Dissolvable Metal Supports for 3D Printing

Support for a visiting professor plus an off-the-cuff remark have led an Arizona State University (ASU) researcher to develop what could be the Holy Grail solution to speeding up the end-to-end process of metal 3D printing.

Owen Hildreth, ASU assistant professor of 3D Nanofabrication, was developing new approaches to reactive silver ink production when he thought he’d sit in on talks regarding the soon-to-be-opened ASU Polytechnic Manufacturing Research and Innovation Hub. One of the speakers, Timothy Simpson, was describing the practical challenges of setting up an additive manufacturing (AM) lab.

Combining a mechanical engineering degree (applied to five years’ work in the 2D printing industry) with a Ph.D. in nanofabrication materials engineering, Hildreth just may have been in the perfect position to bring a fresh perspective to the metal support problem. In contrast to the use of mechanical tools such as wire-EDM equipment, his concept would cause certain areas of a metal AM part to react chemically when immersed in a corrosive solution. The goal was to produce controlled degradation that would literally eat away the supports but leave the actual part virtually intact.

However, because multi-material 3D printing systems are not yet widely available, Hildreth also investigated ways to selectively remove the supports of powder-bed-type metal AM parts. Starting with a simple design for demonstration — a small 17-4 stainless steel cylinder 3D-printed with a single row of 100-micron-diameter needle-like supports — he tested two possible approaches.

In the first one, termed direct dissolution, the part was heat-treated (annealed) while packed with sodium ferrocyanide; this step precipitated out much of the protective chromium carbide, rendering the no-longer-stainless steel susceptible to chemical etching. The latter process was successful, but the part itself experienced significant etching, which continued the longer the part was allowed to sit in the solution.

Source: http://www.rapidreadytech.com/

How To Build A 3D Printed House in One Day For $10,000

San Francisco-based Apis Cor reported on its blog that on a cold day last December it (and a number of its partners) built an entire 400 square foot house with its custom printer and it only cost $10,000. Oh, and it took just 24 hours to complete.


Others have claimed to build houses with 3D printers. But what makes Apis Cor’s house unique is that it wasn’t constructed from pre-printed panels that required assembly by construction workers. The “printer” used is a giant, mobile piece of crane-like equipment that layers on cement in one continuous process, building both the internal and external structure all at once instead of in multiple parts. It’s a one-story structure but it can be constructed in just about any shape and the company showed how it could be built in even the coldest of conditions in this YouTube video.

Contractors worrying about their jobs shouldn’t panic…yet. Once all the walls are put together, those workers are then needed to do everything else – like installing windows and the roof, plus painting, insulating and putting in appliances, according to this report in Quartz. A finished test house that the company built with a partner in Russia is “cozy and comfortable” and includes “a hall, a bathroom, a living room and a compact functional kitchen with the most modern appliances from Samsung company,” Apis Cor’s blog boasts.

3D printed house

As you can see with the advent of new technology,” the company says in its blog post. “Construction 3D printing is changing the view and approach to the construction of low-rise buildings and provides new opportunities to implement custom architectural solutions.

The possibilities of this advancement in 3D printing are many. Houses could be quickly constructed for refugee camps, people displaced by natural disaster or for those who do not have available housing, such as the homeless. Governments could build entire communities of affordable housing at just a fraction of what’s paid today.

Source:  https://www.washingtonpost.com/

Efficient, Fast, Large-scale 3-D Manufacturing

Washington State University (WSU) researchers have developed a unique, 3-D manufacturing method that for the first time rapidly creates and precisely controls a material’s architecture from the nanoscale to centimeters – with results that closely mimic the intricate architecture of natural materials like wood and bone.

3D manufacturing Hex-Scaffold-web-

This is a groundbreaking advance in the 3-D architecturing of materials at nano- to macroscales with applications in batteries, lightweight ultrastrong materials, catalytic converters, supercapacitors and biological scaffolds,” said Rahul Panat, associate professor in the School of Mechanical and Materials Engineering, who led the research. “This technique can fill a lot of critical gaps for the realization of these technologies.”

