Graphene And Fractals Boost The Solar Power Storage By 3000%

Inspired by an American fern, researchers have developed a groundbreaking prototype that could be the answer to the storage challenge still holding solar back as a total energy solution. The new type of electrode created by RMIT University (Australia) researchers could boost the capacity of existing integrable storage technologies by 3000 per cent. But the graphene-based prototype also opens a new path to the development of flexible thin film all-in-one solar capture and storage, bringing us one step closer to self-powering smart phones, laptops, cars and buildings. The new electrode is designed to work with supercapacitors, which can charge and discharge power much faster than conventional batteries. Supercapacitors have been combined with solar, but their wider use as a storage solution is restricted because of their limited capacity.

RMIT’s Professor Min Gu said the new design drew on nature’s own genius solution to the challenge of filling a space in the most efficient way possible – through intricate self-repeating patterns known as “fractals”.

The leaves of the western swordfern are densely crammed with veins, making them extremely efficient for storing energy and transporting water around the plant,” said Gu, Leader of the Laboratory of Artificial Intelligence Nanophotonics at RMIT.

mimicking fern

Our electrode is based on these fractal shapes – which are self-replicating, like the mini structures within snowflakes – and we’ve used this naturally-efficient design to improve solar energy storage at a nano level. “The immediate application is combining this electrode with supercapacitors, as our experiments have shown our prototype can radically increase their storage capacity30 times more than current capacity limits.   “Capacity-boosted supercapacitors would offer both long-term reliability and quick-burst energy release – for when someone wants to use solar energy on a cloudy day for example – making them ideal alternatives for solar power storage.”  Combined with supercapacitors, the fractal-enabled laser-reduced graphene electrodes can hold the stored charge for longer, with minimal leakage.


How To Turn Sunlight, Heat and Movement Into Electricity — All at Once

Many forms of energy surround you: sunlight, the heat in your room and even your own movements. All that energy — normally wasted — can potentially help power your portable and wearable gadgets, from biometric sensors to smart watches. Now, researchers from the University of Oulu in Finland have found that a mineral with the perovskite crystal structure has the right properties to extract energy from multiple sources at the same time.

perovskite solar panel

Perovskites are a family of minerals, many of which have shown promise for harvesting one or two types of energy at a time — but not simultaneously. One family member may be good for solar cells, with the right properties for efficiently converting solar energy into electricity. Meanwhile, another is adept at harnessing energy from changes in temperature and pressure, which can arise from motion, making them so-called pyroelectric and piezoelectric materials, respectively.

Sometimes, however, just one type of energy isn’t enough. A given form of energy isn’t always available — maybe it’s cloudy or you’re in a meeting and can’t get up to move around. Other researchers have developed devices that can harness multiple forms of energy, but they require multiple materials, adding bulk to what’s supposed to be a small and portable device.

This week in Applied Physics Letters, Yang Bai and his colleagues at the University of Oulu explain their research on a specific type of perovskite called KBNNO, which may be able to harness many forms of energy. Like all perovskites, KBNNO is a ferroelectric material, filled with tiny electric dipoles analogous to tiny compass needles in a magnet. Within the next year, Bai said, he hopes to build a prototype multi-energy-harvesting device. The fabrication process is straightforward, so commercialization could come in just a few years once researchers identify the best material. “This will push the development of the Internet of Things and smart cities, where power-consuming sensors and devices can be energy sustainable,” he said.

This kind of material would likely supplement the batteries on your devices, improving energy efficiency and reducing how often you need to recharge. One day, Bai said, multi-energy harvesting may mean you won’t have to plug in your gadgets anymore. Batteries for small devices may even become obsolete.


