How To Recycle Carbon Dioxide

An international team of scientists led by Liang-shi Li at Indiana University (IU) has achieved a new milestone in the quest to recycle carbon dioxide in the Earth’s atmosphere into carbon-neutral fuels and others materials.


The chemists have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide — a carbon-neutral fuel source — more efficiently than any other method of “carbon reduction.”

molecular leaf

If you can create an efficient enough molecule for this reaction, it will produce energy that is free and storable in the form of fuels,” said Li, associate professor in the IU Bloomington College of Arts and Sciences‘ Department of Chemistry. “This study is a major leap in that direction.”

Burning fuel — such as carbon monoxide — produces carbon dioxide and releases energy. Turning carbon dioxide back into fuel requires at least the same amount of energy. A major goal among scientists has been decreasing the excess energy needed.

This is exactly what Li’s molecule achieves: requiring the least amount of energy reported thus far to drive the formation of carbon monoxide. The molecule — a nanographene-rhenium complex connected via an organic compound known as bipyridine — triggers a highly efficient reaction that converts carbon dioxide to carbon monoxide. The ability to efficiently and exclusively create carbon monoxide is significant due to the molecule’s versatility.

Carbon monoxide is an important raw material in a lot of industrial processes,” Li said. “It’s also a way to store energy as a carbon-neutral fuel since you’re not putting any more carbon back into the atmosphere than you already removed. You’re simply re-releasing the solar power you used to make it.

The secret to the molecule’s efficiency is nanographene — a nanometer-scale piece of graphite, a common form of carbon (i.e. the black “lead” in pencils) — because the material’s dark color absorbs a large amount of sunlight.

Li said that bipyridine-metal complexes have long been studied to reduce carbon dioxide to carbon monoxide with sunlight. But these molecules can use only a tiny sliver of the light in sunlight, primarily in the ultraviolet range, which is invisible to the naked eye. In contrast, the molecule developed at IU takes advantage of the light-absorbing power of nanographene to create a reaction that uses sunlight in the wavelength up to 600 nanometers — a large portion of the visible light spectrum.

Essentially, Li said, the molecule acts as a two-part system: a nanographeneenergy collector” that absorbs energy from sunlight and an atomic rheniumengine” that produces carbon monoxide. The energy collector drives a flow of electrons to the rhenium atom, which repeatedly binds and converts the normally stable carbon dioxide to carbon monoxide.

The idea to link nanographene to the metal arose from Li’s earlier efforts to create a more efficient solar cell with the carbon-based material. “We asked ourselves: Could we cut out the middle man — solar cells — and use the light-absorbing quality of nanographene alone to drive the reaction?” he said.

Next, Li plans to make the molecule more powerful, including making it last longer and survive in a non-liquid form, since solid catalysts are easier to use in the real world.

The process is reported in the Journal of the American Chemical Society.


Cost-effective Hydrogen Production From Water

Groundbreaking research at Griffith University (Australia) is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen. Professor Xiangdong Yao and his team from Griffith’s Queensland Micro- and Nanotechnology Centre have successfully managed to use the element to produce hydrogen from water as a replacement for the much more costly platinum.

Tucson fuel cellTucson fom Hyundai: A Hydrogen Fuel Cell Car

Hydrogen production through an electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells,” says Professor Yao. “Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains a great challenge. “Platinum is the most active and stable electrocatalyst for this purpose, however its low abundance and consequent high cost severely limits its large-scale commercial applications. “We have now developed this carbon-based catalyst, which only contains a very small amount of nickel and can completely replace the platinum for efficient and cost-effective hydrogen production from water.

In our research, we synthesize a nickel–carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution“, he adds. “This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance and impressive durability.”

Proponents of a hydrogen economy advocate hydrogen as a potential fuel for motive power including cars and boats and on-board auxiliary power, stationary power generation (e.g., for the energy needs of buildings), and as an energy storage medium (e.g., for interconversion from excess electric power generated off-peak).


Nano-enhanced Textiles Clean Themselves Of Stains

Researchers at RMIT University in Melbourne, Australia, have developed a cheap and efficient new way to grow special —which can degrade organic matter when exposed to lightdirectly onto . The work paves the way towards nano-enhanced textiles that can spontaneously clean themselves of stains and grime simply by being put under a light bulb or worn out in the sun. Dr Rajesh Ramanathan said the process developed  by the team had a variety of applications for catalysis-based industries such as agrochemicals, pharmaceuticals and natural products, and could be easily scaled up to industrial levels.

no more washing textileClose-up of the nanostructures grown on cotton textiles by RMIT University researchers. Image magnified 150,000 times

The advantage of textiles is they already have a 3D structure so they are great at absorbing light, which in turn speeds up the process of degrading organic matter,”said Dr Ramanathan. “There’s more work to do to before we can start throwing out our washing machines, but this advance lays a strong foundation for the future development of fully self-cleaning textile, he adds.”

