Nano-based Material Is 60 Times More Efficient To Produce Hydrogen

Global climate change and the energy crisis mean that alternatives to fossil fuels are urgently needed. Among the cleanest low-carbon fuels is hydrogen, which can react with oxygen to release energy, emitting nothing more harmful than water (H2O) as the product. However, most hydrogen on earth is already locked into H2O (or other molecules), and cannot be used for power.

Hydrogen can be generated by splitting H2O, but this uses more energy than the produced hydrogen can give back. Water splitting is often driven by solar power, so-called “solar-to-hydrogenconversion. Materials like titanium oxide, known as semiconductors with the wide band-gap, are traditionally used to convert sunlight to chemical energy for the photocatalytic reaction. However, these materials are inefficient because only the ultraviolet (UV) part of light is absorbed—the rest spectrum of sunlight is wasted.

Now, a team in Osaka University has developed a material to harvest a broader spectrum of sunlight. The three-part composites of this material maximize both absorbing light and its efficiency for water splitting. The core is a traditional semiconductor, lanthanum titanium oxide (LTO). The LTO surface is partly coated with tiny specks of gold, known as nanoparticles. Finally, the gold-covered LTO is mixed with ultrathin sheets of the element black phosphorus (BP), which acts as a light absorber.

BP is a wonderful material for solar applications, because we can tune the frequency of light just by varying its thickness, from ultrathin to bulk,” the team leader Tetsuro Majima says. “This allows our new material to absorb visible and even near infrared light, which we could never achieve with LTO alone.”

By absorbing this broad sweep of energy, BP is stimulated to release electrons, which are then conducted to the gold nanoparticles coating the LTO. Gold nanoparticles also absorb visible light, causing some of its own electrons to be jolted out. The free electrons in both BP and gold nanoparticles are then transferred into the LTO semiconductor, where they act as an electric current for water splitting.

Hydrogen production using this material is enhanced not only by the broader spectrum of light absorption, but by the more efficient electron conduction, caused by the unique interface between two dimensional materials of BP and LTO. As a result, the material is 60 times more active than pure LTO.


Coral That Beats Global Warming

Coral reefs in the Red Sea’s Gulf of Aqaba can resist rising water temperatures. If they survive local pollution, these corals may one day be used to re-seed parts of the world where reefs are dying. The scientists urge governments to protect the Gulf of Aqaba ReefsCoral reefs are dying on a massive scale around the world, and global warming is driving this extinction. The planet’s largest reef, Australia’s Great Barrier Reef, is currently experiencing enormous coral bleaching for the second year in a row, while last year left only a third of its 2300-km ecosystem unbleached. The demise of coral reefs heralds the loss of some of the planet’s most diverse ecosystems. Scientists have shown that corals in the Gulf of Aqaba in the Northern Red Sea are particularly resistant to the effects of global warming and ocean acidification. The implications are important, as the Gulf of Aqaba is a unique coral refuge. The corals may provide the key to understanding the biological mechanism that leads to thermal resistance, or the weakness that underlies massive bleaching. There is also the hope that the Gulf of Aqaba Reefs could be used to re-seed deteriorated reefs in the Red Sea and perhaps even around the world.

Scientists at EPFL (Ecole polytechnique fédérale de Lausanne) and UNIL (Université de Lausanne) in Switzerland, and Bar Ilan University and the InterUniversity Institute of Marine Sciences in Israel, performed the very first detailed physiological assessment of corals taken from the Gulf of Aqaba after exposure to stressful conditions over a six-week period. They found that the corals did not bleach.


Under these conditions,  most corals around the world would probably bleach and have a high degree of mortality,” says EPFL scientist Thomas Krueger. “Most of the variables that we measured actually improved, suggesting that these corals are living under suboptimal temperatures right now and might be better prepared for future ocean warming.”

The results are published today in the journal Royal Society Open Science.


Stephen Hawking Warns: Only 100 Years Left For Humankind Before Extinction

It’s no secret that physicist Stephen Hawking thinks humans are running out of time on planet Earth.

In a new BBC documentary, Hawking will test his theory that humankind must colonize another planet or perish in the next 100 years. The documentary Stephen Hawking: Expedition New Earth, will air this summer as part of BBC’s Tomorrow’s World season and will showcase that Hawking‘s aspiration “isn’t as fantastical as it sounds,” according to BBC.

For years, Hawking has warned that humankind faces a slew of threats ranging from climate change to destruction from nuclear war and genetically engineered viruses.

