Stem Cells Boost Bones Repair

A recent study, affiliated with UNIST (South Korea) has developed a new method of repairing injured bone using stem cells from human bone marrow and a carbon material with photocatalytic properties, which could lead to powerful treatments for skeletal system injuries, such as fractures or periodontal disease. In the study, the research team reported that the use of human bone marrow-derived mesenchymal stem cells (hBMSCs) has been tried successfully in fracture treatment due to their potential to regenerate bone in patients who have lost large areas of bone from either disease or trauma. Recently, many attempts have been made to enhance the function of stem cells using carbon nanotubes, graphenes, and nano-oxides.

Professor Kim and Professor Suh (UNIST) examined the C₃N₄sheets. They discovered that this material absorbs red light and then emits fluorescence, which can be used to speed up bone regeneration. Professor Suh conducted a biomedical application of this material. After two days of testing, the material showed no cytotoxicity, making it useful as biomaterials.

bone-repairUpper left) Chemical bonding and physical structure of C₃N₄4 sheets. (Lower left) In a liquid state, red light is transmitted at a maximum of 450nm and emitted at a wavelength of 635 nm. (Right) After 4 weeks of loading C₃N₄4 sheets into the skull-damaged mice, the skull was regenerated by more than 90%.

This research has opened up the possibility of developing a new medicine that effectively treats skeletal injuries, such as fractures and osteoporosis,” said Professor Young-Kyo Seo. “It will be a very useful tool for making artificial joints and teeth with the use of 3D printing. This is an important milestone in the analysis of biomechanical functions needed for the development of biomaterials, including adjuvants for hard tissues such as damaged bones and teeth.”

This research has been jointly conducted by Professor Youngkyo Seo of Life Sciences and Dr. Jitendra N. Tiwari of Chemistry in collaboration with Professor Kwang S. Kim of Natural Science, Professor Pann-Ghill Suh of Life Sciences, and seven other researchers from UNIST.  The results of the study has been published in the January issue of ACS Nano journal.

Source: https://news.unist.ac.kr/

Bones Could Be 3D Printed With Unbreakable Materials

Scientists from Queen Mary University of London (QMUL) have discovered the secret behind the toughness of deer antlers and how they can resist breaking during fights.

3d-printed-bones

The fibrils that make up the antler are staggered rather than in line with each other. This allows them to absorb the energy from the impact of a clash during a fight,” said first author Paolino De Falco from QMUL‘s School of Engineering and Materials Science .

The research, published in the journal ACS Biomaterials Science & Engineering, provides new insights and fills a previous gap in the area of structural modelling of bone. It also opens up possibilities for the creation of a new generation of materials that can resist damage.

Co-author Dr Ettore Barbieri, also from QMUL‘s School of Engineering and Materials Science, comments: “Our next step is to create a 3D printed model with fibres arranged in staggered configuration and linked by an elastic interface. The aim is to prove that additive manufacturing – where a prototype can be created a layer at a time – can be used to create damage resistant composite material.”

Source: http://www.qmul.ac.uk/

Lab-grown Bones Transplanted With Success

A lab-grown, semi-liquid bone graft has been successfully injected into 11 patients’ jaws to repair bone loss. Israeli biotech firm Bonus Biogroup announced the early stage clinical trial results.

bones

CLICK ON THE IMAGE TO ENJOY THE VIDEO
What we are announcing to the world is that real success in our clinical study in regenerating new bone in maxillofacial site in the jaws, it was 100 percent successful in all 11 patients,” says Ora Burger, Vice President of Regulations Affairs at Bonus BioGroup.

The injectable bone grafts are made in the company’s Haifa plant, using cells extracted from patients’ fat tissue. They’re grown in sterile clean rooms, on biodegradable 3D scaffolds, before being injected into the voids in the jawbones.

We inject our semi-solid product inside of this defect and here we can see 12 weeks later that the bone is functional, we can see a full bone, a whole bone which is strong and hard and functional” comments Atara Novaks , Head of Research at Bonus BioGroup.

What we inject is a live bone. This is the first time ever that it’s been done,” adds Ora Burger. A clinical study into longer – so-called extremity – bones is now planned.

