Artificial Intelligence At The Hospital

Diagnosing cancer is a slow and laborious process. Here researchers at University Hospital Zurich painstakingly make up biopsy slides – up to 50 for each patient – for the pathologist to examine for signs of prostate cancer. A pathologist takes around an hour and a half per patient – a task IBMs Watson supercomputer is now doing in fractions of a second.

CLICK ON THE IMAGE TO ENJOY THE VIDEO
“If the pathologist becomes faster by using such a system I think it will pay off. Because my time is also worth something. If I sit here one and a half hours looking at slides, screening all these slides, instead of just signing out the two or three positive ones, and taking into account that there may be a .1 error rate, percent error rate. this will pay off, because I can do in one and a half hours at the end five patients,” says Dr. Peter Wild, University Hospital Zürich.

The hospital’s archive of biopsy images is being slowly fed into Watson – a process that will take years. But maybe one day pathologists won’t have to view slides through a microscope at all. Diagnosis is not the only area benefiting from AI. The technology is helping this University of Sheffield team design a new drug that could slow down the progress of motor neurone disease. A system built by British start-up BenevolentAI is identifying new areas for further exploration far faster than a person could ever hope to.

Benevolent basically uses their artificial intelligence system to scan the whole medical and biomedical literature. It’s not really easy for us to stay on top of millions of publications that come out every year. So they can interrogate that information, using artificial intelligence and come up with ideas for new drugs that might be used in a completely different disease, but may be applicable on motor neurone disease. So that’s the real benefit in their system, the kind of novel ideas that they come up with,” explains Dr. Richard Mead, Sitran, University of Sheffield. BenevolentAI has raised one hundred million dollars in investment to develop its AI system, and help revolutionise the pharmaceutical industry.

Source: http://www.reuters.com/

A Single Drop Of Blood To Test Agressive Prostate Cancer

A new diagnostic developed by Alberta scientists will allow men to bypass painful biopsies to test for aggressive prostate cancer. The test incorporates a unique nanotechnology platform to make the diagnostic using only a single drop of blood, and is significantly more accurate than current screening methods.

The Extracellular Vesicle Fingerprint Predictive Score (EV-FPS) test uses machine learning to combine information from millions of cancer cell nanoparticles in the blood to recognize the unique fingerprint of aggressive cancer. The diagnostic, developed by members of the Alberta Prostate Cancer Research Initiative (APCaRI), was evaluated in a group of 377 Albertan men who were referred to their urologist with suspected prostate cancer. It was found that EV-FPS correctly identified men with aggressive prostate cancer 40 percent more accurately than the most common test—Prostate-Specific Antigen (PSA) blood test—in wide use today.

Higher sensitivity means that our test will miss fewer aggressive cancers,” said John Lewis, the Alberta Cancer Foundation‘s Frank and Carla Sojonky Chair of Prostate Cancer Research at the University of Alberta. “For this kind of test you want the sensitivity to be as high as possible because you don’t want to miss a single cancer that should be treated.”

According to the team, current tests such as the PSA and digital rectal exam (DRE) often lead to unneeded biopsies. Lewis says more than 50 per cent of men who undergo biopsy do not have prostate cancer, yet suffer the pain and side effects of the procedure such as infection or sepsis. Less than 20 per cent of men who receive a are diagnosed with the aggressive form of prostate cancer that could most benefit from treatment.

It’s estimated that successful implementation of the EV-FPS test could eventually eliminate up to 600-thousand unnecessary biopsies, 24-thousand hospitalizations and up to 50 per cent of unnecessary treatments for prostate each year in North America alone. Beyond cost savings to the health care system, the researchers say the diagnostic test will have a dramatic impact on the health care experience and quality of life for men and their families.

Compared to elevated total PSA alone, the EV-FPS test can more accurately predict the result of prostate biopsy in previously unscreened men,” said Adrian Fairey, urologist at the Northern Alberta Urology Centre and member of APCaRI. “This information can be used by clinicians to determine which men should be advised to undergo immediate prostate biopsy and which men should be advised to defer and continue screening.”

Source:  https://medicalxpress.com/

Blood Cells Deliver Drugs To Kill Cancer

For the first time, WSU researchers have demonstrated a way to deliver a drug to a tumor by attaching it to a blood cell. The innovation could let doctors target tumors with anticancer drugs that might otherwise damage healthy tissues.

