Within 10 years Planes Could Move Up To 10 Times The Speed Of Sound

An average flight from Miami to Seattle takes about six hours and 40 minutes, but imagine being able to reduce that time to 50 minutes or less. A recent study by NASA and Binghamton University researchers could lead to a drastic decrease in flight times. The study, funded in part by the U.S. Air Force, is one of the first steps toward the creation of planes able to move at hypersonic speeds, five to 10 times the speed of soundBinghamton University Associate Professor of Mechanical Engineering Changhong Ke explained that there are currently quite a few obstacles when it comes to building these super planes. The first of which is finding a material that can hold up to hypersonic travel.

Our study used what are called boron nitride nanotubes (BNNTs). NASA currently owns one of the few facilities in the world able to produce quality BNNTs.” Typically, carbon nanotubes have been used in planes for their strength — they’re stronger than steel — and their ability to conduct heat. However, BNNTs are the wave of the future when it comes to air travel. “While carbon nanotubes can stay stable at temperatures up to 400 degrees Celsius, our study found that BNNTs can withstand up to 900 degrees Celsius,” said Ke. BNNTs are also able to handle high amounts of stress and are extremely lightweight.

Withstanding high temperatures is an important requirement for any material meant to build the world’s next super planes, however, Ke clarified that the material has to be able to maintain both structural and mechanical properties in an oxygen environment. “We weren’t testing this material in a vacuum like what you would experience in space. Materials can withstand much higher temperatures in space. We wanted to see if BNNTs could hold up in the type of environment an average fighter jet or commercial plane would experience.”

While the study has brought new light to the strength and stability of BNNTs, their use on planes may not be a reality for another five to 10 years. “Right now, BNNTs cost about $1,000 per gram. It would be impractical to use a product that expensive,” added Ke. But, that does not mean it will never happen. Carbon nanotubes were about the same price 20 years ago. As more studies indicated the usefulness of carbon nanotubes, the production rates increased and prices went down to the current rate, between $10 and $20 per gram. Ke sees the same fate coming down the line for BNNTs.

Source: https://www.binghamton.edu/

How To Build Stronger Airplanes, Space Shuttles

Thousands bound together are still thinner than a single strand of human hair, but with research from Binghamton University, boron nitride nanotubes may help build better fighter planes and space shuttles.

A team of scientists led by Changhong Ke, associate professor of mechanical engineering at Binghamton University‘s Thomas J. Watson School of Engineering and Applied Science, and researcher Xiaoming Chen were the first to determine the interface strength between boron nitride nanotubes (BNNTs) and epoxy and other polymers.

SpaceSolarStation

 

We think that this could be the first step in a process that changes the way we design and make materials that affect the future of travel on this planet and exploration of other worlds beyond our own,” said Ke. “Those materials may be way off still, but someone needed to take the first step, and we have.”

 

Metaphorically, think of the epoxy or other polymer materials with the BNNT nanotubes inside like a piece of reinforced concrete. That concrete gets much of its strength from the makeup of the steel rebar and cement; the dispersion of rebar within the cement; the alignment of rebar within the cement; and “stickiness” of the connection between the rebar and the surrounding cement. The scientists essentially measured the “stickiness” of a single nanotube ‘rebar’ — helped by molecular and electrostatic interactions — by removing it from polymer “cement.”

Source: http://www.eurekalert.org/