoscience can facilitate the design of new materials with improved properties,” concluded Black. “This work is a great example of that–we’d love to find a partner to help advance these remarkable materials toward technology.”


Robots Soon Will Share Our Private And Sex Life

Sex robot inventor Sergi Santos isn’t just changing how men pleasure themselves — he’s potentially changing society as we know it. The Spanish scientist believes it’s only a matter of time before human-and-robot marriage is commonplace, and he’s even hatched a plan for how he can have a baby with his mechanical temptress SamanthaSamantha is Santos’ 100-pound sex robot that boasts eight different programs and the ability to make “realistic” orgasm sounds.

Santos said he believes that in the next couple of decades, we won’t just be seeing these dolls hidden in a man’s closet or under the bed — they’ll be walking down the aisle to say “I do” to their human lovers.

Speaking from his home laboratory in Barcelona (Spain), he said: “People might look at Samantha as a weird thing you read about.” “But before they know it, these robots will be doing their jobs, and marrying their children, their grandchildren, and their friends.” “They need to remember that just a few years ago, mobile phones were seen as a non-essential item in society, but now we can’t function without them.” And Santos claims he will soon be able to have a baby with Samantha. He explained: “I can make them have a baby. It’s not so difficult. I would love to have a child with a robot.” His plan involves using thebrain” he has created for Samantha but upgrading it so it is functioning at full capability.


Editing Genes In Human Embryos

Two new CRISPR tools overcome the scariest parts of gene editing.The ability to edit RNA and individual DNA base pairs will make gene editing much more precise. Several years ago, scientists discovered a technique known as CRISPR/Cas9, which allowed them to edit DNA more efficiently than ever before.
Since then, CRISPR science has exploded; it’s become one of the most exciting and fast-moving areas of research, transforming everything from medicine to agriculture and energy. In 2017 alone, more than 14,000 CRISPR studies were published.

But here’s the thing: CRISPR, while a major leap forward in gene editing, can still be a blunt instrument. There have been problems with CRISPR modifying unintended gene targets and making worrisome, and permanent, edits to an organism’s genome. These changes could be passed down through generations, which has raised the stakes of CRISPR experiments — and the twin specters of “designer babies” and genetic performance enhancers — particularly when it comes to editing genes in human embryos.
So while CRISPR science is advancing quickly, scientists are still very much in the throes of tweaking and refining their toolkit. And on Wednesday, researchers at the Broad Institute of MIT and Harvard launched a coordinated blitz with two big reports that move CRISPR in that safer and more precise direction.
In a paper published in Science, researchers described an entirely new CRISPR-based gene editing tool that targets RNA, DNA’s sister, allowing for transient changes to genetic material. In Nature, scientists described how a more refined type of CRISPR gene editing can alter a single bit of DNA without cutting it — increasing the tool’s precision and efficiency.

The first paper, out Wednesday in Science, describes a new gene editing system. This one, from researchers at MIT and Harvard, focuses on tweaking human RNA instead of DNA.

Our cells contain chromosomes made up of chemical strands called DNA, which carry genetic information. Those genes have recipes for proteins that lead to a bunch of different traits. But to carry out the instructions in any one recipe, DNA needs another type of genetic material called RNA to get involved.

RNA is ephemeral: It acts like a middleman, or a messenger. For a gene to become a protein, that gene has to be transcribed into RNA in the cell, and the RNA is then read to make the protein. If the DNA is permanent — the family recipe book passed down through generations — the RNA is like your aunt’s scribbled-out recipe on a Post-It note, turning up only when it’s needed and disappearing again.

With the CRISPR/Cas9 system, researchers are focused on editing DNA. (For more on how that system works, read this Vox explainer.) But the new Science paper describes a novel gene editing tool called REPAIR that’s focused on using a different enzyme, Cas13, to edit that transient genetic material, the RNA, in cells. REPAIR can target specific RNA letters, or nucleosides, that are involved in single-base changes that regularly cause disease in humans.