To develop the treatment, a team led by Zhenjia Wang, an assistant professor of pharmaceutical sciences, worked at the microscopic scale using a nanotherapeutic particle so small that 1,000 of them would fit across the width of a hair. By attaching a nanoscale particle to an infection-fighting white blood cell, the team showed they can get a drug past the armor of blood vessels that typically shield a tumor. This has been a major challenge in nanotechnology drug delivery.

Working with colleagues in Spokane and China, Wang implanted a tumor on the flank of a mouse commonly chosen as a model for human diseases. The tumor was exposed to near-infrared light, causing an inflammation that released proteins to attract white blood cells, called neutrophils, into the tumor. The researchers then injected the mouse with gold nanoparticles treated with antibodies that mediate the union of the nanoparticles and neutrophils. When the tumor was exposed to infrared light, the light’s interaction with the gold nanoparticles produced heat that killed the tumor cells, Wang said. In the future, therapists could attach an anticancer drug like doxorubicin to the nanoparticle. This could let them deliver the drug directly to the tumor and avoid damaging nearby tissues, Wang said.

We have developed a new approach to deliver therapeutics into tumors using the white blood cells of our body,” Wang said. “This will be applied to deliver many anticancer drugs, such as doxorubicin, and we hope that it could increase the efficacy of cancer therapies compared to other delivery systems.”

Wang and Chu’s colleagues on the research are postdoctoral researcher Dafeng Chu, Ph.D. student Xinyue Dong, Jingkai Gu of Jilin University and Jingkai Gu of the University of Macau.

The researchers reported on the technique in the latest issue of the journal Advanced Materials.

Source: https://news.wsu.edu/

Nanoparticle Vaccine Against Cancer

Researchers from UT Southwestern Medical Center have developed a first-of-its-kind nanoparticle vaccine immunotherapy that targets several different cancer types.

The nanovaccine consists of tumor antigens tumor proteins that can be recognized by the immune system – inside a synthetic polymer nanoparticle. Nanoparticle vaccines deliver minuscule particulates that stimulate the immune system to mount an immune response. The goal is to help people’s own bodies fight cancer.


cancer-cells-

What is unique about our design is the simplicity of the single-polymer composition that can precisely deliver tumor antigens to immune cells while stimulating innate immunity. These actions result in safe and robust production of tumor-specific T cells that kill cancer cells,” said Dr. Jinming Gao, a Professor of Pharmacology and Otolaryngology in UT Southwestern’s Harold C. Simmons Comprehensive Cancer Center.

A study outlining this research, published online today in Nature Nanotechnology, reported that the nanovaccine had anti-tumor efficacy in multiple tumor types in mice.

The research was a collaboration between the laboratories of study senior authors Dr. Gao and Dr. Zhijian “James” Chen, Professor of Molecular Biology and Director of the Center for Inflammation Research. The Center was established in 2015 to study how the body senses infection and to develop approaches to exploit this knowledge to create new treatments for infection, immune disorders, and autoimmunity.

Source: http://www.utsouthwestern.edu/

Nanoparticles reprogram immune cells to fight cancer

Dr. Matthias Stephan has a bold vision. He imagines a future where patients with leukemia could be treated as early as the day they are diagnosed with cellular immunotherapy that’s available in their neighborhood clinic and is as simple to administer as today’s chemotherapy, but without the harsh side effects. The key to that scientific leap? Nanoparticles, tiny technology that’s able to carry tumor-targeting genes directly to immune cells still within the body and program them to destroy cancer. In a proof-of-principle study published Monday in Nature Nanotechnology, Stephan and other researchers at Fred Hutchinson Cancer Research Center showed that nanoparticle-programmed immune cells, known as T cells, can clear or slow the progression of leukemia in a preclinical model.

nanoparticles reprogram genes

“Our technology is the first that we know of to quickly program tumor-recognizing capabilities into T cells without extracting them for laboratory manipulation,” said Stephan, the study’s senior author. Although his method for programming T cells is still several steps away from the clinic, Stephan envisions a future in which biodegradable nanoparticles could transform cell-based immunotherapies — whether for cancer or infectious disease — into an easily administered, off-the-shelf treatment that’s available anywhere.

Stephan imagines that in the future, nanoparticle-based immunotherapy could be “something that is available right away and can hopefully out-compete chemotherapies. That’s my excitement.”

