Nanostructured High-Strength LightWeight Concrete

Scientists from the Peter the Great Saint-Petersburg Polytechnic University (SPbPU) in Russia, have created several types of building blocks based on nanostructured high-strength lightweight concrete, reinforced with skew-angular composite coarse grids. The development has unique characteristics, enabling the increase of load-carrying capability by more than 200% and decrease in specific density of the construction by 80%. In addition, among the advantages, are resistance to corrosion, aggressive environments and excessive frost resistance.

Researchers calculated that the service life of the building structures, made with the use of this reinforcement system, will increase at least 2-3 times in comparison with its modern analogs.

Such system allows to ensure the structure integrity even in conditions of seismic activity, since the load is distributed throughout the structure as a whole, and not by individual reinforcement bars. The invention can be used in the construction of bridges and pedestrian crossings, non-metallic ships, low-rise residential buildings” says Alexander Rassokhin, graduate student at SPbPU. Andrey Ponomarev, Professor of the Institute of Civil Engineering is the co-inventor of the new  construction technology.

The fundamentals of the research have been described in an article “Hybrid wood-polymer composites in civil engineering” at the Magazine of Civil Engineering.


Matter: How To See The Structural Arrangements Of Atoms

Atoms are the building blocks of all matter on Earth, and the patterns in which they are arranged dictate how strong, conductive or flexible a material will be. Now, scientists at UCLA have used a powerful microscope to image the three-dimensional positions of individual atoms to a precision of 19 trillionths of a meter, which is several times smaller than a hydrogen atom.

Their observations make it possible, for the first time, to infer the macroscopic properties of materials based on their structural arrangements of atoms, which will guide how scientists and engineers build aircraft components, for example. The research, led by Jianwei (John) Miao, a UCLA professor of physics and astronomy and a member of UCLA’s California NanoSystems Institute, has been published in the online edition of the journal Nature Materials.


atoms+image+(2015)The scientists were able to plot the exact coordinates of nine layers of atoms with a precision of 19 trillionths of a meter

For more than 100 years, researchers have inferred how atoms are arranged in three-dimensional space using a technique called X-ray crystallography, which involves measuring how light waves scatter off of a crystal. However, X-ray crystallography only yields information about the average positions of many billions of atoms in the crystal, and not about individual atoms’ precise coordinates.

“It’s like taking an average of people on Earth,” Miao said. “Most people have a head, two eyes, a nose and two ears. But an image of the average person will still look different from you and me.”


How To Deliver 3 Cancer Drugs At A Time.

Chemists from the Massachusetts Institute of Technology (MIT) have devised a way to build new nanoparticles, making it much easier to include three or more different drugs. The researchers, under the supervision of Jeremiah Johnson, an assistant professor of chemistry at MIT showed that they could load their particles with three drugs commonly used to treat ovarian cancer.
Such particles could be designed to carry even more drugs, allowing researchers to develop new treatment regimens that could better kill cancer cells while avoiding the side effects of traditional chemotherapy. Johnson set out to create a new type of particle that would enable the loading of any number of different drugs.

We think it’s the first example of a nanoparticle that carries a precise ratio of three drugs and can release those drugs in response to three distinct triggering mechanisms,”.
This is a new way to build the particles from the beginning,” Johnson says.
If I want a particle with five drugs, I just take the five building blocks I want and have those assemble into a particle. In principle, there’s no limitation on how many drugs you can add, and the ratio of drugs carried by the particles just depends on how they are mixed together in the beginning.
Longyan Liao, a postdoc in Johnson’s lab, is the paper’s lead author ot the paper, published in the Journal of the American Chemical Society.