Nanowire Inks For Printable Electronics

By suspending tiny metal nanoparticles in liquids, Duke University scientists are brewing up conductive ink-jet printer “inks” to print inexpensive, customizable circuit patterns on just about any surfacePrinted electronics, which are already being used on a wide scale in devices such as the anti-theft radio frequency identification (RFID) tags you might find on the back of new DVDs, currently have one major drawback: for the circuits to work, they first have to be heated to melt all the nanoparticles together into a single conductive wire, making it impossible to print circuits on inexpensive plastics or paper. A new study by Duke researchers shows that tweaking the shape of the nanoparticles in the ink might just eliminate the need for heat.

By comparing the conductivity of films made from different shapes of silver nanostructures, the researchers found that electrons zip through films made of silver nanowires much easier than films made from other shapes, like nanospheres or microflakes. In fact, electrons flowed so easily through the nanowire films that they could function in printed circuits without the need to melt them all together.


The nanowires had a 4,000 times higher conductivity than the more commonly used silver nanoparticles that you would find in printed antennas for RFID tags,” said Benjamin Wiley, assistant professor of chemistry at Duke. “So if you use nanowires, then you don’t have to heat the printed circuits up to such high temperature and you can use cheaper plastics or paper.”

There is really nothing else I can think of besides these silver nanowires that you can just print and it’s simply conductive, without any post-processing,” Wiley added.

These types of printed electronics could have applications far beyond solar cells; researchers envision using the technology to make solar cells, printed displays, LEDS, touchscreens, amplifiers, batteries and even some implantable bio-electronic devices. The results appeared online Dec. 16 in ACS Applied Materials and Interfaces.


Green Electronics

A team of University of Toronto chemists has created a battery that stores energy in a biologically-derived unit, paving the way for cheaper consumer electronics that are easier on the environment.

The battery is similar to many commercially-available high-energy lithium-ion batteries with one important difference. It uses flavin from vitamin B2 as the cathode: the part that stores the electricity that is released when connected to a device.


We’ve been looking to nature for a while to find complex molecules for use in a number of consumer electronics applications,” says Dwight Seferos, a professor in U of T’s department of chemistry and Canada Research Chair in Polymer Nanotechnology. “When you take something made by nature that is already complex, you end up spending less time making new material,” says Seferos.

The team created the material from vitamin B2 that originates in genetically-modified fungi using a semi-synthetic process to prepare the polymer by linking two flavin units to a long-chain molecule backbone. This allows for a green battery with high capacity and high voltage – something increasingly important as the ‘Internet of Things’ continues to link us together more and more through our battery-powered portable devices.

It’s a pretty safe, natural compound,” Seferos adds. “If you wanted to, you could actually eat the source material it comes from.” B2’s ability to be reduced and oxidized makes its well-suited for a lithium ion battery.


3D Nano-structured Porous Electrodes Boost Batteries

Battery-life is increasingly the sticking point of technological progress.The latest electric vehicles can practically drive themselve, but only for so long. Outback energy woes look like they could be solved by solar and home energy storage, if the available batteries can be improved. And what about the Pokemon GO players, cutting hunting trips short due to the battery-sapping requirements of the app?

The solution could come from Sunshine Coast nanotechnology company Nano Nouvelle, which is developing a three-dimensional, nano-structured, porous electrode that it says will help overcome the limitations of today’s batteries.The company announced today that its ‘Nanodenanomaterials were being tested and trialled by two unnamed US specialist battery manufacturers.


CEO Stephanie Moroz said she hoped the profile of the trials would lead to wider adoption.“As Tesla proved with its Roadster EV sportscar, this sort of low-volume, high-margin starting point can provide a high visibility platform to demonstrate the benefits of innovative technology, which can accelerate its adoption by mass market manufacturers.”

Nano Nouvelle’s core technology, the Nanode uses tin as the electrode material, which has a much higher energy density than the current graphite technology. However, until now tin’s commercial use had been limited due to its tendency to swell during charging and subsequently lose energy.

This issue is overcome by the Nanode’s structure, made up of thin films of active material spread over a 3D and porous network of fibres, rather than stacked on a flat copper foil.