The researchers from the Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Lab at RMIT worked with copper and silver-based nanostructures, which are known for their ability to absorb visible light.


How To Cheaply Convert Natural Gas To Liquid Form

Within six months, scientists believe they may be close to completing a nanotechnology catalyst to allow affordable, marketable petroleum product using nanotechnology to convert natural gas to liquid formJupiter Fuels LLC, located at Camp Minden, in partnership with Louisiana Tech University, has been working for the last three years to develop a more affordable way to convert natural gas, thereby making it more affordable to consumers. David Madden, president of the company, says the ultimate goal is a cheaper way to convert natural gas to liquid.

natural gas car2

It would be a new catalyst to make Fischer-Tropsch more efficient,” he said. “There’s lots of natural gas. We have natural gas everywhere. If you convert natural gas and turn it into a stable liquid that will not evaporate at room temperature, then you can transport it anywhere you want to.”

Currently, some energy companies are using cryogenic technology that compresses natural gas into a frozen liquefied natural gas, around -120 Fahrenheit. They put it on a ship, transport it to Europe or Asia and then thaw it out for use.

The new process would eliminate all that, he said.

Officials with Jupiter Fuels say converting it to liquid fuels allows the use of existing fuel production infrastructure and existing transportation technologies.

It is the goal of this project to continue the process of developing catalysts used in the Fischer-Tropsch Synthesis that can be utilized on a commercial scale,” according to a description of the project from Louisiana Tech University’s Research Center. “Operational analysis will examine variables including temperature, pressure, conversion on catalyst performance, and space velocity pertaining to product distribution and catalyst lifetime. In order to increase production, efforts will focus on ultimate catalyst deposition and catalyst substrate preparation.”


New Cheap Catalyst To Produce Hydrogen From Water

Graphene doped with nitrogen and augmented with cobalt atoms has proven to be an effective, durable catalyst for the production of hydrogen from water, according to scientists at Rice University. The Rice lab of chemist James Tour and colleagues at the Chinese Academy of Sciences, the University of Texas at San Antonio and the University of Houston have reported the development of a robust, solid-state catalyst that shows promise to replace expensive platinum for hydrogen generation.

Tucson fuel cell

Catalysts can split water into its constituent hydrogen and oxygen atoms, a process required for fuel cells. Hydrogen electric cars as the Tucson from Hyundai are powered by fuel cells.
The latest discovery, detailed in Nature Communications, is a significant step toward lower-cost catalysts for energy production, according to the researchers.

What’s unique about this paper is that we show not the use of metal particles, not the use of metal nanoparticles, but the use of atoms,” Tour said. “The particles doing this chemistry are as small as you can possibly get.
We’re getting away with very little cobalt to make a catalyst that nearly matches the best platinum catalysts.” In comparison tests, he said the new material nearly matched platinum’s efficiency to begin reacting at a low onset voltage, the amount of electricity it needs to begin separating water into hydrogen and oxygen.


Integrated Solar Fuels Generator

Generating and storing renewable energy, such as solar or wind power, is a key barrier to a clean-energy economy. When the Joint Center for Artificial Photosynthesis (JCAP) was established at Caltech (California Institute of Technology) and its partnering institutions in 2010, the U.S. Department of Energy (DOE) Energy Innovation Hub had one main goal: a cost-effective method of producing fuels using only sunlight, water, and carbon dioxide, mimicking the natural process of photosynthesis in plants and storing energy in the form of chemical fuels for use on demand. Over the past five years, researchers at JCAP have made major advances toward this goal, and they now report the development of the first complete, efficient, safe, integrated solar-driven system for splitting water to create hydrogen fuels.


This result was a stretch project milestone for the entire five years of JCAP as a whole, and not only have we achieved this goal, we also achieved it on time and on budget,” says Caltech’s Nate Lewis, professor of chemistry, and the JCAP scientific director.

This accomplishment drew on the knowledge, insights and capabilities of JCAP, which illustrates what can be achieved in a Hub-scale effort by an integrated team,” adds Harry Atwater, director of JCAP. “The device reported here grew out of a multi-year, large-scale effort to define the design and materials components needed for an integrated solar fuels generator.
Another key advance is the use of active, inexpensive catalysts for fuel production. The photoanode requires a catalyst to drive the essential water-splitting reaction. Rare and expensive metals such as platinum can serve as effective catalysts, but in its work the team discovered that it could create a much cheaper, active catalyst by adding a 2-nanometer-thick layer of nickel. This catalyst is among the most active known catalysts for splitting water molecules into oxygen, protons, and electrons and is a key to the high efficiency displayed by the device. The demonstration system is approximately one square centimeter in area, converts 10 percent of the energy in sunlight into stored energy in the chemical fuel, and can operate for more than 40 hours continuously. “This new system shatters all of the combined safety, performance, and stability records for artificial leaf technology by factors of 5 to 10 or more ,” Lewis says. “Our work shows that it is indeed possible to produce fuels from sunlight safely and efficiently in an integrated system with inexpensive components,” Lewis adds .