Source: https://www.fredhutch.org/

How To Capture Quickly Cancer Markers

A nanoscale product of human cells that was once considered junk is now known to play an important role in intercellular communication and in many disease processes, including cancer metastasis. Researchers at Penn State have developed nanoprobes to rapidly isolate these rare markers, called extracellular vesicles (EVs), for potential development of precision cancer diagnoses and personalized anticancer treatments.

Lipid nanoprobes

Most cells generate and secrete extracellular vesicles,” says Siyang Zheng, associate professor of biomedical engineering and electrical engineering. “But they are difficult for us to study. They are sub-micrometer particles, so we really need an electron microscope to see them. There are many technical challenges in the isolation of nanoscale EVs that we are trying to overcome for point-of-care cancer diagnostics.”

At one time, researchers believed that EVs were little more than garbage bags that were tossed out by cells. More recently, they have come to understand that these tiny fat-enclosed sacks — lipids — contain double-stranded DNA, RNA and proteins that are responsible for communicating between cells and can carry markers for their origin cells, including tumor cells. In the case of cancer, at least one function for EVs is to prepare distant tissue for metastasis.

The team’s initial challenge was to develop a method to isolate and purify EVs in blood samples that contain multiple other components. The use of liquid biopsy, or blood testing, for cancer diagnosis is a recent development that offers benefits over traditional biopsy, which requires removing a tumor or sticking a needle into a tumor to extract cancer cells. For lung cancer or brain cancers, such invasive techniques are difficult, expensive and can be painful.

Noninvasive techniques such as liquid biopsy are preferable for not only detection and discovery, but also for monitoring treatment,” explains Chandra Belani, professor of medicine and deputy director of the Cancer Institute,Penn State College of Medicine, and clinical collaborator on the study.

We invented a system of two micro/nano materials,” adds Zheng. “One is a labeling probe with two lipid tails that spontaneously insert into the lipid surface of the extracellular vesicle. At the other end of the probe we have a biotin molecule that will be recognized by an avidin molecule we have attached to a magnetic bead.”

Source: http://news.psu.edu/

New Technique Identifies Cancer In Urine Or Blood

A team of researchers, led by Professor Yoon-Kyoung Cho of Life Science at UNIST  (South Korea) has recently developed a new technique that effectively identifies cancer-causing substances in the urine or blood.

In the study, Professor Yoon-Kyoung Cho of Life Science, a group leader at IBS Research Center for Soft and Living Matter (CSLM) presented an integrated centrifugal microfluidic platform (Exodisc), a device that isolates extracellular vesicles (EVs) from urine.  The research team expects that this may be potentially useful in clinical settings to test urinary EV-based biomarkers for cancer diagnostics.

Extracellular vesicles (EVs) are cell-derived nanovesicles (40-1000 nm in size), present in almost all types of body fluids, which play a vital role in intercellular communication and are involved in the transport of biological signals for regulating diverse cellular functions. Despite the increasing clinical importance of EVs as potential biomarkers in the diagnosis and prognosis of various diseases, current methods of EV isolation and analysis suffer from complicated procedures with long processing times. For instance, even ultracentrifugation (UC), the most commonly used method for EV isolation, requires time-consuming steps involving centrifugation and acquisition of large sample volumes, and the results suffer from low yield and purity.

To overcome these limitations, Professor Cho presented a new lab-on-a-disc platform for rapid, size-selective, and efficient isolation and analysis of nanoscale EVs from raw biological samples, such as cell-culture supernatant (CCS) or cancer-patient urine.

EXODISC

The Exodisc is compoased of two independent filteration units (20nm and 600nm in size) within a disk-shaped chip to enable the processing of two different samples simulateously,” says Hyun-Kyung Woo (Combined M.S./Ph.D. student of Natural Science), the first author of the study. “Upon spinning the disc, the urine sample is transferred through two integrated nanofilters, allowing for the enrichment of unirary EVs within the size range of 20 to 600 nm.”
Using Exodisc, it is possible to isolate EVs from raw samples within 30 minutes,” says Professor Cho. “The process of passing the filter through centrifugal force is automatically carried out, effectively recovering the enriched EVs.”

On-disc ELISA using urinary EVs isolated from bladder cancer patients showed high levels of CD9 and CD81 expression, suggesting that this method may be potentially useful in clinical settings to test urinary EV-based biomarkers for cancer diagnostics,” explains Vijaya Sunkara of Life Sciences, the co-first author.
The results of the study has been published in the February issue of ACS Nano journal.