This enables the electrode structure to deal with the volume expansion of the tin while retaining dimensional stability at the electrode level. The result is batteries that can store the same amount of energy in a smaller volume, compared to commercial lithium ion batteries.

Moroz said she believed the nanotechnology could be easily incorporated into the existing battery manufacturing process. Moroz said she believed the nanotechnology could be easily incorporated into the existing battery manufacturing process.

We’re looking to make it plug and play for battery manufacturers,” she said.


Super Capacitor for NanoComputer

VTT Technical Research Centre of Finland developed an extremely efficient small-size energy storage, a micro-supercapacitor, which can be integrated directly inside a silicon microcircuit chip. The high energy and power density of the miniaturized energy storage relies on the new hybrid nanomaterial developed recently at VTT. This technology opens new possibilities for integrated mobile devices and paves the way for zero-power autonomous devices required for the future Internet of Things (IoT).

Supercapacitors resemble electrochemical batteries. However, in contrast to for example mobile phone lithium ion batteries, which utilize chemical reactions to store energy, supercapacitors store mainly electrostatic energy that is bound at the interface between liquid and solid electrodes. Similarly to batteries supercapacitors are typically discrete devices with large variety of use cases from small electronic gadgets to the large energy storages of electrical vehicles.

The energy and power density of a supercapacitor depends on the surface area and conductivity of the solid electrodes. VTT‘s research group has developed a hybrid nanomaterial electrode, which consists of porous silicon coated with a few nanometre thick titanium nitride layer by atomic layer deposition (ALD). This approach leads to a record large conductive surface in a small volume. Inclusion of ionic liquid in a micro channel formed in between two hybrid electrodes results in extremely small and efficient energy storage.
nano capacitor 2

The new supercapacitor has excellent performance. For the first time, silicon based micro-supercapacitor competes with the leading carbon and graphene based devices in power, energy and durability.

Micro-supercapacitors can be integrated directly with active microelectronic devices to store electrical energy generated by different thermal, light and vibration energy harvesters and to supply the electrical energy when needed. This is important for autonomous sensor networks, wearable electronics and mobile electronics of the IoT.

VTT‘s research group takes the integration to the extreme by integrating the new nanomaterial micro-supercapacitor energy storage directly inside a silicon chip. The demonstrated in-chip supercapacitor technology enables storing energy of as much as 0.2 joule and impressive power generation of 2 watts on a one square centimetre silicon chip. At the same time it leaves the surface of the chip available for active integrated microcircuits and sensors.

VTT is currently seeking a party interested in commercializing the technique.


Nanotechnologies Boost Electric Car Batteries

On a drizzly, gray morning in April, Yi Cui weaves his scarlet red Tesla in and out of Silicon Valley traffic. Cui, a materials scientist at Stanford University here, is headed to visit Amprius, a battery company he founded 6 years ago. It’s no coincidence that he is driving a battery-powered car, and that he has leased rather than bought it. In a few years, he says, he plans to upgrade to a new model, with a crucial improvement: “Hopefully our batteries will be in it.” Cui and Amprius are trying to take lithium–ion batteries—today’s best commercial technology—to the next level. They have plenty of company. Massive corporations such as Panasonic, Samsung, LG Chem, Apple, and Tesla are vying to make batteries smaller, lighter, and more powerful. But among these power players, Cui remains a pioneering force.
Unlike others who focus on tweaking the chemical composition of a battery’s electrodes or its charge-conducting electrolyte, Cui is marrying battery chemistry with nanotechnology. He is building intricately structured battery electrodes that can soak up and release charge-carrying ions in greater quantities, and faster, than standard electrodes can, without producing troublesome side reactions.