The WSU research team used a 3-D printing method to create foglike microdroplets that contain nanoparticles of silver and to deposit them at specific locations. As the liquid in the fog evaporated, the nanoparticles remained, creating delicate structures. The tiny structures, which look similar to Tinkertoy constructions, are porous, have an extremely large surface area and are very strong.

The researchers would like to use such nanoscale and porous metal structures for a number of industrial applications; for instance, the team is developing finely detailed, porous anodes and cathodes for batteries rather than the solid structures that are now used. This advance could transform the industry by significantly increasing battery speed and capacity and allowing the use of new and higher energy materials.

They report on their work in the journal  Science Advances  and have filed for a patent.

Source: https://news.wsu.edu/

Printable solar cells

A University of Toronto (U of T) Engineering innovation could make building printing cells as easy and inexpensive as printing a newspaper. Dr. Hairen Tan and his team have cleared a critical manufacturing hurdle in the development of a relatively new class of solar devices called perovskite solar cells. This alternative solar technology could lead to low-cost, printable solar panels capable of turning nearly any surface into a power generator.

Printable Perovskite SolarCell

Economies of scale have greatly reduced the cost of silicon manufacturing,” says University Professor Ted Sargent (ECE), an expert in emerging solar technologies and the Canada Research Chair in Nanotechnology and senior author on the paper. “Perovskite solar cells can enable us to use techniques already established in the printing industry to produce solar cells at very low cost. Potentially, perovskites and silicon cells can be married to improve efficiency further, but only with advances in low-temperature processes.”

Today, virtually all commercial solar cells are made from thin slices of crystalline silicon which must be processed to a very high purity. It’s an energy-intensive process, requiring temperatures higher than 1,000 degrees Celsius and large amounts of hazardous solvents.

In contrast, perovskite solar cells depend on a layer of tiny crystals — each about 1,000 times smaller than the width of a human hair — made of low-cost, light-sensitive materials. Because the perovskite raw materials can be mixed into a liquid to form a kind of ‘solar ink’, they could be printed onto glass, plastic or other materials using a simple inkjet process.

Source: http://news.engineering.utoronto.ca

Bones Could Be 3D Printed With Unbreakable Materials

Scientists from Queen Mary University of London (QMUL) have discovered the secret behind the toughness of deer antlers and how they can resist breaking during fights.


The fibrils that make up the antler are staggered rather than in line with each other. This allows them to absorb the energy from the impact of a clash during a fight,” said first author Paolino De Falco from QMUL‘s School of Engineering and Materials Science .

The research, published in the journal ACS Biomaterials Science & Engineering, provides new insights and fills a previous gap in the area of structural modelling of bone. It also opens up possibilities for the creation of a new generation of materials that can resist damage.

Co-author Dr Ettore Barbieri, also from QMUL‘s School of Engineering and Materials Science, comments: “Our next step is to create a 3D printed model with fibres arranged in staggered configuration and linked by an elastic interface. The aim is to prove that additive manufacturing – where a prototype can be created a layer at a time – can be used to create damage resistant composite material.”

Source: http://www.qmul.ac.uk/

3D-printed Cast To The Exact Measurements Of Fractured Parts Of The Body

Move over plaster cast. There’s a new 3-D printed cast on the block, which means your days may be numbered. The NovaCast was created by Mexican start-up Mediprint and uses an open, 3D-printed, plastic framework. Each 3D-printed cast is custom-made to the exact measurements of the fractured part of the body, which developers say improves recovery time.

mediprint_3d_printed_castCLICK ON THE IMAGE TO ENJOY THE VIDEO

“It’s lighter than the traditional cast. You can have a bath with it, you can scratch yourself, it allows for a better medical inspection“, says Zaid Musa Badwan Peralta, co-founder of the  Mediprint company.

The cast is printed after the patient’s body part is scanned. From there, the total time until a tailor made cast is ready – three hours. Developers say they’re working on an improved way to measure patients that will increase comfort by eliminating the need to scan the traumatized body part.

“It’s a specialised software, which through anthropometry measurements gives the medic exact details about the shape and size needs. And using information on 3-D models of the patient, the geometry of the cast is automatically calucalated for the printers. This generates a product that can reach more people“, adds Peralta.

Nova cast creators also expect to improve the production process and decrease printing time. No details on price and release of the casts onto the market yet, but creators hope that it isn’t long before the plaster cast is a thing of the past.