This is hugely appealing for one big reason: With CRISPR/Cas9, the changes to the genome, or the cell’s recipe book, are permanent. You can’t undo them. With REPAIR, since researchers can target single bits of ephemeral RNA, the changes they make are transient, even reversible. So this system could fix genetic mutations without actually touching the genome (like throwing away your aunt’s Post-It note recipe without adding it to the family recipe book).


How To Detect Lead In Water

Gitanjali Rao, 11-year-old girl, is “America’s Top Young Scientist” of this year, with her invention of Tethys, a device that detects lead in water.


Tethys, the Greek goddess of fresh water, is a lead detection tool. What you do is first dip a disposable cartridge, which can easily be removed and attached to the core device in the water you wish to test. Once you do that, that’s basically the manual part. Then you just pull out an app on your phone and check your status and it looks like the water in this container is safe. So that’s just very simple, about like a 10 to 15 second process,” says Gitanjali Rao . The young girl was affected by the Flint, Michigan water catastrophe when the city started using the Flint River for water in 2014, sparking a crisis that was linked to an outbreak of Legionnaires’ disease, at least 12 deaths and dangerously high lead levels in children.

I was most affected about Flint, Michigan because of the amount of people that were getting affected by the lead in water. And I also realized that it wasn’t just in Flint, Michigan and there were over 5,000 water systems in the U.S. alone. In the beginning of my final presentation at the event, I talked about a little boy named Opemipo, he’s 10 years old and lives in Flint, Michigan. And he has 1 percent elevated lead levels in his blood. And he’s among the thousands of adults and children exposed to the harmful effects of lead in water. So it’s a pretty big deal out there today,” remembers Rao. The seventh-grader said it took her five months to make Tethys from start to finish.

My first couple of times when I was doing my experimentation and test, I did fail so many times and it was frustrating, but I knew that it was just a learning experience and I could definitely develop my device further by doing even more tests and getting advice from my mentor as well. So, never be afraid to try,” explains Rao, who  won the 2017 Discovery Education 3M Young Scientist Challenge, along with a $25,000 prize.


Self-regulating Nanoparticles Treat Cancer

Scientists from the University of Surrey have developed ‘intelligentnanoparticles which heat up to a temperature high enough to kill cancerous cells – but which then self-regulate and lose heat before they get hot enough to harm healthy tissue. The self-stopping nanoparticles could soon be used as part of hyperthermic-thermotherapy to treat patients with cancer, according to an exciting new study reported in NanoscaleThermotherapy has long been used as a treatment method for cancer, but it is difficult to treat patients without damaging healthy cells. However, tumour cells can be weakened or killed without affecting normal tissue if temperatures can be controlled accurately within a range of 42°C to 45°C.

Scientists from Surrey’s Advanced Technology Institute have worked with colleagues from the Dalian University of Technology in China to create nanoparticles which, when implanted and used in a thermotherapy session, can induce temperatures of up to 45°C. The Zn-Co-Cr ferrite nanoparticles produced for this study are self-regulating, meaning that they self-stop heating when they reach temperatures over 45°C. Importantly, the nanoparticles are also low in toxicity and are unlikely to cause permanent damage to the body.

This could potentially be a game changer in the way we treat people who have cancer. If we can keep cancer treatment sat at a temperature level high enough to kill the cancer, while low enough to stop harming healthy tissue, it will prevent some of the serious side effects of vital treatment. It’s a very exciting development which, once again, shows that the University of Surrey research is at the forefront of nanotechnologies – whether in the field of energy materials or, in this case, healthcare,” said Professor Ravi Silva, Head of the Advanced Technology Institute at the University of Surrey.

Dr. Wei Zhang, Associate Professor from Dalian University of Technology explains: “Magnetic induced hyperthermia is a traditional route of treating malignant tumours. However, the difficulties in temperature control has significantly restricted its usage If we can modulate the magnetic properties of the nanoparticles, the therapeutic temperature can be self-regulated, eliminating the use of clumsy temperature monitoring and controlling systems.