How To Clean Up Cigarette Smoke

The Korea Institute of Science and Technology (KIST) research team has developed a nano-catalyst for air cleaning in a smoking room that removes 100% of acetaldehyde, the first class carcinogen, which accounts for the largest portion of the gaseous substances present in cigarette smoke.

Air Cleaning DeviceFor the performance evaluation test, the research team made an air cleaning equipment prototype using the nano-catalyst filter. The equipment was installed in an actual smoking room in the size of 30 square meters (with processing capacity of 4 CMM). About 80% of cigarette smoke elements were processed and decomposed to water vapor and carbon dioxide, within 30 minutes, and 100% of them within 1 hour. The test condition is based on the processing capacity which could circulate the air inside the entire 30 square meter smoking room once every 15 mns.

The nano-catalyst filter uses a technology that decomposes elements of cigarette smoke using oxygen radical, which is generated by decomposing ozone in the air on the surface of the manganese-oxide-based nano-catalyst filter. An evaluation test with total volatile organic compounds (TVOC), such as acetaldehyde, nicotine and tar, which account for the largest volume of gaseous materials in cigarette smoke, is conducted to evaluate the performance of the newly-developed catalyst. The results show that the new catalyst decomposes over 98% of the aforementioned harmful substances.


Electric Car: Water Is The Future Fuel

Canadelectrochim, a non profit research and development Canadian company, have discovered a new non-platinum and nano-sized catalyst for the fuel cell based on Mother Nature which mimics the plant leaf.  The Polymer electrolyte membrane or proton exchange membrane fuel cell (PEMFC) as an optimal solution for the future energy economy.
hydrogen fuel cellsThe PEMFC, where chemical energy is directly converted to electrical energy, provides a highly efficient alternative to a standard internal combustion engine. High power density, clean emissions (water), low temperature operation, rapid start-up and shutdown, and ability to use fuels from renewable sources are several reason why fuel cells such as PEMFC have attracted attention for large market applications, such as transportation. With these unique features, PEMFC will revolutionize the future energy economy.
PEMFC will indirectly make water our future fuel. Hydrogen and oxygen generated by splitting water using photosynthesis can be used as a fuel for PEMFC. PEMFC are leading candidates to power the space shuttle and other mobile applications even down to mobile phones, however, there are still some important issues that must be resolved in order for PEMFC to be commercially competitive. It is known that splitting a hydrogen molecule at the anode of fuel cell using platinum is relatively easy. Unfortunately however, splitting the oxygen molecule at the cathode of fuel cell (oxygen reduction reaction (, ORR)) is more difficult and this causes significant polarization losses (lowers efficiency of the fuel cell). An appropriate catalyst for this process has not been discovered and as of yet platinum is the best option. In the direction of operating the fuel cell using a cost effective and non-platinum based catalyst, is the work of Canadelectrochim.


EV: A Thin Film That Produces Oxygen and Hydrogen

A cobalt-based thin film serves double duty as a new catalyst that produces both hydrogen and oxygen from water to feed fuel cells, according to scientists at Rice University. This discovery may lower the cost of future hydrogen electric car.  The inexpensive, highly porous material invented by the Rice lab of chemist James Tour may have advantages as a catalyst for the production of hydrogen via water electrolysis. A single film far thinner than a hair can be used as both the anode and cathode in an electrolysis device.

The researchers led by Rice postdoctoral researcher Yang Yang reported their discovery  in Advanced Materials.

They determined their cobalt film is much better at producing hydrogen than most state-of-the-art materials and is competitive with (and much cheaper than) commercial platinum catalysts. They reported the catalyst also produced an oxygen evolution reaction comparable to current materials.


A side view of a porous cobalt phosphide/phosphate thin film created at Rice University. The robust film could replace expensive metals like platinum in water-electrolysis devices that produce hydrogen and oxygen for fuel cells. The scale bar equals 500 nanometers.

It is amazing that in water-splitting, the same material can make both hydrogen and oxygen,” Tour said. “Usually materials make one or the other, but not both.”

The researchers suggested applying alternating current from wind or solar energy sources to cobalt-based electrolysis could be an environmentally friendly source of hydrogen and oxygen.


