Graphene Brain Implant Turns Thoughts Into Speech

More than 5 million people worldwide suffer annually from aphasia, an extremely invalidating condition in which patients lose the ability to comprehend and formulate language after brain damage or in the course of neurodegenerative disorders. Brain-computer interfaces (BCIs), enabled by forefront technologies and materials, are a promising approach to treat patients with aphasia. The principle of BCIs is to collect neural activity at its source and decode it by means of electrodes implanted directly in the brain. However, neurorehabilitation of higher cognitive functions such as language raises serious issues. The current challenge is to design neural implants that cover sufficiently large areas of the brain to allow for reliable decoding of detailed neuronal activity distributed in various brain regions that are key for language processing.


BrainCom is a FET Proactive project funded by the European Commission with 8.35M€ for the next 5 years. This interdisciplinary initiative involves 10 partners including technologists, engineers, biologists, clinicians, and ethics experts. They aim to develop a new generation of neuroprosthetic cortical devices enabling large-scale recordings and stimulation of cortical activity to study high level cognitive functions. Ultimately, the BraimCom project will seed a novel line of knowledge and technologies aimed at developing the future generation of speech neural prostheses. It will cover different levels of the value chain: from technology and engineering to basic and language neuroscience, and from preclinical research in animals to clinical studies in humans.

This recently funded project is coordinated by ICREA Prof. Jose A. Garrido, Group Leader of the Advanced Electronic Materials and Devices Group at the Institut Català de Nanociència i Nanotecnologia (Catalan Institute of Nanoscience and Nanotechnology – ICN2) and deputy leader of the Biomedical Technologies Work Package presented last year in Barcelona by the Graphene Flagship. The BrainCom Kick-Off meeting is held on January 12-13 at ICN2 and the Universitat Autònoma de Barcelona (UAB).

Recent developments show that it is possible to record cortical signals from a small region of the motor cortex and decode them to allow tetraplegic people to activate a robotic arm to perform everyday life actions. Brain-computer interfaces have also been successfully used to help tetraplegic patients unable to speak to communicate their thoughts by selecting letters on a computer screen using non-invasive electroencephalographic (EEG) recordings. The performance of such technologies can be dramatically increased using more detailed cortical neural information.

BrainCom project proposes a radically new electrocorticography technology taking advantage of unique mechanical and electrical properties of novel nanomaterials such as graphene, 2D materials and organic semiconductors.  The consortium members will fabricate ultra-flexible cortical and intracortical implants, which will be placed right on the surface of the brain, enabling high density recording and stimulation sites over a large area. This approach will allow the parallel stimulation and decoding of cortical activity with unprecedented spatial and temporal resolution.

These technologies will help to advance the basic understanding of cortical speech networks and to develop rehabilitation solutions to restore speech using innovative brain-computer paradigms. The technology innovations developed in the project will also find applications in the study of other high cognitive functions of the brain such as learning and memory, as well as other clinical applications such as epilepsy monitoring.


Artificial Synapse For “Brain-on-a-Chip”

When it comes to processing power, the human brain just can’t be beat. Packed within the squishy, football-sized organ are somewhere around 100 billion neurons. At any given moment, a single neuron can relay instructions to thousands of other neurons via synapses — the spaces between neurons, across which neurotransmitters are exchanged. There are more than 100 trillion synapses that mediate neuron signaling in the brain, strengthening some connections while pruning others, in a process that enables the brain to recognize patterns, remember facts, and carry out other learning tasks, at lightning speeds.

Researchers in the emerging field of “neuromorphic computing” have attempted to design computer chips that work like the human brain. Instead of carrying out computations based on binary, on/off signaling, like digital chips do today, the elements of a “brain on a chip” would work in an analog fashion, exchanging a gradient of signals, or “weights,” much like neurons that activate in various ways depending on the type and number of ions that flow across a synapse.

In this way, small neuromorphic chips could, like the brain, efficiently process millions of streams of parallel computations that are currently only possible with large banks of supercomputers. But one significant hangup on the way to such portable artificial intelligence has been the neural synapse, which has been particularly tricky to reproduce in hardware.