Source: http://news.unist.ac.kr/

Killing Cancer Cells From Inside

Researchers have witnessed – for the first time – cancer cells being targeted and destroyed from the inside, by an organo-metal compound discovered by the University of Warwick (UK). Professor Peter J. Sadler, and his group in the Department of Chemistry, have demonstrated that Organo-Osmium FY26 – which was first discovered at Warwick – kills cancer cells by locating and attacking their weakest part.

osmium compound fy26 in cancer cell
This is the first time that an Osmium-based compound – which is fifty times more active than the current cancer drug cisplatin – has been seen to target the disease. Using the European Synchrotron Radiation Facility (ESRF), researchers analysed the effects of Organo-Osmium FY26 in ovarian cancer cells – detecting emissions of X-ray fluorescent light to track the activity of the compound inside the cells

Looking at sections of cancer cells under nano-focus, it was possible to see an unprecedented level of minute detail. Organelles like mitochondria, which are the ‘powerhouses’ of cells and generate their energy, were detectable. In cancer cells, there are errors and mutations in the DNA of mitochondria, making them very weak and susceptible to attack.

FY26 was found to have positioned itself in the mitochondriaattacking and destroying the vital functions of cancer cells from within, at their weakest point. Researchers were also able to see natural metals which are produced by the body – such as zinc and calcium – moving around the cells. Calcium in particular is known to affect the function of cells, and it is thought that this naturally-produced metal helps FY26 to achieve an optimal position for attacking cancer.

Source: http://www2.warwick.ac.uk

A ”NaNose” Device Identifies 17 Types Of Diseases With A Single Sniff

The future of early diagnoses of disease could be this simple, according to a team of researchers in Israel. The ‘NaNose‘ as they call it can differentiate between 17 types of diseases with a single sniff identifying so-called smelly compounds in anything from cancers to Parkinson’s.

nanose2CLICK ON THE IMAGE TO ENJOY THE VIDEO

Indeed, what we have found in our most recent research in this regard, that 17 types of disease have 13 common compounds that are found in all different types of disease, but the mixture of the compounds and the composition of these compounds changes from one disease to another disease. And this is what is really unique and what really we expect to see and utilize in order to make the diagnosis from exhaled breat,” says Professor Hossam  Haick ftom the Institute of Technology- Technion.

The NaNose uses “artificially intelligent nanoarraysensors to analyze the data obtained from receptors that “smell” the patient’s breath.

So our main idea is to try an imitate what’s going on in nature. So like we can take a canine, a dog and train it to scent the smell of drugs, of explosives or a missing person, we are trying to do it artificially. And we can do that by using these nano-materials and we build these nano material-based sensors. And of course there are many advantages and one of them of course is going all the way from sensors big as this to really small devices like this that have that have on them eight sensors and which can be incorporated to systems like this, or even smaller,” explains Doctor Yoav Broza from Technion .

Several companies are now trying to commercialize the technology – and encourage its use in healthcare systems… or see it incorporated into your smartphone.

Source: http://www.reuters.com/

Breakthrough In The BioMedical Industry

Polyhedral boranes, or clusters of boron atoms bound to hydrogen atoms, are transforming the biomedical industry. These manmade materials have become the basis for the creation of cancer therapies, enhanced drug delivery and new contrast agents needed for radioimaging and diagnosis. Now, a researcher at the University of Missouri has discovered an entirely new class of materials based on boranes that might have widespread potential applications, including improved diagnostic tools for cancer and other diseases as well as low-cost solar energy cells.

Mark Lee Jr., an assistant professor of chemistry in the MU College of Arts and Science, discovered the new class of hybrid nanomolecules by combining boranes with carbon and hydrogen. Boranes are chemically stable and have been tested at extreme heat of up to 900 degrees Celsius or 1,652 degrees Fahrenheit. It is the thermodynamic stability these molecules exhibit that make them non-toxic and attractive to the biomedical, personal computer and alternative energy industries.
Polyhedral boranes

Despite their stability, we discovered that boranes react with aromatic hydrocarbons at mildly elevated temperatures, replacing many of the hydrogen atoms with rings of carbon,” Lee said. “Polyhedral boranes are incredibly inert, and it is their reaction with aromatic hydrocarbons like benzene that will make them more useful.”