“By making magnetic materials with the Curie temperature falling in the range of hyperthermia temperatures, the self-regulation of therapeutics can be achieved. For the most magnetic materials, however, the Curie temperature is much higher than the human body can endure. By adjusting the components as we have, we have synthesized the nanoparticles with the Curie temperature as low as 34oC. This is a major nanomaterials breakthrough.”


Using Brain-Machine Interfaces, Mental Power Can Move Objects

A unique citizen science project in which volunteers will be trained to move a piece of steel machinery using the power of their mind begins on October 27. The Mental Work project uses brain-machine interfaces developed at EPFL (Ecole polytechnique fédérale de Lausanne) in Switzerland, a convergence of science, art, and design .


At the mental work factory the public can come and we equip them with an EEG helmet which will read the mental activity, the electrical activity, that’s in their brain. These helmets are dry, so we don’t need gel for conductivity and they’re also wireless so they can walk through the mental factory and engage with four of our machines activating them with only their mental activity,  explains Michael Mitchell , who is one of the three co-founders of Mental Work.

The data that will be collected during the mental worker’s trajectory throughout our factory floor will then be made anonymous and given to the brain machine interface community to improve the interfaces for the future. “We think that we’re on the cusp of a cognitive revolution. Now a cognitive revolution is going to be a world where our brains are intimately connected to our physical world around us. With the development of these brain machine interfaces we think that we are really at the beginning of a moment in time where man is going to become the centre of all this technology. His brain activity is going to interact with the physical world around him in ways that we can hardly imagine today. “So I think it’s understandable if people are a little apprehensive about this technology because some people may think ‘oh, it can read my thoughts and then what are we going to do with those thoughts. Where’s the privacy level here?’ But in fact we’re only asking you to modulate your brain activity according to your own will. So it’s as simple as sending a command to a computer using a mouse or a keyboard. But this time we’re using asking you to use your brain. Now we want to bring this technology to the public at a early phase of its development so that we can create a dialogue about what kind of relationship we want to have with this technology in particular but also with man’s relationship to technology in general.


Ultra-fast Data Processing At Nanoscale

Advancement in nanoelectronics, which is the use of nanotechnology in electronic components, has been fueled by the ever-increasing need to shrink the size of electronic devices like nanocomputers in a bid to produce smaller, faster and smarter gadgets such as computers, memory storage devices, displays and medical diagnostic tools.

While most advanced electronic devices are powered by photonics – which involves the use of photons to transmit informationphotonic elements are usually large in size and this greatly limits their use in many advanced nanoelectronics systems. Plasmons, which are waves of electrons that move along the surface of a metal after it is struck by photons, holds great promise for disruptive technologies in nanoelectronics. They are comparable to photons in terms of speed (they also travel with the speed of light), and they are much smaller. This unique property of plasmons makes them ideal for integration with nanoelectronics. However, earlier attempts to harness plasmons as information carriers had little success.

Addressing this technological gap, a research team from the National University of Singapore (NUS) has recently invented a novel “converter” that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

This innovative transducer can directly convert electrical signals into plasmonic signals, and vice versa, in a single step. By bridging plasmonics and nanoscale electronics, we can potentially make chips run faster and reduce power losses. Our plasmonic-electronic transducer is about 10,000 times smaller than optical elements. We believe it can be readily integrated into existing technologies and can potentially be used in a wide range of applications in the future,” explained Associate Professor Christian Nijhuis from the Department of Chemistry at the NUS Faculty of Science, who is the leader of the research team behind this breakthrough.

This novel discovery was first reported in the journal Nature Photonics.


3D Printed Concrete Bridge

Today world’s first 3D printed reinforced, pre-stressed concrete bridge was opened. The cycle bridge is part of a new road around the village of Gemert, in the Netherlands. It was printed at Eindhoven University of Technology. With the knowledge the researchers gained in this project, they are now able to design even larger printed concrete structures.
The bridge is the first civil infrastructure project to be realized with 3D-concrete printing. The bridge is 8 meters long (clear span 6.5 meters) and 3.5 meters wide. As it is a ‘worlds first’, the developers did not take any chances and tested the bridge by putting a load of 5 tons on it, which is a lot more than the load the bridge will actually carry.