Now engineers at MIT have designed an artificial synapse in such a way that they can precisely control the strength of an electric current flowing across it, similar to the way ions flow between neurons. The team has built a small chip with artificial synapses, made from silicon germanium. In simulations, the researchers found that the chip and its synapses could be used to recognize samples of handwriting, with 95 percent accuracy.

The design, published today in the journal Nature Materials, is a major step toward building portable, low-power neuromorphic chips for use in pattern recognition and other learning tasks.


Inflammation, Key For The Progression of Alzheimer’s

According to a study by scientists of the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn now published in the journal “Nature”, inflammatory mechanisms caused by the brain’s immune system drive the progression of Alzheimer’s disease. These findings, which rely on a series of laboratory experiments, provide new insights into pathogenetic mechanisms that are believed to hold potential for tackling Alzheimer’s before symptoms manifest. The researchers envision that one day this may lead to new ways of treatment. Further institutions both from Europe and the US also contributed to the current results.

Alzheimer’s disease is a devastating neurodegenerative condition ultimately leading to dementia. An effective treatment does not yet exist. The disease is associated with the aberrant aggregation of small proteins called “Amyloid-beta” () that accumulate in the brain and appear to harm neurons. In recent years, studies revealed that deposits of , known as “plaques”, trigger inflammatory mechanisms by the brain’s innate immune system. However, the precise processes that lead to neurodegeneration and progression of pathology have thus far not been fully understood.

Deposition and spreading of Aβ pathology likely precede the appearance of clinical symptoms such as memory problems by decades. Therefore, a better understanding of these processes might be a key for novel therapeutic approaches. Such treatments would target Alzheimer’s at an early stage, before cognitive deficits manifest,” says Prof. Michael Heneka, a senior researcher at the DZNE and Director of the Department of Neurodegenerative Diseases and Gerontopsychiatry at the University of Bonn.

Prof. Heneka, who is also involved in the cluster of excellence “ImmunoSensation” at the University of Bonn, and coworkers have been investigating the role of the brain’s immune response in the progression of Aβ pathology for some time already. Previous work by the group that was published in Nature in 2013, had established that the molecular complex NLRP3, which is an innate immune sensor, is activated in brains of Alzheimer’s patients and contributes to the pathogenesis of Alzheimer’s in the murine model. NLRP3 is a so-called inflammasome that triggers production of highly pro-inflammatory cytokines. Furthermore, upon activation, NLRP3 forms large signaling complexes with the adapter protein ASC, which are called “ASC specks” that can be released from cells. “The release of ASC specks from activated cells has so far only been documented in macrophages and their relevance in disease processes has so far remained a mystery,” says Prof. Eicke Latz, director of the Institute of Innate Immunity and member of the cluster of excellence “ImmunoSensation” at the University of Bonn.


Acupuncture And Nanotechnology Married To Cure Cancer

DGIST (Daegu Gyeongbuk Institute of Science and Technology) in South Korea announced that Professor Su-Il In’s research team from the department of Energy Science and Engineering has presented the possibility of cancer treatment, including colorectal cancer, using acupuncture needles that employ nanotechnology for the first time in the world.

The research team of Professor Su-Il In, through joint research with Dr. Eunjoo Kim of Companion Diagnostics & Medical Technology Research Group at DGIST and Professor Bong-Hyo Lee’s research team from the College of Oriental Medicine at Daegu Haany University, has published a study showing that the molecular biologic indicators related to anticancer effects are changed only by the treatment of acupuncture, which is widely used in oriental medicine.

In oriental medicine, treatment using acupuncture needles has been commonly practiced for thousands of years in the fields of treating musculoskeletal disorders, pain relief, and addiction relief. Recently, it has emerged as a promising treatment for brain diseases, gastrointestinal disorders, nausea, and vomiting, and studies are under way to use acupuncture to treat severe diseases.


Not only that, Professor In’s team discovered that acupuncture needles can be used for cancer treatment which is difficult to treat in modern medicine. In this study, the researchers developed nanoporous needles with microscopic holes in the surface of the needles ranging from nanopores (nm = one billionth of a meter) to micrometers (μm = one millionth of a meter) by applying relatively simple electrochemical nanotechnology. By increasing the surface area of the needle by a factor of ten, the nanoporous needles doubled the electrophysiological signal generation function by needle stimulus.

