Startup Promises Immortality Through AI, Nanotechnology, and Cloning

One of the things humans have plotted for centuries is escaping death, with little to show for it, until now. One startup called Humai has a plan to make immortality a reality. The CEO, Josh Bocanegra says when the time comes and all the necessary advancements are in place, we’ll be able to freeze your brain, create a new, artificial body, repair any damage to your brain, and transfer it into your new body. This process could then be repeated in perpetuityHUMAI stands for: Human Resurrection through Artificial Intelligence. The technology to accomplish this isn’t here now, but on the horizon. Bocanegra says they’ll reach this Promethean feat within 30 years. 2045 is currently their target date. So how do they plan to do it?

We’re using artificial intelligence and nanotechnology to store data of conversational styles, behavioral patterns, thought processes and information about how your body functions from the inside-out. This data will be coded into multiple sensor technologies, which will be built into an artificial body with the brain of a deceased human, explains the website.

Source: https://www.facebook.com/humaitech/
AND
http://bigthink.com/

A Brain-computer Interface To Combat The Rise of AI

Elon Musk is attempting to combat the rise of artificial intelligence (AI) with the launch of his latest venture, brain-computer interface company NeuralinkLittle is known about the startup, aside from what has been revealed in a Wall Street Journal report, but says sources have described it as “neural lace” technology that is being engineered by the company to allow humans to seamlessly communicate with technology without the need for an actual, physical interface. The company has also been registered in California as a medical research entity because Neuralink’s initial focus will be on using the described interface to help with the symptoms of chronic conditions, from epilepsy to depression. This is said to be similar to how deep brain stimulation controlled by an implant helps  Matt Eagles, who has Parkinson’s, manage his symptoms effectively. This is far from the first time Musk has shown an interest in merging man and machine. At a Tesla launch in Dubai earlier this year, the billionaire spoke about the need for humans to become cyborgs if we are to survive the rise of artificial intelligence.

cyborg woman

Over time I think we will probably see a closer merger of biological intelligence and digital intelligence,”CNBC reported him as saying at the time. “It’s mostly about the bandwidth, the speed of the connection between your brain and the digital version of yourself, particularly output.” Transhumanism, the enhancement of humanity’s capabilities through science and technology, is already a living reality for many people, to varying degrees. Documentary-maker Rob Spence replaced one of his own eyes with a video camera in 2008; amputees are using prosthetics connected to their own nerves and controlled using electrical signals from the brain; implants are helping tetraplegics regain independence through the BrainGate project.

Former director of the United States Defense Advanced Research Projects Agency (DARPA), Arati Prabhakar, comments: “From my perspective, which embraces a wide swathe of research disciplines, it seems clear that we humans are on a path to a more symbiotic union with our machines.

Source: http://www.wired.co.uk/

Mental Viagra

As Valentines Day approaches, love may be in the air…. but it’s also in the mind. Scientists in London say a natural hormone – appropriately named kisspeptinenhances brain regions associated with sex and love. In placebo-controlled trials, 29 healthy young men were injected with kisspeptin and their brains scanned using MRI.

couple in loveCLICK ON THE IMAGE TO ENJOY THE VIDEO

During the MRI they performed tasks designed to activate certain areas of the brain. So we used tasks to activate the sexual arousal centres of the brain and task to activate the romance sensors of the brain using images. And we observed that kisspeptin boosted the activity in sexual arousal and romantic circuits in the brain,” says Dr. Alexander Comninos, Endocrinologist at Imperial College  London.

Kisspeptin is found in all men and women, and is vital for stimulating puberty. “So there’s a link, not just with the hormones, but also the stimulation of reproductive hormones but also stimulating how we perceive sexual images in the brain, and that’s what the really exciting part of this study been; is how for the first time having a link between a hormone that’s stimulating reproductive hormones, but also how our brains perceive sexual images,” explains Waljit Dhillo, Professor in Endocrinology at Imperial College London .

Psychological sexual disorders can make it difficult for couples to conceive. Biological factors play a large part, but the role of the brain and emotion can’t be overlooked. A kisspeptin-based therapy could be an answer, say researchers. It differs from drugs like Viagra, which only trigger a physiological response. “Viagra is very different. So Viagra will cause vasodilation, it will make the vessels essentially dilate, blood will go down to the genital area. So it’s a completely different action, it’s mechanical if you like. Whereas this is much more psychological in terms of its altering how we perceive sexual images in our brains. So it’s a completely different mechanism of action“, adds Professor Dhillo.