The bridge has to meet all regular requirements of course. It is designed to do its duty – to carry cyclists – for thirty years or more. With more cycles than people in the Netherlands, it is expected that hundreds of cyclists will ride over the printed bridge every day. It is part of a large road construction project, led by the company BAM Infra, and commissioned by the province of North-Brabant.
An important detail is that the researchers at Eindhoven University of Technology have succeeded in developing a process to incorporate steel reinforcement cable while laying a strip of concrete. The steel cable is the equivalent of the reinforcement mesh used in conventional concrete. It handles the tensile stress because concrete cannot deal with tensile stress adequately, but steel can.
One of the main advantages of printing concrete is that much less concrete is needed than in the conventional technique, in which a mold (formwork) is filled with concrete. By contrast, the printer deposits only the concrete where it is needed, which decreases the use of cement. This reduces CO2 emissions, as cement production has a very high carbon footprint.

Another benefit lies in the freedom of form: the printer can make any desired shape, whereas conventional concrete shapes tend to be unwieldy in shape due to use of formwork. Concrete printing also enables a much higher realization speed. No formwork structures have to be built and dismantled, and reinforcement mesh does not have to be put in place separately. Overall, the researchers think the realization will eventually be roughly three times faster than conventional concrete techniques.


Dyslexia Coud Be Definitively Cured

French scientists from the University of Rennes say they may have found a potential cause of dyslexia which could be treatable, hidden in tiny cells in the human eye. In a small study they found that most dyslexics had dominant round spots in both eyes – rather than in just one – leading to blurring and confusion. UK experts said the research was “very exciting” and highlighted the link between vision and dyslexia.

Not all dyslexics are likely to have the same problem. People with dyslexia have difficulties learning to read, spell or write despite normal intelligence. Often letters appear to move around and get in the wrong order and dyslexic people can have problems distinguishing left from right. Human beings have a dominant eye in the same way that people have a dominant left or right hand.
In the University of Rennes study, published in the journal Proceedings of the Royal Society B, scientists looked into the eyes of 30 non-dyslexics and 30 dyslexics.
They discovered differences in the shape of spots deep in the eye where red, green and blue cones – responsible for colour – are located. In non-dyslexics, they found that the blue cone-free spot in one eye was round and in the other eye it was oblong or unevenly shaped, making the round one more dominant. But in dyslexic people, both eyes had the same round-shaped spot, which meant neither eye was dominant. This would result in the brain being confused by two slightly different images from the eyes.

Researchers Guy Ropars and Albert le Floch said this lack of asymmetry “might be the biological and anatomical basis of reading and spelling disabilities“. They added: “For dyslexic students, their two eyes are equivalent and their brain has to successively rely on the two slightly different versions of a given visual scene.”


Gene Researchers Have Created Green Mice

These are no Frankenstein mice. Their green feet come courtesy of a fluorescent green jelly fish gene added to their own genome. This allows a team of British scientists to test out gene editing using CRISPR-Cas9 technology.


“We take what were or would have been green embryos and we make them into non-green embryos, so it’s a really great way of demonstrating the method“, said Dr. Anthony Perry, reproductive biologist at the University of Bath.

The technique uses the ribonucleic acid molecule CRISPR together with the Cas9 protein enzyme. CRISPR guides the Cas9 protein to a defective part of a genome where it acts like molecular scissors to cut out a specific part of the DNA. This could revolutionise how we treat diseases with a genetic component, like sickle cell anaemia. The technique is being pioneered in the U.S.
We now have a technology that allows correction of a sequence that would lead to normally functioning cells. And I think you know the opportunities with this are really exciting and really profound. There are many diseases that are have known genetic causes that we now have in principle a way to cure,“explains Jennifer Doudna, Professor of cell biology at the University of Berkeley.
Last year two teams of U.S. based scientists used CRISPR-Cas9 technology in mice to correct the genetic mutation that causes sickle cell disease. Although researchers aren’t yet close to using CRISPR-Cas9 to edit human embryos for implantation into the womb – some are already warning against it.