As a result of AOM administration in rats, the rats receiving periodic acupuncture treatment with nanoporous needles were found to have a much lower incidence of abnormal vascular clusters as a precursor to colorectal cancer in the initiation stage than those in the control group.


Using Brain-Machine Interfaces, Mental Power Can Move Objects

A unique citizen science project in which volunteers will be trained to move a piece of steel machinery using the power of their mind begins on October 27. The Mental Work project uses brain-machine interfaces developed at EPFL (Ecole polytechnique fédérale de Lausanne) in Switzerland, a convergence of science, art, and design .


At the mental work factory the public can come and we equip them with an EEG helmet which will read the mental activity, the electrical activity, that’s in their brain. These helmets are dry, so we don’t need gel for conductivity and they’re also wireless so they can walk through the mental factory and engage with four of our machines activating them with only their mental activity,  explains Michael Mitchell , who is one of the three co-founders of Mental Work.

The data that will be collected during the mental worker’s trajectory throughout our factory floor will then be made anonymous and given to the brain machine interface community to improve the interfaces for the future. “We think that we’re on the cusp of a cognitive revolution. Now a cognitive revolution is going to be a world where our brains are intimately connected to our physical world around us. With the development of these brain machine interfaces we think that we are really at the beginning of a moment in time where man is going to become the centre of all this technology. His brain activity is going to interact with the physical world around him in ways that we can hardly imagine today. “So I think it’s understandable if people are a little apprehensive about this technology because some people may think ‘oh, it can read my thoughts and then what are we going to do with those thoughts. Where’s the privacy level here?’ But in fact we’re only asking you to modulate your brain activity according to your own will. So it’s as simple as sending a command to a computer using a mouse or a keyboard. But this time we’re using asking you to use your brain. Now we want to bring this technology to the public at a early phase of its development so that we can create a dialogue about what kind of relationship we want to have with this technology in particular but also with man’s relationship to technology in general.


Magnetic Fields To Remotely Control Body Movements

Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities — an achievement that could lead to advances in studying and treating neurological disease. The technique researchers developed is called magneto-thermal stimulation. It gives neuroscientists a powerful new tool: a remote, minimally invasive way to trigger activity deep inside the brain, turning specific cells on and off to study how these changes affect physiology.

Magnetic nanoparticles stimulate neurons deep in the brain to evoke body movements of mice. This image shows a section of a mouse brain with injected magnetic nanoparticles (colored red) covering targeted cells in the striatum

There is a lot of work being done now to map the neuronal circuits that control behavior and emotions,” says lead researcher Arnd Pralle, PhD, a professor of physics in the University at Buffalo College of Arts and Sciences. “How is the computer of our mind working? The technique we have developed could aid this effort greatly.”

Understanding how the brain works — how different parts of the organ communicate with one another and control behavior — is key to developing therapies for diseases that involve the injury or malfunction of specific sets of neurons. Traumatic brain injuries, Parkinson’s disease, dystonia and peripheral paralysis all fall into this category.

The advances reported by Pralle’s team could also aid scientists seeking to treat ailments such as depression and epilepsy directly through brain stimulation.


How To Generate Any Cell Within The Patient’s Own Body

Researchers at The Ohio State University Wexner Medical Center and Ohio State’s College of Engineering have developed a new technology, Tissue Nanotransfection (TNT), that can generate any cell type of interest for treatment within the patient’s own body. This technology may be used to repair injured tissue or restore function of aging tissue, including organs, blood vessels and nerve cells.

By using our novel nanochip technology (nanocomputer), injured or compromised organs can be replaced. We have shown that skin is a fertile land where we can grow the elements of any organ that is declining,” said Dr. Chandan Sen, director of Ohio State’s Center for Regenerative Medicine & Cell Based Therapies, who co-led the study with L. James Lee, professor of chemical and biomolecular engineering with Ohio State’s College of Engineering in collaboration with Ohio State’s Nanoscale Science and Engineering Center.

Researchers studied mice and pigs in these experiments. In the study, researchers were able to reprogram skin cells to become vascular cells in badly injured legs that lacked blood flow. Within one week, active blood vessels appeared in the injured leg, and by the second week, the leg was saved. In lab tests, this technology was also shown to reprogram skin cells in the live body into nerve cells that were injected into brain-injured mice to help them recover from stroke.