More research is needed – including on women and then eventually in patients with psychological issues. Kisspeptin could one day help treat sexual disorders of the mind… in effect, mental Viagra.

Source: http://www.reuters.com/

Pain Relief Spot Identified In Brain

Scientists have identified for the first time the region in the brain responsible for the “placebo effect” in pain relief, when a fake treatment actually results in substantial reduction of pain, according to new research from Northwestern Medicine and the Rehabilitation Institute of Chicago (RIC).

placebo_brain

The yellow and red sections of this brain image shows the unique brain region — the mid frontal gyrus — which Northwestern scientists discovered is responsible for placebo response in pain relief

Pinpointing the sweet spot of the pain killing placebo effect could result in the design of more personalized medicine for the 100 million Americans with chronic pain. The fMRI technology developed for the study has the potential to usher in an era of individualized pain therapy by enabling targeted pain medication based on how an individual’s brain responds to a drug.

Given the enormous societal toll of chronic pain, being able to predict placebo responders in a chronic pain population could both help the design of personalized medicine and enhance the success of clinical trials,” said Marwan Baliki, research scientist at RIC and an assistant professor of physical medicine and rehabilitation at Northwestern University Feinberg School of Medicine.
The finding also will lead to more precise and accurate clinical trials for pain medications by eliminating individuals with high placebo response before trials.

The study was published Oct. 27, 2016, in PLOS Biology.

Source: https://news.northwestern.edu/

Nanoparticles From Car Pollution May Trigger Alzheimer’s

Tiny magnetic particles produced by car engines and brakes can travel into the human brain and may trigger Alzheimer’s disease, scientists have warned. Researchers at Lancaster, Oxford and Manchester Universities discovered microscopic  spheres of the mineral magnetite in the brains of 37 people in Manchester and Mexico who had suffered neurodegenerative disease. The mineral magnetite is known to be toxic and is linked to the production of free radicals which are associated with Alzheimer’s Disease.

car-gas-pollution

Although magnetite has previously been found in the brains of people who had died of Alzheimer’s disease, it was thought it occurred naturally. However the tiny balls spotted by the scientists had a fused surface suggesting they had been formed during extreme heat, such as in a car engineMagnetite – a form of iron oxide – is known to be produced in car engines – particularly diesel engines which can emit up to 22 times more particulates than petrol engines – as well as when brakes are used, both by cars and trains. It can also be produced by open fires and poorly fitted stoves. Researchers said the findings opened up a ‘whole new avenue‘ into the causes of Alzheimer’s disease, while charities said it offered ‘convincing evidence‘ that the toxic particles could get into the brain. “The particles we found are strikingly similar to magnetite nanospheres that are abundant in the airborne pollution found in urban settings, especially next to busy roads and which are firmed by combustion or frictional heating from vehicle engines or brakes.”

Source: http://www.telegraph.co.uk/

Implanted Neural Nanocomputers To Boost Failing Human Brains

As neural implants become more and more advanced, researchers think humans may be able to overcome diseases and defects like strokes and dementia with the help of nanocomputers in our brains.

With the forecasted inevitable rise of the machines — be they robots or artificial intelligences — humans are beginning to realize that they should work to maintain superiority. There are a few ideas about how we should do it, but perhaps the most promising option is to go full cyborg. (What could possibly go wrong?) On Monday, a company called Kernel, announced that it would be leading the charge.

Active_brain

The idea is something straight out of dorm room pot-smoking sessions. What if, the exhaling sophomore muses, we put computers inside our brains? Unfortunately for prospective stoner-scientists, the actual creation of such a device — a functioning, cognitive-enhancing neural implant — has long evaded bioengineers and neuroscientists alike.

Kernel thinks it’s past time to make real progress. Theodore Berger runs the Univerity of Southern California’s Center for Neural Engineering, and he caught the eye of Bryan Johnson, a self-made multimillionaire who’s obsessed with augmenting human intelligence. With Johnson’s entrepreneurial money and Berger’s scientific brain, the two launched Kernel.
For now, Berger and Johnson are focusing on achievable goals with immediate impacts. They are creating an analogous human neural implant that can mitigate cognitive decline in those who suffer from Alzheimer’s and the aftereffects of strokes, concussions, and other brain injuries or neurological diseases. If Kernel is able to replicate even the 10 percent cognitive improvement that Berger demonstrated in monkeys, those who suffer from these cognitive disorders will be that much more capable of forming memories and living out enjoyable lives.

