Photovoltaics: Light Absorption Enhanced by Up to 200 Percent

Sunlight reflected by solar cells is lost as unused energy. The wings of the butterfly Pachliopta aristolochiae are drilled by nanostructures (nanoholes) that help absorbing light over a wide spectrum far better than smooth surfaces. Researchers of Karlsruhe Institute of Technology (KIT) in Germany, have now succeeded in transferring these nanostructures to solar cells and, thus, enhancing their light absorption rate by up to 200 percent.

 “The butterfly studied by us is very dark black. This signifies that it perfectly absorbs sunlight for optimum heat management. Even more fascinating than its appearance are the mechanisms that help reaching the high absorption. The optimization potential when transferring these structures to photovoltaics (PV) systems was found to be much higher than expected,” says Dr. Hendrik Hölscher of KIT’s Institute of Microstructure Technology (IMT).


The scientists of the team of Hendrik Hölscher and Radwanul H. Siddique (formerly KIT, now Caltech) reproduced the butterfly’s nanostructures in the silicon absorbing layer of a thin-film solar cell. Subsequent analysis of light absorption yielded promising results: Compared to a smooth surface, the absorption rate of perpendicular incident light increases by 97% and rises continuously until it reaches 207% at an angle of incidence of 50 degrees. “This is particularly interesting under European conditions. Frequently, we have diffuse light that hardly falls on solar cells at a vertical angle,” Hendrik Hölscher says. However, this does not automatically imply that efficiency of the complete PV system is enhanced by the same factor, says Guillaume Gomard of IMT. “Also other components play a role. Hence, the 200 percent are to be considered a theoretical limit for efficiency enhancement.

The scientists have reported their results in the journal Science Advances. (DOI: 10.1126/sciadv.1700232.)


How To Generate Wonderful Colors

Colors are produced in a variety of ways. The best known colors are pigments. However, the very bright colors of the blue tarantula or peacock feathers do not result from pigments, but from nanostructures that cause the reflected light waves to overlap. This produces extraordinarily dynamic color effects.

blue-tarantulaScientists from Karlsruhe Institute of Technology (KIT) in Germany, in cooperation with international colleagues, have now succeeded in replicating nanostructures that generate the same color irrespective of the viewing angle.

In contrast to pigments, structural colors are non-toxic, more vibrant and durable. In industrial production, however, pigments have the drawback of being strongly iridescent, which means that the color perceived depends on the viewing angle. An example is the rear side of a CD. Hence, such colors cannot be used for all applications. Bright colors of animals, by contrast, are often independent of the angle of view. Feathers of the kingfisher always appear blue, no matter from which angle we look. The reason lies in the nanostructures: While regular structures are iridescent, amorphous or irregular structures always produce the same color. Yet, industry can only produce regular nanostructures in an economically efficient way. Radwanul Hasan Siddique, researcher at KIT in collaboration with scientists from USA and Belgium has now discovered that the blue tarantula does not exhibit iridescence in spite of periodic structures on its hairs. First, their study revealed that the hairs are multi-layered, flower-like structure. Then, the researchers analyzed its reflection behavior with the help of computer simulations. In parallel, they built models of these structures using nano-3D printers and optimized the models with the help of the simulations. In the end, they produced a flower-like structure that generates the same color over a viewing angle of 160 degrees. This is the largest viewing angle of any synthetic structural color reached so far.

Apart from the multi-layered structure and rotational symmetry, it is the hierarchical structure from micro to nano that ensures homogeneous reflection intensity and prevents color changes. Via the size of the “flower,” the resulting color can be adjusted, which makes this coloring method interesting for industry. “This could be a key first step towards a future where structural colorants replace the toxic pigments currently used in textile, packaging, and cosmetic industries,” says Radwanul Hasan Siddique of KIT’s Institute of Microstructure Technology, who now works at the California Institute of Technology. He considers short-term application in textile industry feasible. Dr. Hendrik Hölscher thinks that the scalability of nano-3D printing is the biggest challenge on the way towards industrial use. Only few companies in the world are able to produce such prints.


Impenetrable Body-Armor To Protect Soldiers

A team of engineers from the University of California San Diego (UC San Diego) has developed and tested a type of steel with a record-breaking ability to withstand an impact without deforming permanently. The new steel alloy could be used in a wide range of applications, from drill bits, to body armor for soldiers, to meteor-resistant casings for satellites. The material is an amorphous steel alloy, a promising subclass of steel alloys made of arrangements of atoms that deviate from steel’s classical crystal-like structure, where iron atoms occupy specific locations.