This is difficult to imagine, but it is achievable, successfully working about 98 percent of the time. With this technology, we can convert skin cells into elements of any organ with just one touch. This process only takes less than a second and is non-invasive, and then you’re off. The chip does not stay with you, and the reprogramming of the cell starts. Our technology keeps the cells in the body under immune surveillance, so immune suppression is not necessary,” said Sen, who also is executive director of Ohio State’s Comprehensive Wound Center.

Results of the regenerative medicine study have been published in the journal  Nature Nanotechnology.


New Brain Death Pathway In Alzheimer’s Identified

Findings of team led by the Arizona State University (ASU) scientists offer hope for therapies targeting cell loss in the brain, an inevitable and devastating outcome of Alzheimer’s progression
Alzheimer’s disease tragically ravages the brains, memories and, ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer’s disease is the sixth-leading cause of death in the U.S., and a cure for Alzheimer’s remains elusive, as the exact biological events that trigger it are still unknown.

In a new study, Arizona State University-Banner Health neuroscientist Salvatore Oddo and his colleagues from Phoenix’s Translational Genomics Research Institute (TGen) — as well as the University of California, Irvine, and Mount Sinai in New York — have identified a new way for brain cells to become fated to die during Alzheimer’s disease. The research team has found the first evidence that the activation of a biological pathway called necroptosis, which causes neuronal loss, is closely linked with Alzheimer’s severity, cognitive decline and extreme loss of tissue and brain weight that are all advanced hallmarks of the disease.

We anticipate that our findings will spur a new area of Alzheimer’s disease research focused on further detailing the role of necroptosis and developing new therapeutic strategies aimed at blocking it,” said Oddo, the lead author of this study, and scientist at the ASU-Banner Neurodegenerative Disease Research Center at the Biodesign Institute and associate professor in the School of Life Sciences.

Necroptosis, which causes cells to burst from the inside out and die, is triggered by a triad of proteins. It has been shown to play a central role in multiple sclerosis and Lou Gehrig’s disease (amyotrophic lateral sclerosis, or ALS), and now for the first time, also in Alzheimer’s disease.

There is no doubt that the brains of people with Alzheimer’s disease have fewer neurons,” explained Oddo. “The brain is much smaller and weighs less; it shrinks because neurons are dying. That has been known for 100 years, but until now, the mechanism wasn’t understood.
The findings appear in the advanced online edition of Nature Neuroscience.


How To Re-Wire The Brains Of People With Depression

Doctors in California say magnetic stimulation can help ‘rewire‘ the brains of people with depression, offering hope for patients whose condition is not improved by medication or therapy. Depression is one of the most common forms of mental illness, affecting more than 350 million people worldwide. Bob Holmes is one of them.


I struggled with that for many years, didn’t know really what to do, tried to pull myself through it. And then ultimately when I got into my forties, I wasn’t successful,” says Bob Holmes, who suffers from He has been receiving transcranial magnetic stimulation at the University of California Los Angeles (UCLA), a treatment that beams targeted magnetic pulses deep inside his brain. Doctors say the therapy can effectivelyrewire‘ the brain by changing how brain circuits are arranged.


By pulsing it with energy repeatedly, we’re changing the way that area works, but also changing the way the whole brain network works,” explains Andrew Leuchter,Director of the Semel Institute (UCLA).

For Holmes, the treatment has been life changing.  “I would recommend it a hundred percent. I have spoken to a number of people who have depression, given them my opinion, and I think it’s a wonderful program. It’s been a life-saver for me, and I’m very grateful that I found it, and I’m very grateful for the people here,” adds Holmes.

Doctors hope the newest generation of equipment could decrease the length of a treatment session from over 35 minutes down to three minutes, allowing a patient to complete a course in two weeks and bringing the therapy to even more people with depression.