Dr David King, Director of  Human Genetics Alert, comments: “It will immediately create this new form of what we call consumer eugenics, that’s to say eugenics driven by the free market and consumer preferences in which people choose the cosmetic characteristics and the abilities of their children and try to basically enhance their children to perform better than other people’s children.” Other potential applications of the technology could be to make food crops and livestock animal species disease-resistant. The British team say CRISPR-Cas9 presents a golden opportunity to prevent genetic disease.


Lab-grown Diamonds

This shiny, sparkly diamond was made inside a laboratory – but it has the same chemical makeup as its counterpart found deep inside the earth.


All the composition is exactly the same. It is a real diamond. What we’ve done is we’ve just taken what’s happened in nature and just put it in a lab,” said  Kelly Good, Director of Marketing of Pure Grown Diamonds.

Essentially, all diamonds are carbon. And inside a laboratory, scientists are using a method called microwave plasma chemical vapour deposition to grow the stones from a diamond seed. They do it by creating a plasma ball made of hydrogen inside a growth chamber. Methane, which is a carbon source, is added. The carbon mix rains down on the diamond seeds, layer by layer, creating a large, rough diamond that is cut and polished. The process takes about 10 to 12 weeks. Marketers tout the lab-grown diamonds as an eco-friendly, conflict-free alternative to mined diamonds. “Our consumer is millennials, anybody who is getting engaged are really buying the lab-grown diamonds. They also like the fact of the environmental aspect of it. That it’s grown in a greenhouse. There is less soil being moved. We have a less carbon footprint,” explains Kelly Good.

While similar in appearance, there are differences. David Weinstein, Executive Director of the International  Gemological Institute (New York), comments: “I have a crystal, a diamond and I’m looking at it and I see a peridot crystal, a green peridot crystal, I know right away, this wasn’t created in a machine. So the inclusions can really be very telling as to what the origins of the material is. And that’s what our gemologists look for.”
While lab-grown gems have been around for decades, but it’s only recently that the science and technology have made it possible to grow large, gem quality stones. And according to a report by Morgan Stanley, the lab-grown diamond market could grow by about 15 percent by the year 2020.


How To Clean Nuclear Waste

Cleaning up radioactive waste is a dangerous job for a human. That’s why researchers at the University of  Manchester are developing robots that could do the job for us. Five years ago, in 2011, a major earthquake and tsunami devastated the east coast of Japan, leading to explosions and subsequent radiation release at the Fukushima Daiichi Nuclear Power Station. The fuel in three of the reactors is believed to have melted, causing a large amount of contaminated water on site.

This is still to be dealt with today – which isn’t too surprising, given that the clean-up of Chernobyl is still underway 30 years after the infamous nuclear accident took place. After the accident at Chernobyl, where an extremely high level of radiation was released, workers had to be sent into areas to which you wouldn’t want to send a human being. For the safety of others, they entered the plant to survey its condition, extinguish fires and manually operate equipment and machinery – all in an environment that endangered their lives. The challenge in dismantling the site at Fukushima is the residual radiation level. In the surrounding areas levels have fallen significantly; in some places (still off limits to former residents) radiation levels actually aren’t very different from natural background levels in certain other parts of the world. But in the reactor itself a person would receive a lethal dose of radiation almost instantly.


At Fukushima, many of the instrumentation systems, such as reactor-water level and reactor pressure, were lost in the incident. This made assessing the integrity of the plant extremely difficult as you couldn’t send people to go and look at it,” explains Professor Barry Lennox, who, alongside Dr Simon Watson at The University of Manchester, is working to find another way of getting access to such dangerous places: by using robots. Professor Lennox and Dr Watson are part of a team working to adapt robots to help clean up Fukushima. They’re developing an underwater remote-operated vehicle – the AVEXIS – to help identify highly radioactive nuclear fuel that is believed to be dispersed underwater in the damaged reactor. The robot is already aiding decommissioning efforts at Sellafield, where it will swim around the ponds storing legacy waste to map and monitor the conditions within them.