Source: http://www.bonus-bio.com/

New Drug Reduces Osteoporosis dramatically

Felicia Cosman, MD, an endocrinologist at Helen Hayes Hospital Regional Bone Center in West Haverstraw, New York, and professor of medicine at Columbia University, and colleagues performed a prespecified subgroup analysis of data from 2,463 postmenopausal women with osteoporosis (aged 49-86 years; mean age, 69 years) enrolled in the phase 3 ACTIVE trial. Participants were randomly assigned 80 g subcutaneous abaloparatide (n = 824) or placebo (n = 821), or open-label 20 g subcutaneous teriparatide (n = 818).

osteoporosis
At 18 months, participants assigned abaloparatide had a 9.2% increase in Bone Mass Measurement (BMD) from baseline at the lumbar spine, 3.4 % at the total hip,  3.4% and 2.9% at the femoral neck compared with placebo. Morphometric vertebral fractures were reduced by 86%, nonvertebral fractures by 43% and major osteoporotic fractures by 70% in the abaloparatide group compared to placebo. Compared with teriparatide, major osteoporotic fractures were reduced by 55% in the aloparatide group.
Reductions in new morphometric vertebral and nonvertebral fractures were similar across subgroups, as were increases in BMD, and researchers observed no meaningful interactions between baseline risk factor subgroups and treatment effects. “Our findings suggest that abaloparatide-SC, if approved, has the potential to provide consistent protection against fractures and to increase BMD in a broad group of postmenopausal women with osteoporosis, regardless of baseline age, BMD or prior fracture history,” Cosman said.

http://www.healio.com/

Bones and Shells, Inspiration For New Materials

Researchers at MIT are seeking to redesign concrete — the most widely used human-made material in the world — by following nature’s blueprints. In a paper published online in the journal Construction and Building Materials, the team contrasts cement pasteconcrete’s binding ingredient — with the structure and properties of natural materials such as bones, shells, and deep-sea sponges. As the researchers observed, these biological materials are exceptionally strong and durable, thanks in part to their precise assembly of structures at multiple length scales, from the molecular to the macro, or visible, level.

From their observations, the team, led by Oral Buyukozturk, a professor in MIT’s Department of Civil and Environmental Engineering (CEE), proposed a new bioinspired, “bottom-upapproach for designing cement paste.

bones molecular structure

These materials are assembled in a fascinating fashion, with simple constituents arranging in complex geometric configurations that are beautiful to observe,” Buyukozturk says. “We want to see what kinds of micromechanisms exist within them that provide such superior properties, and how we can adopt a similar building-block-based approach for concrete.”

Ultimately, the team hopes to identify materials in nature that may be used as sustainable and longer-lasting alternatives to Portland cement, which requires a huge amount of energy to manufacture. “If we can replace cement, partially or totally, with some other materials that may be readily and amply available in nature, we can meet our objectives for sustainability,” Buyukozturk says.

Source: http://news.mit.edu/2016/

Molecules Tell Bone To Repair Itself

Scientists at the University of Michigan have developed a polymer sphere that delivers a molecule to bone wounds that tells cells already at the injury site to repair the damage. Using the polymer sphere to introduce the microRNA molecule into cells elevates the job of existing cells to that of injury repair by instructing the cellshealing and bone-building mechanisms to switch on, said Peter Ma, professor of dentistry and lead researcher on the project. It’s similar to a new supervisor ordering an office cleaning crew to start constructing an addition to the building, he said.

Using existing cells to repair wounds reduces the need to introduce foreign cells — a very difficult therapy because cells have their own personalities, which can result in the host rejecting the foreign cells, or tumors. The microRNA is time-released, which allows for therapy that lasts for up to a month or longer, said Ma, who also has appointments in the College of Engineering.

nano-shells-deliver-molecules-that-tell-bone-to-repair-itselfThe polymer sphere delivers the microRNA into cells already at the wound site, which turns the cells into bone repairing machines

The new technology we have been working on opens doors for new therapies using DNA and RNA in regenerative medicine and boosts the possibility of dealing with other challenging human diseases,” Ma said. It’s typically very difficult for microRNA to breach the fortress of the cell wall, Ma added. The polymer sphere developed by Ma’s lab easily enters the cell and delivers the microRNA. The technology can help grow bone in people with conditions like oral implants, those undergoing bone surgery or joint repair, or people with tooth decay.

Bone repair is especially challenging in patients with healing problems, but Ma’s lab was able to heal bone wounds in osteoporotic mice, he said. Millions of patients worldwide suffer from bone loss and associated functional problems, but growing and regenerating high-quality bone for specific applications is still very difficult with current technology.

The findings have been published in the journal Nature Communications.

