More Durable Fuel Cells For Hydrogen Electric Car

Take a ride on the University of Delaware’s (UDFuel Cell bus, and you see that fuel cells can power vehicles in an eco-friendly way. In just the last two years, Toyota, BMW and Honda have released vehicles that run on fuel cells, and carmakers such as GM, BMW and VW are working on prototypes.  If their power sources lasted longer and cost less, fuel cell vehicles could go mainstream faster. Now, a team of engineers at UD has developed a technology that could make fuel cells cheaper and more durable.

Hydrogen-powered fuel cells are a green alternative to internal combustion engines because they produce power through electrochemical reactions, leaving no pollution behind. Materials called catalysts spur these electrochemical reactions. Platinum is the most common catalyst in the type of fuel cells used in vehicles. However, platinum is expensive — as anyone who’s shopped for jewelry knows. The metal costs around $30,000 per kilogram. Instead, the UD team made a catalyst of tungsten carbide, which goes for around $150 per kilogram. They produced tungsten carbide nanoparticles in a novel way, much smaller and more scalable than previous methods.

The material is typically made at very high temperatures, about 1,500 Celsius, and at these temperatures, it grows big and has little surface area for chemistry to take place on,” explains Vlachos, professor at the Catalysis Center for Energy Innovation (UD). “Our approach is one of the first to make nanoscale material of high surface area that can be commercially relevant for catalysis.”

The researchers made tungsten carbide nanoparticles using a series of steps including hydrothermal treatment, separation, reduction, carburization and more. The results are described in a paper published in Nature Communications.


Japan Bets On Hydrogen As A Green Energy Source

Hydrogen gas is a promising alternative energy source to overcome our reliance on carbon-based fuels, and has the benefit of producing only water when it is reacted with oxygen. However, hydrogen is highly reactive and flammable, so it requires careful handling and storage. Typical hydrogen storage materials are limited by factors like water sensitivity, risk of explosion, difficulty of control of hydrogen-generation.

alstom-hydrogen-electric-train Hydrogen gas can be produced efficiently from organosilanes, some of which are suitably air-stable, non-toxic, and cheap. Catalysts that can efficiently produce hydrogen from organosilanes are therefore desired with the ultimate goal of realizing safe, inexpensive hydrogen production in high yield. Ideally, the catalyst should also operate at room temperature under aerobic conditions without the need for additional energy input. A research team led by Kiyotomi Kaneda and Takato Mitsudome at Osaka University have now developed a catalyst that realizes efficient environmentally friendly hydrogen production from organosilanes. The catalyst is composed of gold nanoparticles with a diameter of around 2 nm supported on hydroxyapatite.

The team then added the nanoparticle catalyst to solutions of different organosilanes to measure its ability to induce hydrogen production. The nanoparticle catalyst displayed the highest turnover frequency and number attained to date for hydrogen production catalysts from organosilanes. For example, the  converted 99% of dimethylphenylsilane to the corresponding silanol in just 9 min at room temperature, releasing an equimolar amount of hydrogen gas at the same time. Importantly, the catalyst was recyclable without loss of activity. On/off switching of hydrogen production was achieved using the nanoparticle catalyst because it could be easily separated from its organosilane substrate by filtration. The activity of the catalyst increased as the nanoparticle size decreased.

A prototype portable hydrogen fuel cell containing the nanoparticle catalyst and an organosilane substrate was fabricated. The fuel cell generated power in air at room temperature and could be switched on and off as desired.

Generation of hydrogen from inexpensive organosilane substrates under ambient conditions without additional energy input represents an exciting advance towards the goal of using hydrogen as a green energy source.


Electric Car: Hydrogen Fuel Cells 40 Times Cheaper

Researchers from Umea University – Sweden – and chinese collegues show how a unique nano-alloy composed of palladium nano-islands embedded in tungsten nanoparticles creates a new type of catalysts for highly efficient oxygen reduction, the most important reaction in hydrogen fuel cells. Fuel cell systems represent a promising alternative for low carbon emission energy production. Traditional fuel cells are however limited by the need of efficient catalysts to drive the chemical reactions involved in the fuel cell. Historically, platinum and its alloys have frequently been used as anodic and cathodic catalysts in fuel cells, but the high cost of platinum, due to its low abundance, motivates researchers to find efficient catalysts based on earth-abundant elements. The explanation for the very high efficiency is the unique morphology of the alloy. It is neither a homogeneous alloy, nor a fully segregated two-phase system, but rather something in between.

hydrogen fuel cellsCaption: A schematic model of the unique morphology of the alloy. The Pd-islands (light-brown spheres) are embedded in an environment of tungsten (blue spheres). Oxygen are represented by red spheres, and hydrogen by white spheres.