Researchers are increasingly looking to amorphous steel as a source of new materials that are affordable to manufacture, incredibly hard, but at the same time, not brittle. The researchers believe their work on the steel alloy, named SAM2X5-630, is the first to investigate how amorphous steels respond to shock. SAM2X5-630 has the highest recorded elastic limit for any steel alloy, according to the researchers—essentially the highest threshold at which the material can withstand an impact without deforming permanently. The alloy can withstand pressure and stress of up to 12.5 giga-Pascals or about 125,000 atmospheres without undergoing permanent deformations.

record breaking steelTransmission electron microscopy image showing different levels of crystallinity embedded in the amorphous matrix of the alloy. Watch a video of the alloy being tested, click the image.
Because these materials are designed to withstand extreme conditions, you can process them under extreme conditions successfully,” said Olivia Graeve, a professor of mechanical engineering at the Jacobs School of Engineering at UC San Diego, who led the design and fabrication effort. Veronica Eliasson, an assistant professor at USC, led the testing efforts.

The researchers, from the University of California, San Diego, the University of Southern California and the California Institute of Technology, describe the material’s fabrication and testing in a recent issue of Nature Scientific Reports.


Nanoparticle-Based Cancer Therapies Shown to Work in Humans

A team of researchers led by Caltech scientists has shown that nanoparticles can function to target tumors while avoiding adjacent healthy tissue in human cancer patients.

nanoparticle against brain cancer

Our work shows that this specificity, as previously demonstrated in preclinical animal studies, can in fact occur in humans“, says study leader Mark E. Davis, the Warren and Katharine Schlinger Professor of Chemical Engineering at Caltech. “The ability to target tumors is one of the primary reasons for using nanoparticles as therapeutics to treat solid tumors.
The scientists demonstrate that nanoparticle-based therapies can act as a “precision medicine” for targeting tumors while leaving healthy tissue intact. In the study, Davis and his colleagues examined gastric tumors from nine human patients both before and after infusion with a drug—camptothecin—that was chemically bound to nanoparticles about 30 nanometers in size.

Our nanoparticles are so small that if one were to increase the size to that of a soccer ball, the increase in size would be on the same order as going from a soccer ball to the planet Earth,” says Davis, who is also a member of the City of Hope Comprehensive Cancer Center in Duarte, California, where the clinical trial was conducted.

The team found that 24 to 48 hours after the nanoparticles were administered, they had localized in the tumor tissues and released their drug cargo, and the drug had had the intended biological effects of inhibiting two proteins that are involved in the progression of the cancer. Equally important, both the nanoparticles and the drug were absent from healthy tissue adjacent to the tumors.

The findings, have been published online in the journal Proceedings of the National Academy of Sciences.


Integrated Solar Fuels Generator

Generating and storing renewable energy, such as solar or wind power, is a key barrier to a clean-energy economy. When the Joint Center for Artificial Photosynthesis (JCAP) was established at Caltech (California Institute of Technology) and its partnering institutions in 2010, the U.S. Department of Energy (DOE) Energy Innovation Hub had one main goal: a cost-effective method of producing fuels using only sunlight, water, and carbon dioxide, mimicking the natural process of photosynthesis in plants and storing energy in the form of chemical fuels for use on demand. Over the past five years, researchers at JCAP have made major advances toward this goal, and they now report the development of the first complete, efficient, safe, integrated solar-driven system for splitting water to create hydrogen fuels.


This result was a stretch project milestone for the entire five years of JCAP as a whole, and not only have we achieved this goal, we also achieved it on time and on budget,” says Caltech’s Nate Lewis, professor of chemistry, and the JCAP scientific director.

This accomplishment drew on the knowledge, insights and capabilities of JCAP, which illustrates what can be achieved in a Hub-scale effort by an integrated team,” adds Harry Atwater, director of JCAP. “The device reported here grew out of a multi-year, large-scale effort to define the design and materials components needed for an integrated solar fuels generator.
Another key advance is the use of active, inexpensive catalysts for fuel production. The photoanode requires a catalyst to drive the essential water-splitting reaction. Rare and expensive metals such as platinum can serve as effective catalysts, but in its work the team discovered that it could create a much cheaper, active catalyst by adding a 2-nanometer-thick layer of nickel. This catalyst is among the most active known catalysts for splitting water molecules into oxygen, protons, and electrons and is a key to the high efficiency displayed by the device. The demonstration system is approximately one square centimeter in area, converts 10 percent of the energy in sunlight into stored energy in the chemical fuel, and can operate for more than 40 hours continuously. “This new system shatters all of the combined safety, performance, and stability records for artificial leaf technology by factors of 5 to 10 or more ,” Lewis says. “Our work shows that it is indeed possible to produce fuels from sunlight safely and efficiently in an integrated system with inexpensive components,” Lewis adds .