Source: http://mediprint3d.com

3D Printed Office

In Dubai the first fully 3D-printed and completely functional building has not only been built but has celebrated its grand opening, marking an architectural and engineering breakthrough. The prototype 3D-printed office building, with floorspace is about 2,700 square feet (250 m2).


The office has all the amenities of traditionally constructed structures, such as electricity, water, telecommunications, and air conditioning. The office is also outfitted with a number of energy saving features, including window shades to protect from Dubai’s blazing sun. In order to create all the pieces needed for the office, builders used a 3D printer measuring 20 feet high, 120 feet long, and 40 feet wide. Aside from the equipment, it took a very small team of workers to put the office together. Seven installers and 10 electricians and specialists worked together to assemble the fully functional office in just 17 days. Dubai’s media office estimates this represents a 50 percent cost savings in labor alone compared to buildings of similar size built with conventional methods. In Dubai 25% of the buildings should be 3D printed by 2030, says ruler.

Source: http://inhabitat.com/

Free Smart Glasses Help The Blind

Fund-raising has begun for what developers say will be the world’s first free smart glasses to help the blind and visually impaired. A vision of the future — these could become the world’s first free smart glasses, says the Polish non-profit organisation behind them. Parsee has developed this prototype of battery-powered glasses with a 3D printed frame, camera and earphone.

Parsee smart glasses


Parsee is an innovative 3D printed glasses for blind and visually impaired people. It helps them in their everyday living like reading newspapers, drinking juice,” says Bartosz Trzcinski, Parsee Project Manager.
Pushing a button on the frame, users take pictures of an object in front of them, which the camera sends to a phone app. The app identifies shapes, colours, text and even faces — and sends the detail via audio to the earphone“When I take something from the fridge what I see is blurred – this helps me to recognize the product and read what is written on it. It also helps me to recognize my friends’ faces, because I have a problem with that“, comments Teresa Lapa, prototype user of Parsee smart glasses.
Parsee has begun fund-raising with a $25,000 goal to research and develop a sleeker model of the glasses. It’s still in the early stages of its longer-term goal to mass produce and distribute the spectacles for free. The current cost of producing one pair is $300 — a figure they aim to reduce over time.

Source: http://www.reuters.com/

Artificial Molecules Revolutionize 3D Printing

Scientists at ETH Zurich and IBM Research Zurich have developed a new technique that enables for the first time the manufacture of complexly structured tiny objects joining together microspheres. The objects have a size of just a few micrometres and are produced in a modular fashion, making it possible to program their design in such a way that each component exhibits different physical properties. After fabrication, it is also very simple to bring the micro-objects into solution. This makes the new technique substantially different from micro 3D printing technology. With most of today’s micro 3D printing technologies, objects can only be manufactured if they consist of a single material, have a uniform structure and are attached to a surface during production.

3D printing process ETHArtificial molecules. The individual components are marked with different fluorescent dyes (molecule size: 2-7 micrometres; compilation of microscopic images)

To prepare the micro-objects, the ETH and IBM researchers use tiny spheres made from a polymer or silica as their building blocks, each with a diameter of approximately one micrometre and different physical properties. The scientists are able to control the particles and arrange them in the geometry and sequence they like.

The structures that are formed occupy an interesting niche in the size scale: they are much larger than your typical chemical or biochemical molecules, but much smaller than typical objects in the macroscopic world. “Depending on the perspective, it’s possible to speak of giant molecules or micro-objects,” says Lucio Isa, Professor for Interfaces, Soft matter and Assembly at ETH Zurich. He headed the research project together with Heiko Wolf, a scientist at IBM Research. “So far, no scientist has succeeded in fully controlling the sequence of individual components when producing artificial molecules on the micro scale,” says Isa.

Source: https://www.ethz.ch/

3D Printing Applied To Nanotechnology = Revolution

It seems that the in the area of technology, the new age will belong a combination of nanotechnology and 3D printing, informed Professor Hari Kishan Sahajwani during a re-union meeting of 1966-68 batch of M.Sc.-physics of Kurukshetra University (India).
3D printing
Applying 3D printing concepts to nanotechnology are doing to revolutionize nanofabrication in terms of manufacturing speed, minimizing of waste and reduction of cost. In all kinds of human services, the manufacturing technologies will be dependent on the combination of nanotechnology and 3D printing,” said Sahjwani, who goes around the country to make presentations and delivering lectures on nanotechnology.

