AI, “worst event in the history of our civilisation” says Stephen Hawking

Stephen Hawking has sent a stark warning out to the world, stating that the invention of artificial intelligence (AI) could be the “worst event in the history of our civilisation”. Speaking at the Web Summit technology conference in Lisbon, Portugal, the theoretical physicist reiterated his warning against the rise of powerful, conscious machines.
While Prof Hawking admitted that AI could be used for good, he also stated that humans need to find a way to control it so that it does not become more powerful than us as “computers can, in theory, emulate human intelligence, and exceed it.” Looking at the positives, the 75-year old said AI could help undo some of the damage that humans have inflicted on the natural world, help beat disease and “transform” every aspect of society. But, there are negatives that come with it.

Success in creating effective AI, could be the biggest event in the history of our civilisation. Or the worst. We just don’t know. “So we cannot know if we will be infinitely helped by AI, or ignored by it and side-lined, or conceivably destroyed by it. “Unless we learn how to prepare for, and avoid, the potential risks, AI could be the worst event in the history of our civilisation. It brings dangers, like powerful autonomous weapons, or new ways for the few to oppress the many. It could bring great disruption to our economy,” explains the University of Cambridge alumni.

Prof Hawking added that to make sure AI is in line with our goals, creators need to “employ best practice and effective management.” But he still has hope: “I am an optimist and I believe that we can create AI for the good of the world. “That it can work in harmony with us. We simply need to be aware of the dangers, identify them, employ the best possible practice and management, and prepare for its consequences well in advance.”

Just last week, Prof Hawking warned that AI will replace us as the dominant being on the planet.


Scalable Production of Conductive Graphene Inks

Conductive inks based on graphene and layered materials are key for low-cost manufacturing of flexible electronics, novel energy solutions, composites and coatings. A new method for liquid-phase exfoliation of graphite paves the way for scalable production.

Conductive inks are useful for a range of applications, including printed and flexible electronics such as radio frequency identification (RFID) antennas, transistors or photovoltaic cells. The advent of the internet of things is predicted to lead to new connectivity within everyday objects, including in food packaging. Thus, there is a clear need for cheap and efficient production of electronic devices, using stable, conductive and non-toxic components. These inks can also be used to create novel composites, coatings and energy storage devices.

A new method for producing high quality conductive graphene inks with high concentrations has been developed by researchers working at the Cambridge Graphene Centre at the University of Cambridge, UK. The novel method uses ultrahigh shear forces in a microfluidisation process to exfoliate graphene flakes from graphite. The process converts 100% of the starting graphite material into usable flakes for conductive inks, avoiding the need for centrifugation and reducing the time taken to produce a usable ink. The research, published in ACS Nano, also describes optimisation of the inks for different printing applications, as well as giving detailed insights into the fluid dynamics of graphite exfoliation.

graphene scalable production

“This important conceptual advance will significantly help innovation and industrialization. The fact that the process is already licensed and commercialized indicates how it is feasible to cut the time from lab to market” , said Prof. Andrea Ferrari, Director of the Cambridge Graphene Centre.


Nanotechnology Hero

Judith Driscoll, 49, is professor of materials science at the University of Cambridge and an expert on nanotechnology. She read materials science at Imperial College London, followed by a PhD in superconductivity at Cambridge and post-doctoral research at Stanford University, California and IBM Almaden Research Centre. Following  is her testimony.


Science is Passion

I’m always surprised more people don’t study materials science. It’s broad and creative and so important to our everyday lives. I loved physics, chemistry and maths at school and hit on materials science as a great way of continuing with them.”

“Studying for a PhD was tough. It’s completely different from a first degree. Intelligence isn’t enough. You have to be creative, have your own ideas, cope with setbacks and work largely unaided. But it is a great way of finding out whether a career in research is right for you.” “The research for which I’m most famous happened on sabbatical. After eight years mostly spent teaching, doing admin and raising money I really wanted to get back into the lab, so I went to Los Alamos National Laboratory in New Mexico to work on a new idea I had to combine superconductivity and nanotechnology.” “Nanotechnology is unbelievably small. A nanometre is one billionth of a metre, roughly the length a human hair grows in the time it takes to pick up a razor.” “Nanotechnology lets you create substances as small as one molecule thick, giving enormous surface area for speeding up chemical reactions. You can also miniaturise computer components, potentially storing a terabyte of data per square inch.” “And you can achieve quantum confinement, where particles are so small that electrons behave differently from normal, enabling new optical, electrical and magnetic properties to be realised.”