Source: http://ns.umich.edu/

Biodegradable Implants Heal Broken Bones

A plastic derived from cornstarch combined with a volcanic ash compound, Montmorillonite clay, could help heal the bones of hundreds of thousands of patients with orthopedic injuries who need bone replacement after tumor removal, spinal fusion surgery or fracture repair.
Using a synthetic material will likely lead to a reduction in the surgery complication rate. The patient will only need to heal from one surgery because harvesting bone would not be necessary.Researchers at Beaumont Hospital – Royal Oak will publish their preclinical findings in the journal Nanomedicine. Kevin Baker, Ph.D., director, Beaumont Orthopaedic Research Laboratories, worked on the study with Rangaramanujam Kannan, Ph.D., of Johns Hopkins, formerly with Wayne State University.
Traditional bone graft procedures require surgeons to remove bone from another part of the patient’s body to heal the affected area and encourage new bone growth. Harvesting a patient’s bone can result in complications at the harvest site. Some surgeons also use bone donated from cadavers. However, there is a limited supply of donor bones available.

The goal is to use the material without any additional permanent hardware placed in a patient’s body. Current procedures often require a metal or non-resorbable plastic implant because traditional bone grafts are not strong enough without the added support.

brokenLEG

This improves outcomes for the patient because internal hardware can pose a challenge with respect to being a potential site for infection, and can complicate MRI and CT imaging tests. In addition, from the surgeon’s perspective, not having to worry about a large piece of metal or hard plastic in the area may make future procedures easier,” Baker says.

The biodegradable polymer, reinforced with Montmorillonite clay nanoparticles for strength, dissolves in the body within 18 months. As the material dissolves, new bone formation takes its place.

Source: http://www.beaumont.edu/

NanoWires Boost Bone Cells Growth By 80%

Researchers from The Ohio State University have found that bone cells grow and reproduce faster on a textured surface than they do on a smooth one—and they grow best when they can cling to a microscopic shag carpet made of tiny metal oxide wires. In tests, the wires boosted cell growth by nearly 80 percent compared to other surfaces, which suggests that the coating would help healthy bone form a strong bond with an implant faster.
Broken bones and joint replacements may someday heal faster, thanks to this unusual coating for medical implants under development. In tests, the wires boosted cell growth by nearly 80 percent compared to other surfaces, which suggests that the coating would help healthy bone form a strong bond with an implant faster.
nanobone_cells

Cells show signs of healthy growth in this transmission electron microscope image, taken 15 hours after the cells were placed on a titanium surface coated with a carpet of tiny nanowires. In the inset (upper left), filaments can be seen reaching out from cells to the surface, which indicates a strong connection.

What’s really exciting about this technique is that we don’t have to carve the nanowires from a solid piece of metal or alloy. We can grow them from scratch, by exploiting the physics and chemistry of the materials,” said Sheikh Akbar, professor of materials science and engineering at Ohio State. “That’s why we call our process ‘nanostructures by material design.’”

Finally, the engineers have developed an affordable technique for creating the wires, which they describe in a paper issue of the journal Ceramics International.
Source: http://researchnews.osu.edu/

How To Prevent Bone Fractures

Using cutting-edge X-ray techniques, Cornell researchers have uncovered cellular-level detail of what happens when bone bears repetitive stress over time, visualizing damage at smaller scales than previously observed. Their work could offer clues into how bone fractures could be prevented. More: from athletes to individuals suffering from osteoporosis, bone fractures are usually the result of tiny cracks accumulating over time — invisible rivulets of damage that, when coalesced, lead to that painful break.
Marjolein van der Meulen, the Swanson Professor of Biomedical Engineering in the Sibley School of Mechanical and Aerospace Engineering, led the study published online March 5 in PLOS One using transmission X-ray microscopy at the Stanford Synchrotron Radiation Lightsource, part of the SLAC National Accelerator Laboratory.
bone
Transmission X-ray microscope images of damage generated in a bone sample and stained with lead-uranyl acetate. White is the staining of microdamage, gray is bone and black is background. On the left is one-time loading of the sample, and on the right is repeated loading.

In skeletal research, people have been trying to understand the role of damage,” said van der Meulen, whose research is called mechanobiology — how mechanics intersects with biological processes. “One of the things people have hypothesized is that damage is one of the stimuli that cells are sensing.”

Source: http://www.news.cornell.edu/

How To Repair Bones At The Nanoscale

Scientists at the University of Southampton -U.K.- have created a new method to generate bone cells which could lead to revolutionary bone repair therapies for people with bone fractures or those who need hip replacement surgery due to osteoporosis and osteoarthritis.
The research, carried out by Dr Emmajayne Kingham at the University of Southampton in collaboration with the University of Glasgow and published in the journal Small, cultured human embryonic stem cells on to the surface of plastic materials and assessed their ability to change.
bone repair

Our research may offer a whole new approach to skeletal regenerative medicine. The use of nanotopographical patterns could enable new cell culture designs, new device designs, and could herald the development of new bone repair therapies as well as further human stem cell research,” says Professor Oreffo who led the University of Southampton team.

Source: http://www.southampton.ac.uk