Graphene Ripples, Clean And Limitless Energy Source

Graphene is a seemingly impossible material. For years, scientists had theorized that lifting a single layer of carbon atoms from a chunk of graphite could produce the first two-dimensional material, which they called graphene. Finally, in 2004, this was accomplished by two physicists at the University of Manchester, who earned the Nobel Prize in Physics for this breakthrough. There was a problem, however: two dimensional materials violate the laws of physics. Without the support of a substrate, physics predicts they would tear apart or melt, even at a temperature of absolute zero. Physicists had to find a loophole to explain their existence.

That loophole turned out to be related to a phenomenon known as Brownian motion, small random fluctuations of the carbon atoms that make up graphene. This causes the material to ripple into the third dimension, similar to waves moving across the surface of the ocean. These movements in and out of the flat surface allow graphene to stay comfortably within the laws of physics.

Ever since Robert Brown discovered Brownian motion in 1827, scientists have wondered whether they could harvest this motion as a source of energy. The research of Paul Thibado, professor of physics at the University of Arkansas, provides strong evidence that the motion of graphene could indeed be used as a source of clean, limitless energy. Other researchers have theorized that temperature-induced curvature inversion in graphene could be used as an energy source, and even predicted the amount of energy they could produce. What sets Thibado’s work apart is his discovery that graphene has naturally occurring ripples that invert their curvature as the atoms vibrate in response to the ambient temperature.

This is the key to using the motion of 2D materials as a source of harvestable energy,” Thibado said. Unlike atoms in a liquid, which move in a random directions, atoms connected in a sheet of graphene move together. This means their energy can be collected using existing nanotechnology.

These results have been published in the journal Physical Review Letters.


Nanoscale Submarines Will Carry Cargoes Through The Blood

Though they’re not quite ready for boarding a lá “Fantastic Voyage,” nanoscale submarines created at Rice University are proving themselves seaworthy. Each of the single-molecule, 244-atom submersibles built in the Rice lab of chemist James Tour has a motor powered by ultraviolet light. With each full revolution, the motor’s tail-like propeller moves the sub forward 18 nanometers.

And with the motors running at more than a million RPM, that translates into speed. Though the sub’s top speed amounts to less than 1 inch per second, Tour said that’s a breakneck pace on the molecular scale.

submarine at nanoscale

These are the fastest-moving molecules ever seen in solution,” he said.

Expressed in a different way, the researchers reported this month in the American Chemical Society journal Nano Letters that their light-driven nanosubmersibles show an “enhancement in diffusion” of 26 percent. That means the subs diffuse, or spread out, much faster than they already do due to Brownian motion, the random way particles spread in a solution. While they can’t be steered yet, the study proves molecular motors are powerful enough to drive the sub-10-nanometer subs through solutions of moving molecules of about the same size.

This is akin to a person walking across a basketball court with 1,000 people throwing basketballs at him,” Tour said. Rice’s researchers hope future nanosubs will be able to carry cargoes for medical and other purposes. “There’s a path forward,” García-López said. “This is the first step, and we’ve proven the concept. Now we need to explore opportunities and potential applications.”