“My big breakthrough concerned the creation of “perfectdefects in very thin films of superconductors. My brainwave was to create nanoparticles within a thin film superconductor using a different material that I knew the superconductor wouldn’t react with.” “It worked right away, achieving very much higher currents in the superconductor and opening up a whole new world of applications in power transmission, conversion and storage, and in high-power magnets for important science experiments such as the Large Hadron Collider and fusion research.” Nanotechnology may be tiny but its potential is huge. It could give us much more efficient solar power, better storage of renewable energy, cancer-killing drugs delivered to just the right cells in the body, biotechnology to clean polluted environments, even molecular-scale robots called nanobots.

“My latest research involves making new kinds of composite thin films that mimic how the brain works.”

“Being a senior academic is rather like running a small business. Your “product” is your research output and you have to raise funding, manage the lab and the people, supervise the work and “market” your work to other academics.” “The wonderful thing about my job is the freedom. In my research nobody tells me what to do or when, and when my daughters were young I was able to work very flexibly”. “You need to be really passionate to succeed in science. If you’re not the type to give up your weekend to really understand something then you’re probably not cut out for it.”


Solar Cells Used As Lasers

A relatively new type of solar cell based on a perovskite material – named for scientist Lev Perovski, who first discovered materials with this structure in the Ural Mountains in the 19th century – was recently pioneered by an Oxford research team led by Professor Henry Snaith. Commercial silicon-based solar cells – such as those seen on the roofs of houses across the country – operate at about 20% efficiency for converting the Sun’s rays into electrical energy. It’s taken over 20 years to achieve that rate of efficiency. Latest research finds that the trailblazing ‘perovskite’ material used in solar cells can double up as a laser, strongly suggesting the astonishing efficiency levels already achieved in these cells is only part of the journey. Scientists have demonstrated potential uses for this material in telecommunications and for light emitting devices.

Perovskite solar cells, the source of huge excitement in the research community, already lie just a fraction behind commercial silicon, having reached a remarkable 17% efficiency after a mere two years of research – transforming prospects for cheap large-area solar energy generation.
Now, researchers from Professor Sir Richard Friend’s group at Cambridge’s Cavendish Laboratory – working with Snaith’s Oxford group – have demonstrated that perovskite cells excel not just at absorbing light but also at emitting it. The new findings, recently published online in the Journal of Physical Chemistry Letters, show that these ‘wonder cells’ can also produce cheap lasers. By sandwiching a thin layer of the lead halide perovskite between two mirrors, the team produced an optically driven laser which proves these cells “show very efficient luminescence” – with up to 70% of absorbed light re-emitted.


New Nanomaterials From CO2

In common perception, carbon dioxide is just a greenhouse gas, one of the major environmental problems of mankind. Carbon dioxide (CO2) is a natural component of Earth’s atmosphere. It is the most abundant carbon-based building block, and is involved in the synthesis of glucose, an energy carrier and building unit of paramount importance for living organisms. For Warsaw chemists CO2 became, however, something else: a key element of reactions allowing for creation of nanomaterials with unprecedented properties. In reaction with carbon dioxide, appropriately designed chemicals allowed researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw and the Faculty of Chemistry, Warsaw University of Technology, (WUT) for production of unprecedented nanomaterials.
The novel materials are highly porous, and in their class they show the most extended, and so the largest surface area, which is of key importance for the envisaged use. Prospective applications include storage of energetically important gases, catalysis or sensing devices. Moreover, microporous fluorescent materials obtained using CO2 emit light with quantum yield significantly higher than those of classical materials used in OLEDs.

carbon dioxyde.2jpgYellow tennis balls symbolise crystal lattice of the microporous material resulting from self-assembly of nanoclusters. Orange balls imitate gas molecules that can adsorb in this material. The presentation is performed
Our research is not confined to fabrication of materials. Its particular importance comes from the fact that it opens a new synthetic route to metal carbonate and metal oxide based nanomaterials, the route where carbon dioxide plays a key role”, notices Prof. Janusz Lewiński (IPC PAS, WUT).
Carbon dioxide has been for years used in industrial synthesis of polymers. On the other hand, there has been very few research papers reporting fabrication of inorganic functional materials using CO2”, says Kamil Sokołowski, a doctoral student in IPC PAS.

The papers reporting accomplishments of Prof. Lewiński’s group, achieved in cooperation with Cambridge University and University of Nottingham, were published, i.a., by journals “Angewandte Chemie” and “Chemical Communications”.