How To process Graphene To Produce Solar Cells

A new technique invented at the California Institute of Technology (Caltech) to produce graphene — a material made up of an atom-thick layer of carbon, at room temperature, could help pave the way for commercially feasible graphene-based solar cells and light-emitting diodes, large-panel displays, and flexible electronics.

With this new technique, we can grow large sheets of electronic-grade graphene in much less time and at much lower temperatures,” says Caltech staff scientist David Boyd, who developed the method. Boyd is the first author of a new study, published in the journal Nature Communications, detailing the new manufacturing process and the novel properties of the graphene it produces.

Graphene revolutionizes a variety of engineering and scientific fields due to its unique properties, which include a tensile strength 200 times stronger than steel and an electrical mobility that is two to three orders of magnitude better than silicon. The electrical mobility of a material is a measure of how easily electrons can travel across its surface. However, achieving these properties on an industrially relevant scale has proven to be complicated. Existing techniques require temperatures that are much too hot — 1,800 degrees Fahrenheit, or 1,000 degrees Celsius — for incorporating graphene fabrication with current electronic manufacturing. Additionally, high-temperature growth of graphene tends to induce large, uncontrollably distributed strain—deformation—in the material, which severely compromises its intrinsic properties.

Previously, people were only able to grow a few square millimeters of high-mobility graphene at a time, and it required very high temperatures, long periods of time, and many steps,” says Caltech physics professor Nai-Chang Yeh, the Fletcher Jones Foundation Co-Director of the Kavli Nanoscience Institute and the corresponding author of the new study. “Our new method can consistently produce high-mobility and nearly strain-free graphene in a single step in just a few minutes without high temperature. We have created sample sizes of a few square centimeters, and since we think that our method is scalable, we believe that we can grow sheets that are up to several square inches or larger, paving the way to realistic large-scale applications.”


How To Harvest More of the Sun’s Energy

As solar panels become less expensive and capable of generating more power, solar energy is becoming a more commercially viable alternative source of electricity. However, the photovoltaic cells now used to turn sunlight into electricity can only absorb and use a small fraction of that light, and that means a significant amount of solar energy goes untapped.

A new technology created by researchers from Caltech, and described in a paper published online in Science Express, represents a first step toward harnessing that lost energy.

Sunlight is composed of many wavelengths of light. In a traditional solar panel, silicon atoms are struck by sunlight and the atoms’ outermost electrons absorb energy from some of these wavelengths of sunlight, causing the electrons to get excited. Once the excited electrons absorb enough energy to jump free from the silicon atoms, they can flow independently through the material to produce electricity. This is called the photovoltaic effect—a phenomenon that takes place in a solar panel‘s photovoltaic cells.

Although silicon-based photovoltaic cells can absorb light wavelengths that fall in the visible spectrum—light that is visible to the human eye—longer wavelengths such as infrared light pass through the silicon. These wavelengths of light pass right through the silicon and never get converted to electricity — and in the case of infrared, they are normally lost as unwanted heat.

An ultra-sensitive needle measures the voltage that is generated while the nanospheres are illuminated

The silicon absorbs only a certain fraction of the spectrum, and it’s transparent to the rest. If I put a photovoltaic module on my roof, the silicon absorbs that portion of the spectrum, and some of that light gets converted into power. But the rest of it ends up just heating up my roof,” says Harry A. Atwater, Professor of Applied Physics at the Resnick Sustainability Institute, who led the study. Now, Atwater and his colleagues have found a way to absorb and make use of these infrared waves with a structure composed not of silicon, but entirely of metal.

The new technique they’ve developed is based on a phenomenon observed in metallic structures known as plasmon resonance. Plasmons are coordinated waves, or ripples, of electrons that exist on the surfaces of metals at the point where the metal meets the air. While the plasmon resonances of metals are predetermined in nature, Atwater and his colleagues found that those resonances are capable of being tuned to other wavelengths when the metals are made into tiny nanostructures in the lab.

Normally in a metal like silver or copper or gold, the density of electrons in that metal is fixed; it’s just a property of the material,” Atwater says. “But in the lab, I can add electrons to the atoms of metal nanostructures and charge them up. And when I do that, the resonance frequency will change.”