Electric Car: How To Produce Cheap Hydrogen

Rutgers University researchers have developed a technology that could overcome a major cost barrier to make clean-burning hydrogen fuel – a fuel that could replace expensive and environmentally harmful fossil fuels.

The new technology is a novel catalyst that performs almost as well as cost-prohibitive platinum for so-called electrolysis reactions, which use electric currents to split water molecules into hydrogen and oxygen. The Rutgers technology is also far more efficient than less-expensive catalysts investigated to-date.
Hydrogen has long been expected to play a vital role in our future energy landscapes by mitigating, if not completely eliminating, our reliance on fossil fuels,” said Tewodros (Teddy) Asefa, associate professor of chemistry and chemical biology in the School of Arts and Sciences. “We have developed a sustainable chemical catalyst that, we hope with the right industry partner, can bring this vision to life”. He and his colleagues based their new catalyst on carbon nanotubesone-atom-thick sheets of carbon rolled into tubes 10,000 times thinner than a human hair.
carbon nanotubes to produce hydrogen

A new technology based on carbon nanotubes promises commercially viable hydrogen production from water

Finding ways to make electrolysis reactions commercially viable is important because processes that make hydrogen today start with methane – itself a fossil fuel. The need to consume fossil fuel therefore negates current claims that hydrogen is a “green” fuel.

Renewable Hydrogen From Water And Sunlight

Researchers at the Institute of Energy Technology (INTE) of the Universitat Politècnica de Catalunya· BarcelonaTech (UPC), the University of Auckland (New Zealand), and King Abdullah University of Science and Technology (Saudi Arabia) have developed a system to produce hydrogen from water and sunlight in a way that is clean, renewable and more cost-effective than other methods. The scientists behind the project have fused the optical properties of three-dimensional photonic crystals (inverse opals of titanium dioxide, TiO2) and 2-3 nm gold nanoparticles to develop a highly active catalyst powder. The research paper has been published in Scientific Reports, the open-access journal of Nature.

This new photocatalyst produces more hydrogen than others developed so far by harnessing the properties of both photonic crystals and nanoparticles of a metal. According to Jordi Llorca, a researcher at the UPC’s Institute of Energy Technology, the process involves “tuning” the two materials to amplify the effect. “You have to choose the right photonic crystal and the right nanoparticles“, he adds.

The new catalyst has great potential for application in industrial processes. According to researcher Jordi Llorca, making the move from the laboratory to an industrial plant would mean designing a reactor to operate outdoors in the sun, and using a solar collector to capture more sunlight.

A conventional plant for the production of hydrogen from natural gas generates about 300 tons of hydrogen a day. With the new catalyst developed at the UPC, researchers have managed to produce 0.025 litres of hydrogen in one hour using one gram of catalyst. Assuming eight hours of sunlight a day, the scientists estimate that an area measuring 10 x 10 km would be needed to produce hydrogen on an industrial scale.
The researchers say they have managed to pass the milestone of converting 5% of solar energy into hydrogen at room temperature, the threshold at which the technology is considered feasible.

New Record Of Solar Hydrogen Efficiency

A research team of Ulsan National Institute of Science and Technology (UNIST), South Korea, developed a “wormlike” hematite photoanode that can convert sunlight and water to clean hydrogen energy with a record-breaking high efficiency of 5.3%. The previous record of solar hydrogen efficiency among stable oxide semiconductor photoanodes was 4.2% owned by the research group of Prof. Michael Graetzel at the Ecole Polytechnique de Lausanne (EPFL), Switzerland.

Solar water splitting is a renewable and sustainable energy production method because it can utilize sunlight, the most abundant energy source on earth, and water, the most abundant natural resource on earth. At the moment, low solar-to-hydrogen conversion efficiency is the most serious hurdle to overcome in the commercialization of this technology. The key to the solar water splitting technology is the semiconductor photocatalysts that absorb sunlight and split water to hydrogen and oxygen using the absorbed solar energy. Hematite, an iron oxide (the rust of iron, Fe2O3) absorbs an ample amount of sunlight. It has also excellent stability in water, a low price, and environmentally benign characteristics. Prof. Jae Sung Lee of UNIST led the joint research with Prof. Kazunari Domen’s group at the University of Tokyo, Japan, developing new anode material which has outstanding hydrogen production efficiency.

Pt-doped nanostructureThe efficiency of 10% is needed for practical application of solar water splitting technology. There is still long way to reach that level. Yet, our work has made an important milestone by exceeding 5% level, which has been a psychological barrier in this field,” said Prof. Lee. “It has also demonstrated that the carefully designed fabrication and modification strategies are effective to obtain highly efficient photocatalysts and hopefully could lead to our final goal of 10% solar-to-hydrogen efficiency in a near future.”

This research was published in Scientific Reports, a science journal published by the Nature Publishing Group.