In our study we report a unique novel alloy with a palladium (Pd) and tungsten (W) ratio of only one to eight, which still has similar efficiency as a pure platinum catalyst. Considering the cost, it would be 40 times lower,” says Thomas Wågberg, Senior lecturer at Department of Physics, Umeå University.
The unique formation of the material is based on a synthesis method, which can be performed in an ordinary kitchen micro-wave oven purchased at the local supermarket. If we were not using argon as protective inert gas, it would be fully possible to synthesize this advanced catalyst in my own kitchen! ,” says Thomas Wågberg.
The findings are published in the scientific journal Nature Communications.


Air-cleansing Poem Eradicates 20 Cars Pollution

Simon, Professor of Poetry at the University of Sheffield, – U.K. -and Pro-Vice-Chancellor for Science Professor Tony Ryan, have collaborated to create a catalytic poem called In Praise of Air printed on material containing a formula invented at the University which is capable of purifying its surroundings. Writing is on the wall for air pollution thanks to air-cleansing poem.
This cheap technology could also be applied to billboards and advertisements alongside congested roads to cut pollution.
PoemIn Praise of Air: Poem displayed on the University’s Alfred Denny Building
This is a fun collaboration between science and the arts to highlight a very serious issue of poor air quality in our towns and cities. “The science behind this is an additive which delivers a real environmental benefit that could actually help cut disease and save lives. “This poem alone will eradicate the nitrogen oxide pollution created by about 20 cars every day,” said Professor Ryan, who came up with the idea of using treated materials to cleanse the air.

He added: “If every banner, flag or advertising poster in the country did this, we’d have much better air quality. It would add less than £100 to the cost of a poster and would turn advertisements into catalysts in more ways than one. The countless thousands of poster sites that are selling us cars beside our roads could be cleaning up emissions at the same time.”

The 10m x 20m piece of material which the poem is printed on is coated with microscopic pollution-eating particles of titanium dioxide which use sunlight and oxygen to react with nitrogen oxide pollutants and purify the air.


Exploring New Ways to Power Mobile Phones

Physicist Florian Nitze, from Umeå University – Sweden -, has developed new catalysts to improve the capacity of fuel cells, able to power mobile phones or laptops, using environmental friendly formic acid. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run. The technology is already commercially available but formic acid fuel cells still suffer from low power and lifetime.
The effect of a catalyst is to reduce the energy loss and to increase the rate of the chemical reactions, which leads to a higher efficiency in the fuel cell.
In his thesis, Florian Nitze has developed new catalysts based on a combination of material science and nanotechnology – engineering close to the atom level.


“Especially catalysts of palladium-nanoparticles attached to a unique helical formed carbon nanofibre proved to have a long lifetime and a very high potential to be used in formic acid fuel cells. The helical formed carbon nanofibre has a high electrical conductivity and a surface that is very easy to decorate with nanoparticles, “ says Florian Nitze.
Formic acid can be produced from renewable sources, i.e. wood, and is therefore a highly environmentally friendly alternative.
One of the major advantages over Li-ion batteries, which are dominating the battery market, is that the charging only takes seconds by simple refueling with formic acid,” says Florian Nitze.

How to Draw Superior Images of Nanoparticles

A new x-ray imaging technique yields unprecedented measurements of nanoscale structures. Now, owing to a happy accident and subsequent insight, researchers at the US Department of Energy’s (DOE) Brookhaven National Laboratory have developed a new and strikingly simple x-ray scattering technique—detailed in the February issue of the Journal of Applied Crystallography—to help draw nanomaterials ranging from catalysts to proteins into greater focus.
x-ray beamThis rendering shows the high-intensity x-ray beam striking and then traveling through the gray sample material. In this new technique, the x-ray scattering—the blue and white ripples—is considerably less distorted than in other methods, producing superior images with less complex analysis.During an experiment, we noticed that one of the samples was misaligned,” said physicist Kevin Yager, a coauthor on the new study. “Our x-ray beam was hitting the edge, not the center as is typically desired. But when we saw how clean and undistorted the data was, we immediately realized that this could be a huge advantage in measuring nanostructures.