We’ve demonstrated that these resonantly excited metal surfaces can produce a potential“—an effect very similar to rubbing a glass rod with a piece of fur: you deposit electrons on the glass rod. “You charge it up, or build up an electrostatic charge that can be discharged as a mild shock,” he says. “So similarly, exciting these metal nanostructures near their resonance charges up those metal structures, producing an electrostatic potential that you can measure.” This electrostatic potential is a first step in the creation of electricity, Atwater says. “If we can develop a way to produce a steady-state current, this could potentially be a power source.” He envisions a solar cell using the plasmoelectric effect someday being used in tandem with photovoltaic cells to harness both visible and infrared light for the creation of electricity.


Use Your Smartphone As A Movies Projector

Imagine that you are in a meeting with coworkers or at a gathering of friends. You pull out your cell phone to show a presentation or a video on YouTube. But you don’t use the tiny screen; your phone projects a bright, clear image onto a wall or a big screen. Such a technology may be on its way, thanks to a new light-bending silicon chip developed by researchers at Caltech.

The chip was developed by Ali Hajimiri, Thomas G. Myers Professor of Electrical Engineering, and researchers in his laboratory. The results were presented at the Optical Fiber Communication (OFC) conference in San Francisco on March 10.

Traditional projectors—like those used to project a film or classroom lecture notes—pass a beam of light through a tiny image, using lenses to map each point of the small picture to corresponding, yet expanded, points on a large screen. The Caltech chip eliminates the need for bulky and expensive lenses and bulbs and instead uses a so-called integrated optical phased array (OPA) to project the image electronically with only a single laser diode as light source and no mechanically moving parts.

Hajimiri and his colleagues were able to bypass traditional optics by manipulating the coherence of light — a property that allows the researchers to “bend” the light waves on the surface of the chip without lenses or the use of any mechanical movement. If two waves are coherent in the direction of propagation — meaning that the peaks and troughs of one wave are exactly aligned with those of the second wave—the waves combine, resulting in one wave, a beam with twice the amplitude and four times the energy as the initial wave, moving in the direction of the coherent waves.

By changing the relative timing of the waves, you can change the direction of the light beam

For example, if 10 people kneeling in line by a swimming pool slap the water at the exact same instant, they will make one big wave that travels directly away from them. But if the 10 separate slaps are staggered—each person hitting the water a half a second after the last — there will still be one big, combined wave, but with the wave bending to travel at an angle, says Hajimiri.


Mimicking Sea Sponge To Create Futuristic Artificial World

The lightweight skeletons of organisms such as sea sponges display a strength that far exceeds that of manmade products constructed from similar materials. Scientists have long suspected that the difference has to do with the hierarchical architecture of the biological materials—the way the silica-based skeletons are built up from different structural elements, some of which are measured on the scale of billionths of meters, or nanometers. Now engineers at the California Institute of Technology (Caltech) have mimicked such a structure by creating nanostructured, hollow ceramic scaffolds, and have found that the small building blocks, or unit cells, do indeed display remarkable strength and resistance to failure despite being more than 85 percent air.

Inspired, in part, by hard biological materials and by earlier work by Toby Schaedler and a team from HRL Laboratories, Caltech, and UC Irvine on the fabrication of extremely lightweight microtrusses, we designed architectures with building blocks that are less than five microns long, meaning that they are not resolvable by the human eye,” says Julia R. Greer, professor of materials science and mechanics at Caltech. “Constructing these architectures out of materials with nanometer dimensions has enabled us to decouple the materials’ strength from their density and to fabricate so-called structural metamaterials which are very stiff yet extremely lightweight.”


Nanotechnologies Help To Heal Nuclear Damages

Researchers at the California Institute of Technology (Caltech) have brought new understanding to one of those secrets — how the interfaces between two carefully selected metals can absorb, or heal, radiation damage. Some nano-engineered materials are able to resist such damage and may, for example, prevent helium bubbles from coalescing into larger voids. For instance, some metallic nanolaminates—materials made up of extremely thin alternating layers of different metals—are able to absorb various types of radiation-induced defects at the interfaces between the layers because of the mismatch that exists between their crystal structures.

When it comes to selecting proper structural materials for advanced nuclear reactors, it is crucial that we understand radiation damage and its effects on materials properties. And we need to study these effects on isolated small-scale features,” says Julia R. Greer, an assistant professor of materials science and mechanics at Caltech. With that in mind, Greer and colleagues from Caltech, Sandia National Laboratories, UC Berkeley, and Los Alamos National Laboratory have taken a closer look at radiation-induced damage, zooming in all the way to the nanoscale — where lengths are measured in billionths of meters.
Their results appear online in the journals Advanced Functional Materials and Small.