Startup Promises Immortality Through AI, Nanotechnology, and Cloning

One of the things humans have plotted for centuries is escaping death, with little to show for it, until now. One startup called Humai has a plan to make immortality a reality. The CEO, Josh Bocanegra says when the time comes and all the necessary advancements are in place, we’ll be able to freeze your brain, create a new, artificial body, repair any damage to your brain, and transfer it into your new body. This process could then be repeated in perpetuityHUMAI stands for: Human Resurrection through Artificial Intelligence. The technology to accomplish this isn’t here now, but on the horizon. Bocanegra says they’ll reach this Promethean feat within 30 years. 2045 is currently their target date. So how do they plan to do it?

We’re using artificial intelligence and nanotechnology to store data of conversational styles, behavioral patterns, thought processes and information about how your body functions from the inside-out. This data will be coded into multiple sensor technologies, which will be built into an artificial body with the brain of a deceased human, explains the website.


A Brain-computer Interface To Combat The Rise of AI

Elon Musk is attempting to combat the rise of artificial intelligence (AI) with the launch of his latest venture, brain-computer interface company NeuralinkLittle is known about the startup, aside from what has been revealed in a Wall Street Journal report, but says sources have described it as “neural lace” technology that is being engineered by the company to allow humans to seamlessly communicate with technology without the need for an actual, physical interface. The company has also been registered in California as a medical research entity because Neuralink’s initial focus will be on using the described interface to help with the symptoms of chronic conditions, from epilepsy to depression. This is said to be similar to how deep brain stimulation controlled by an implant helps  Matt Eagles, who has Parkinson’s, manage his symptoms effectively. This is far from the first time Musk has shown an interest in merging man and machine. At a Tesla launch in Dubai earlier this year, the billionaire spoke about the need for humans to become cyborgs if we are to survive the rise of artificial intelligence.

cyborg woman

Over time I think we will probably see a closer merger of biological intelligence and digital intelligence,”CNBC reported him as saying at the time. “It’s mostly about the bandwidth, the speed of the connection between your brain and the digital version of yourself, particularly output.” Transhumanism, the enhancement of humanity’s capabilities through science and technology, is already a living reality for many people, to varying degrees. Documentary-maker Rob Spence replaced one of his own eyes with a video camera in 2008; amputees are using prosthetics connected to their own nerves and controlled using electrical signals from the brain; implants are helping tetraplegics regain independence through the BrainGate project.

Former director of the United States Defense Advanced Research Projects Agency (DARPA), Arati Prabhakar, comments: “From my perspective, which embraces a wide swathe of research disciplines, it seems clear that we humans are on a path to a more symbiotic union with our machines.


Mental Viagra

As Valentines Day approaches, love may be in the air…. but it’s also in the mind. Scientists in London say a natural hormone – appropriately named kisspeptinenhances brain regions associated with sex and love. In placebo-controlled trials, 29 healthy young men were injected with kisspeptin and their brains scanned using MRI.


During the MRI they performed tasks designed to activate certain areas of the brain. So we used tasks to activate the sexual arousal centres of the brain and task to activate the romance sensors of the brain using images. And we observed that kisspeptin boosted the activity in sexual arousal and romantic circuits in the brain,” says Dr. Alexander Comninos, Endocrinologist at Imperial College  London.

Kisspeptin is found in all men and women, and is vital for stimulating puberty. “So there’s a link, not just with the hormones, but also the stimulation of reproductive hormones but also stimulating how we perceive sexual images in the brain, and that’s what the really exciting part of this study been; is how for the first time having a link between a hormone that’s stimulating reproductive hormones, but also how our brains perceive sexual images,” explains Waljit Dhillo, Professor in Endocrinology at Imperial College London .

Psychological sexual disorders can make it difficult for couples to conceive. Biological factors play a large part, but the role of the brain and emotion can’t be overlooked. A kisspeptin-based therapy could be an answer, say researchers. It differs from drugs like Viagra, which only trigger a physiological response. “Viagra is very different. So Viagra will cause vasodilation, it will make the vessels essentially dilate, blood will go down to the genital area. So it’s a completely different action, it’s mechanical if you like. Whereas this is much more psychological in terms of its altering how we perceive sexual images in our brains. So it’s a completely different mechanism of action“, adds Professor Dhillo.

More research is needed – including on women and then eventually in patients with psychological issues. Kisspeptin could one day help treat sexual disorders of the mind… in effect, mental Viagra.