Source: https://www.inverse.com/

Nanodrugs Help to cure 50 Rare Genetic Disorders

Researchers at Oregon State University and other institutions have discovered a type of drug delivery system that may offer new hope for patients with a rare, ultimately fatal genetic disorder – and make what might become a terrible choice a little easier.No treatment currently exists for this disease, known as Niemann Pick Type C1 disease, or NPC1, that affects about one in every 120,000 children globally, and results in abnormal cholesterol accumulation, progressive neurodegeneration and eventual death. However, a compound that shows promise is now undergoing clinical trials, but it has major drawbacks – the high doses necessary also cause significant hearing loss and lung damage, as well as requiring direct brain injection.

New findings, published today in Scientific Reports (“PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder”), outline the potential for a nanotechnology-based delivery system to carry the new drug into cells far more effectively, improve its efficacy by about five times, and allow use of much lower doses that may still help treat this condition without causing such severe hearing loss.The same system, they say, may ultimately show similar benefits for 50 or more other genetic disorders, especially those that require “brain targeting” of treatments.

X-linked_recessive._inheritance

Right now there’s nothing that can be done for patients with this disease, and the median survival time is 20 years,” said Gaurav Sahay, an assistant professor in the Oregon State University/Oregon Health & Science University College of Pharmacy, and corresponding author on the new study. “The new cholesterol-scavenging drug proposed to treat this disorder, called cyclodextrin , may for the first time offer a real treatment. But it can cause significant hearing loss and requires multiple injections directly into the brain, which can be very traumatic. I’m very excited about the potential of our new drug delivery system to address these problems.”

Source: http://oregonstate.edu/

Eye Test detects Parkinson’s Before Symptoms develop

A newly developed eye test offers the hope of far earlier diagnosis of Parkinson’s disease, a devastating condition usually discovered too late in patients for effective treatment.
This new eye test could detect Parkinson’s disease before symptoms develop. Developed at the University College London (UCL), Institute of Ophthalmology it looks for changes in patients’ retinas before brain alteration occurs. Researchers induced Parkinson’s in rats by injecting them with a chemical called rotenone. Having observed retinal changes, they treated the rodents with a new version ofRosiglitaz anti-diabetic drug Rosiglitazone.

eyes2CLICK ON THE IMAGE TO ENJOY THE VIDEO

The preliminary results were that we were able to see evidence of Parkinson’s in the retina well in advance compared to the Parkinsonian events in the brain. Furthermore, by injecting the Rosiglitazone in these rats we were able to see a rescue effect of Rosiglitazone in this model, first in the eye and then in the brain“, says Dr. Eduardo Normando, UCL constant opthalmologist. Human clinical trials will begin soon. Earlier diagnosis could have a major impact on future patient outcomes

If you’ve seen the effects in the retina well before you see those effects in the brain then actually you could shorten the length of clinical trials and you could use this as a very good marker of treatment success. But in the long run what we think is that it could be a way of trying to see if patients are ever going to get Parkinson’s disease“, adds UCL Professor of glaucoma and retinal neurodegeneration, Francesca Cordeiro.

The degenerative condition affects 1 in 500 people, causing muscle stiffness, slowness of movement, tremors and a reduced quality of life. Symptoms typically become apparent once more than 70 percent of the brain’s dopamine-producing cells have been destroyed.

Source: http://www.reuters.com/

How To Map RNA Molecules In The Brain

Cells contain thousands of messenger RNA molecules, which carry copies of DNA’s genetic instructions to the rest of the cell. MIT engineers have now developed a way to visualize these molecules in higher resolution than previously possible in intact tissues, allowing researchers to precisely map the location of RNA throughout cells. Key to the new technique is expanding the tissue before imaging it. By making the sample physically larger, it can be imaged with very high resolution using ordinary microscopes commonly found in research labs.

MIT RNA-Imaging

Now we can image RNA with great spatial precision, thanks to the expansion process, and we also can do it more easily in large intact tissues,” says Ed Boyden, an associate professor of biological engineering and brain and cognitive sciences at MIT, a member of MIT’s Media Lab and McGovern Institute for Brain Research, and the senior author of a paper describing the technique in the July 4 issue of Nature Methods.