The UK scientists have developed nanoscale specks of semiconductor called ‘Quantum Dots‘ to restore vision lost due to damaged retinas. He added that this was indication how nanotechnology aided by 3D printing will bring new vistas in medical science and treatment of diseases.

quantum dotsQuantum dots are said to have the advantages that no external power source is needed for their functioning and can be coated with a bioactive material that causes them to become lodged in only specific tissues in the retina without any side effects.

He told that 3D-printing has been successfully used to generate replicas of bioimplants like living human cartilage and future seems be bright with advanced 3D printing techniques capable of creating nanoscale complex structures.

The efforts are on to develop the techniques for more precise and accurate 3D control of electro-spun nano-jets to take current nanofabrication technologies to a new height. With research and invention, sophisticated methods and precise methods to control the nano-jets will be able to realize rapid 3D printing usable for bioscaffolds and nanofilters to have inroads into all aspects of life, it is being felt.

Source: http://www.merinews.com/

3D Printers For Food Manufacturing

The use of 3D printers has the potential to revolutionize the way food is manufactured within the next 10 to 20 years, impacting everything from how military personnel get food on the battlefield to how long it takes to get a meal from the computer to your table, according to a July 12th symposium at IFT15: Where Science Feeds Innovation hosted by the Institute of Food Technologists (IFT) in Chicago.

The price of 3D printers has been steadily declining, from more than $500,000 in the 1980s to less than $1,000 today for a personal-sized device, making them increasingly available to consumers and manufacturers Although they are not widely used in food manufacturing yet, that availability is fueling research into how they can be used to customize foods or speed delivery of food to consumers.
3D pinting for food
No matter what field you are in, this technology will worm its way in,” said Hod Lipson, Ph.D., a professor of engineering at Columbia University and a co-author of the book Fabricated: The New World of 3D Printing. ”The technology is getting faster, cheaper and better by the minute. Food printing could be the killer app for 3D printing.”

Lipson, addressing the conference by video, said 3D printing is a good fit for the food industry because it allows manufacturers to bring complexity and variety to consumers at a low cost. Traditional manufacturing is built on mass production of the same item, but with a 3D printer, it takes as much time and money to produce a complex, customized product that appeals to one person as it does to make a simple, routine product that would be appealing to a large group.

For example, Lipson said, users could choose from a large online database of recipes, put a cartridge with the ingredients into their 3D printer at home, and it would create the dish just for that person. The user could customize it to include extra nutrients or replace one ingredient with another.

Source: http://www.ift.org/

Printing With Nanomaterials

Researchers at Binghamton University are focusing on printed electronics: using inkjet technology to print electronic nanomaterials onto flexible substrates. When compared to traditional methods used in microelectronics fabrication, the new technology conserves material and is more environmentally friendly.

Think of inkjet printing and you’ll likely picture an old printer in an office. Not so if you’re Timothy Singler, director of graduate studies and professor of mechanical engineering at Binghamton University. In the Transport Sciences Core at the Innovative Technologies Complex, Singler is collaborating with Paul Chiarot and Frank Yong, assistant professors of mechanical engineering, to study inkjet printing of functional materials.

Functional materials are categorized in terms of the actions they can perform rather than on the basis of their origins. Solution-processed materials may have electrical, optical, chemical, magnetic, thermal or other functionalities. For example, silver is strongly electrically conductive and can be formulated into nanoparticle ink. However, Singler explains that printing with solution-processed nanomaterials instead of traditional inks is significantly more complex.

3D printing “One really has to study how nanomaterials deposit on a substrate — what structures they form, how you can control them — because you’re dispersing the nanomaterials into a liquid so you can print them, and that liquid volatilizes, leaving only the material on the substrate. But the evaporation process and capillarity cause very complex flows that transport the material you’re trying to deposit in nonintuitive ways,” Singler says. “These flows have to be controlled to achieve an optimal functional structure at the end.”

Source: http://www.binghamton.edu/