Tesla Model 3

“He’s taking the innovation of nanotechnology and using it to control chemistry,” says Wei Luo, a materials scientist and battery expert at the University of Maryland, College Park.
In a series of lab demonstrations, Cui has shown how his architectural approach to electrodes can domesticate a host of battery chemistries that have long tantalized researchers but remained problematic. Among them: lithium-ion batteries with electrodes of silicon instead of the standard graphite, batteries with an electrode made of bare lithium metal, and batteries relying on lithium-sulfur chemistry, which are potentially more powerful than any lithium-ion battery. The nanoscale architectures he is exploring include silicon nanowires that expand and contract as they absorb and shed lithium ions, and tiny egglike structures with carbon shells protecting lithium-rich silicon yolks.


Battery That Could Be Recharged 200,000 Times

Scientists have long sought to use nanowires in batteries. Thousands of times thinner than a human hair, they’re highly conductive and feature a large surface area for the storage and transfer of electrons. However, these filaments are extremely fragile and don’t hold up well to repeated discharging and recharging, or cycling. In a typical lithium-ion battery, they expand and grow brittle, which leads to cracking.

Researchers fron the University of California Irvine (UCI) have solved this problem by coating a gold nanowire in a manganese dioxide shell and encasing the assembly in an electrolyte made of a Plexiglas-like gel. The combination is reliable and resistant to failure.

Mya Le Thai

The study leader, UCI doctoral candidate Mya Le Thai, cycled the testing electrode up to 200,000 times over three months without detecting any loss of capacity or power and without fracturing any nanowires. The findings were published today in the American Chemical Society’s Energy Letters. Hard work combined with serendipity paid off in this case, according to senior author Reginald Penner.

Mya was playing around, and she coated this whole thing with a very thin gel layer and started to cycle it,” said Penner, chair of UCI’s chemistry department. “She discovered that just by using this gel, she could cycle it hundreds of thousands of times without losing any capacity”.

That was crazy,” he added, “because these things typically die in dramatic fashion after 5,000 or 6,000 or 7,000 cycles at most.


Electric Car: Safer, Cheaper Rechargeable Batteries

By chemically modifying and pulverizing a promising group of compounds, scientists at the National Institute of Standards and Technology (NIST) have potentially brought safer, solid-state rechargeable batteries two steps closer to reality.

sodiumChunks of this sodium-based compound (Na2B12H12) (left) would function well in a battery only at elevated temperatures, but when they are milled into far smaller pieces (right), they can potentially perform even in extreme cold, making them even more promising as the basis for safer, cheaper rechargeables.

These compounds are stable solid materials that would not pose the risks of leaking or catching fire typical of traditional liquid battery ingredients and are made from commonly available substances. Since discovering their properties in 2014, a team led by NIST scientists has sought to enhance the compounds’ performance further in two key ways: Increasing their current-carrying capacity and ensuring that they can operate in a sufficiently wide temperature range to be useful in real-world environments.

Considerable advances have now been made on both fronts, according to Terrence Udovic of the NIST Center for Neutron Research, whose team has published a pair of scientific papers that detail each improvement.  The first advance came when the team found that the original compounds — made primarily of hydrogen, boron and either lithium or sodium — were even better at carrying current with a slight change to their chemical makeup. Replacing one of the boron atoms with carbon improved their ability to conduct charged particles, or ions, which are what carry electricity inside a battery. As the team reported in February in their first paper, the switch made the compounds about 10 times better at conducting.

But perhaps more important was clearing the temperature hurdle. The compounds conducted ions well enough to operate in a battery — as long as it was in an environment typically hotter than boiling water. Unfortunately, there’s not much of a market for such high-temperature batteries, and by the time they cooled to room temperature, the materials’ favorable chemical structure often changed to a less conductive form, decreasing their performance substantially. One solution turned out to be crushing the compounds’ particles into a fine powder.

This approach can remove worries about whether batteries incorporating these types of materials will perform as expected even on the coldest winter day,” said Udovic, whose collaborators on the most recent paper include scientists from Japan’s Tohoku University, the University of Maryland and Sandia National Laboratories. “We are currently exploring their use in next-generation batteries, and in the process we hope to convince people of their great potential.”