Studying the distribution of RNA inside cells could help scientists learn more about how cells control their gene expression and could also allow them to investigate diseases thought to be caused by failure of RNA to move to the correct location.

Source: http://news.mit.edu/

Artificial Intelligence Mimicks Biological Hierarchy

New research from University of Wyoming and INRIA (France) explains why so many biological networks, including the human brain (a network of neurons), exhibit a hierarchical structure, and will improve attempts to create artificial intelligence.

biological hierarchyThe evolution of hierarchy – a simple system of ranking – in biological networks may arise because of the costs associated with network connections

Like large businesses, many biological networks are hierarchically organised, such as gene, protein, neural, and metabolic networks. This means they have separate units that can each be repeatedly divided into smaller and smaller subunits. For example, the human brain has separate areas for motor control and tactile processing, and each of these areas consist of sub-regions that govern different parts of the body.

But why do so many biological networks evolve to be hierarchical? The results of the study suggest that hierarchy evolves not because it produces more efficient networks, but instead because hierarchically wired networks have fewer connections. This is because connections in biological networks are expensive – they have to be built, housed, maintained, etc. – and there is therefore an evolutionary pressure to reduce the number of connections.
The findings not only explain why biological networks are hierarchical, they might also give an explanation for why many man-made systems such as the Internet and road systems are also hierarchical“, comments Jeff Clune, author of the paper.

The study has been published in PLOS Computational Biology.

Source: http://www.eurekalert.org/

Brain Implant Moves Paralyzed Arm

This is Ian Burkhart of Ohio. His hands and legs were permanently paralyzed in a diving accident when he was 19 years old. But now with the help of a new, breakthrough computer chip implanted in his brain – the, now, 24-year-old is playing guitar hero.

brain implant helps paralized limbsCLICK ON THE IMAGE TO ENJOY THE VIDEO
When we first hooked everything up, you know for the first time being able to move my hand, it was a big shock because you know it was something that I have not moved in three and half years at that point, now it’s more of something where I expect it to move“,  says  Ian Burkhat, the quadriplegic patient at Ohio State University Wexner Medical Center.  The small pea-sized computer chip relays signals from Burkhart’s brain through 130 electrodes to his forearm, allowing his mind guide his hands and fingers, bypassing his damaged spinal cord. On Wednesday, scientists and neurosurgeons describing this quadriplegic’s accomplishments as a milestone in the evolution of brain-computer interface technology.

This really provides hope, we believe, for many patients in the future as this technology evolves and matures“, comments Doctor Ali Rezai, from the Ohio State’s Center for NeuroModulation. Burkhart says the progress is moving along faster than he imagined: “The biggest dream would be to get full function of my hand back, both my hands, because that would allow you to be much more independent, not to have to rely on people for simple day to day tasks that you take for granted.”

Scientists are working to improve the technology, which for now can only be used in the laboratory, and move toward a wireless system bringing Burkhart another step closer to his dream.

Source: http://wexnermedical.osu.edu/

Brain: Graphene Interacts Safely With Neurons

Researchers from the University of Trieste (Italy) and the University of Cambridge have successfully demonstrated how it is possible to interface graphene – a two-dimensional form of carbon – with neurons, or nerve cells, while maintaining the integrity of these vital cells. The work may be used to build graphene-based electrodes that can safely be implanted in the brain, offering promise for the restoration of sensory functions for amputee or paralysed patients, or for individuals with motor disorders such as epilepsy or Parkinson’s disease. Previously, other groups had shown that it is possible to use treated graphene to interact with neurons. However the signal to noise ratio from this interface was very low. By developing methods of working with untreated graphene, the researchers retained the material’s electrical conductivity, making it a significantly better electrode.

graphene interacts in the brain

For the first time we interfaced graphene to neurons directly,” said Professor Laura Ballerini of the University of Trieste in Italy. “We then tested the ability of neurons to generate electrical signals known to represent brain activities, and found that the neurons retained their neuronal signalling properties unaltered. This is the first functional study of neuronal synaptic activity using uncoated graphene based materials.

The research, published in the journal ACS Nano, was an interdisciplinary collaboration coordinated by the University of Trieste in Italy and the Cambridge Graphene Centre.

Source: http://www.cam.ac.uk/