Lee also showed that the attached hydrocarbons communicate with the borane core. “The result is that these new materials are highly fluorescent in solution,” Lee said. “Fluorescence can be used in applications such as bio-imaging agents and organic light-emitting diodes like those in phones or television screens. Solar cells and other alternative energy sources also use fluorescence, so there are many practical uses for these new materials.
The findings have been recently published in the international journal Angewandte Chemie.

Source: http://munews.missouri.edu/

Nanoparticles And Immunotherapy, Allies To Eradicate Cancer

Some researchers are working to discover new, safer ways to deliver cancer-fighting drugs to tumors without damaging healthy cells. Others are finding ways to boost the body’s own immune system to attack cancer cells. Researchers at Pennsylvania State University   (Penn State) have combined the two approaches by taking biodegradable polymer nanoparticles encapsulated with cancer-fighting drugs and incorporating them into immune cells to create a smart, targeted system to attack cancers of specific types.

new-anti-cancer-drugs

The traditional way to deliver drugs to tumors is to put the drug inside some type of nanoparticle and inject those particles into the bloodstream,” said Jian Yang, professor of biomedical engineering, Penn State. “Because the particles are so small, if they happen to reach the tumor site they have a chance of penetrating through the blood vessel wall because the vasculature of tumors is usually leaky.”

The odds of interacting with cancer cells can be improved by coating the outside of the nanoparticles with antibodies or certain proteins or peptides that will lock onto the cancer cell when they make contact. However, this is still a passive drug delivery technology. If the particle does not go to the tumor, there is no chance for it to bind and deliver the drug.

Yang and Cheng Dong, professor of biomedical engineering, wanted a more active method of sending drugs to the cancer wherever it was located, whether circulating in the blood, the brain, or any of the other organs of the body.

“I have 10 years of working in immunology and cancer,” Dong said. “Jian is more a biomaterials scientist. He knows how to make the nanoparticles biodegradable. He knows how to modify the particles with surface chemistry, to decorate them with peptides or antibodies. His material is naturally fluorescent, so you can track the particles at the same time they are delivering the drug, a process called theranostics that combines therapy and diagnostics. On the other hand, I study the cancer microenvironment, and I have discovered that the microenvironment of the tumor generates kinds of inflammatory signals similar to what would happen if you had an infection.”

Immune cells, which were built to respond to inflammatory signals, will be naturally attracted to the tumor site. This makes immune cells a perfect active delivery system for Yang’s nanoparticles. The same technology is also likely to be effective for infectious or other diseases, as well as for tissue regeneration, Dong said.

Source: http://news.psu.edu/

ImmunoTherapy Registers Success Against Brain Cancer

Using the immune system to beat cancer is quickly becoming a promising new strategy for battling tumors. But most of the success so far has been with blood cancers like lymphomas and leukemias. Immunotherapy, as it’s called, has yet to prove itself with solid tumors like breast, prostate, lung, colon and brain cancers.But in a report published in the New England Journal of Medicine, researchers led by Dr. Behnam Badie from the City of Hope Beckman Research Institute and Medical Center say that the same immune-based therapy that is successful against blood cancers also helped a patient with advanced brain cancer.

brain cancer

The 50-year-old man with glioblastoma, a particularly aggressive type of brain tumor, had already been treated with surgery, radiation and anti-tumor drug therapies. Despite these treatments, his cancer had returned and also spread to other parts of his brain and spinal cord. Badie and his team extracted immune cells from him, then engineered them to express proteins on their surface that would recognize and destroy glioblastoma tumor cells. After surgery to remove the bulk of the brain tumor, Badie and his colleagues directly injected the site with the modified immune cells (called chimeric antigen receptor T cells, or CAR T cells) six times, and the remaining part of this tumor stopped growing.

Other smaller growths in the brain continued to grow, however, so the patient received 10 more doses of the CAR T cells injected into the cavities in the brain, called the ventricles. This is the first time that immune cells have been injected into these brain regions, because introducing anything into the ventricles can cause dangerous and possibly deadly inflammation. The man did not develop such serious complications, however, and after about four months, these tumors too started to shrink. By six months, almost all had disappeared.

If the patient had not received the CAR T therapy, he likely would only have survived a few weeks after his cancer recurred, says Badie. But after being treated with the immune therapy, his cancer did not grow or recur for nearly eight months. “If we can do the same for other patients, that would be an amazing accomplishment that many decades of work and research on glioblastoma have never done,” says Badie, whose own father passed away a decade ago from glioblastoma.

Source: http://time.com/