Dye Solar Cells Make Your Mouse Battery Obsolete

These little glass squares could just be the answer to charging all your electronics. The glass-printed photovoltaic cells are a form of Dye Solar Cell technology created by Israeli company 3G Solar Photovoltaics. They’re so sensitive they can generate power from indirect, indoor lighting. Check it out. The company’s head of R&D Nir Stein is taking the batteries out of this mouse, which has the company’s dye solar cell module installed on top.

solar cells powered mouseCLICK ON THE IMAGE TO ENJOY THE VIDEO

What you see here is a computer mouse that has a bluetooth connectivity inside it and is powered by 3G solar photovoltaic cells. So when you have thousands of sensors, for instance in a building, which is going to happen in the next few years, you’ll never have to change a battery again,” says Nir Stein.
Dye-sensitized solar cells, or Graetzel cells, were discovered about 20 years ago. When they’re exposed to sunlight the dye becomes excited and creates an electronic charge without the need for pricey semiconductors. Kind of like the way plants use chlorophyll to turn sunlight into energy through photosynthesis. While the technology is the same, 3G Solar Voltaics‘ CEO Barry Breen says that being able to embed the cells on small surfaces has the potential to change the way we charge everyday devices. ) BARRY N. BREEN, CEO OF 3GSOLAR PHOTOVOLTAICS, SAYING: “What we offer in our cells, in our light power devices, is a solution that gives three times the power of anything else that exists, and we’re talking indoors, where most the electronics are used. So three times the power to run these new electronics, the new sensors, the smart watches and other wearables. So it’s a way to keep those powered that couldn’t be done before,” comments Barry Breen, CEO of 3G Solar Photovoltaics.

The small modules are durable and last for about 10 years. They can be colored and fitted to the shape of a device so they don’t stand out. Although still a prototype, the makers say the technology could make batteries a thing of the past.



New Efficient Materials For Solar Fuel Cells

University of Texas at Arlington (UTA) chemists have developed new high-performing materials for cells that harness sunlight to split carbon dioxide and water into useable fuels like methanol and hydrogen gas. These “green fuels” can be used to power cars, home appliances or even to store energy in batteries.

solar fuel cells

Technologies that simultaneously permit us to remove greenhouse gases like carbon dioxide while harnessing and storing the energy of sunlight as fuel are at the forefront of current research,” said Krishnan Rajeshwar, UTA distinguished professor of chemistry and biochemistry and co-founder of the University’s Center of Renewable Energy, Science and Technology. “Our new material could improve the safety, efficiency and cost-effectiveness of solar fuel generation, which is not yet economically viable,” he added.

The new hybrid platform uses ultra-long carbon nanotube networks with a homogeneous coating of copper oxide nanocrystals. It demonstrates both the high electrical conductivity of carbon nanotubes and the photocathode qualities of copper oxide, efficiently converting light into the photocurrents needed for the photoelectrochemical reduction process. Morteza Khaledi, dean of the UTA College of Science, said Rajeshwar’s work is representative of the University’s commitment to addressing critical issues with global environmental impact under the Strategic Plan 2020.


‘Self-Healing’ Gel Repairs Electronic Circuit

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the development of flexible electronics, biosensors and batteries as energy storage devices. Although technology is moving toward lighter, flexible, foldable and rollable electronics, the existing circuits that power them are not built to flex freely and repeatedly self-repair cracks or breaks that can happen from normal wear and tear.

Until now, self-healing materials have relied on application of external stimuli such as light or heat to activate repair. The UT Austinsupergel” material has high conductivity (the degree to which a material conducts electricity) and strong mechanical and electrical self-healing properties.

self-healed gelSelf-repaired supergel supports its own weight after being sliced in half

In the last decade, the self-healing concept has been popularized by people working on different applications, but this is the first time it has been done without external stimuli,” said mechanical engineering assistant professor Guihua Yu, who developed the gel. “There’s no need for heat or light to fix the crack or break in a circuit or battery, which is often required by previously developed self-healing materials.