While things look bleak, there is some hope, according to Hawking. Humans must set their sights on another planet or perish on Earth.

We must also continue to go into space for the future of humanity,” Hawking said during a 2016 speech at Britain’s Oxford University Union. In the past, Hawking has suggested that humankind might not survive another 1000 years without escaping beyond our fragile planet.” The BBC documentary hints at an adjusted timeframe for colonization, which many may see in their lifetime.

Could Nanotechnology End Hunger?

Each year, farmers around the globe apply more than 100 million tons of fertilizer to crops, along with more than 800,000 tons of glyphosate, the most commonly used agricultural chemical and the active ingredient in Monsanto’s herbicide Roundup. It’s a quick-and-dirty approach: Plants take up less than half the phosphorus in fertilizer, leaving the rest to flow into waterways, seeding algae blooms that can release toxins and suffocate fish. An estimated 90 percent of the pesticides used on crops dissipates into the air or leaches into groundwater.

child starving

With the global population on pace to swell to more than nine billion by 2050 amid the disruptions of climate change, scientists are racing to boost food production while minimizing collateral damage to the environment. To tackle this huge problem, they’re thinking small — very small, as in nanoparticles a fraction of the diameter of a human hair. Three of the most promising developments deploy nanoparticles that boost the ability of plants to absorb nutrients in the soil, nanocapsules that release a steady supply of pesticides and nanosensors that measure and adjust moisture levels in the soil via automated irrigation systems.

It’s all part of a rise in precision agriculture, which seeks a targeted approach to the use of fertilizer, water and other resources. Recognizing the potential impact of nanotechnology, the U.S. Department of Agriculture’s National Institute of Food and Agriculture (NIFA) beefed up funding between 2011 and 2015, from $10 million to $13.5 million. India, China and Brazil are also joining the latest green revolution. Scientists led by Pratim Biswas and Ramesh Raliya at Washington University in St. Louis have harnessed fungi to synthesize nanofertilizer. When sprayed on mung bean leaves, the zinc oxide nanoparticles increase the activity of three enzymes in the plant that convert phosphorus into a more readily absorbable form. Compared to untreated plants, nanofertilized mung beans absorbed nearly 11 percent more phosphorus and showed 27 percent more growth with a 6 percent increase in yield.

Raliya and his colleagues are also developing nanoparticles that enhance plants’ absorption of sunlight and investigating how nanofertilizers fortify crops with nutrients. In a study earlier this year, they found that zinc oxide and titanium dioxide nanoparticles increased levels of the antioxidant lycopene in tomatoes by up to 113 percent. Next, they want to design nanoparticles that enhance the protein content in peanuts. Along with mung beans, peanuts are a major source of protein in many developing countries.

Others are exploring nanoparticles that protect plants against insects, fungi and weeds. The Connecticut Agricultural Experiment Station and other institutions recently began field trials that use several types of metal oxide nanoparticles on tomato, eggplant, corn, squash and sorghum plants in areas infected with fungi known to threaten crops. Researchers led by Leonardo Fernandes Fraceto, of the Institute of Science and Technology, São Paulo State University, Campus Sorocaba, are designing slow-release nanocapsules that contain two types of fungicides or herbicides to reduce the likelihood of targeted fungi and weeds developing resistance. Scientists at the University of Tehran are conducting similar research. Still others are working on nanocapsules that release plant growth hormones. Existing technology could increase average yields up to threefold in many parts of Africa.

Electric Cars That Eat CO2

An interdisciplinary team of scientists has worked out a way to make electric vehicles that only are not only carbon neutral but carbon negative, capable of actually reducing the amount of atmospheric carbon dioxide as they operate.

They have done so by demonstrating how the graphite electrodes used in the lithium-ion batteries that power electric automobiles can be replaced with carbon material recovered from the atmosphere. The unusual pairing of carbon dioxide conversion and advanced battery technology is the result of a collaboration between the laboratory of Assistant Professor of Mechanical Engineering Cary Pint at Vanderbilt University and Professor of Chemistry Stuart Licht at George Washington University. The team adapted a solar-powered process that converts carbon dioxide into carbon so that it produces carbon nanotubes and demonstrated that the nanotubes can be incorporated into both lithium-ion batteries like those used in electric vehicles and electronic devices and low-cost sodium-ion batteries under development for large-scale applications, such as the electric grid.

Tesla Model 3

This approach not only produces better batteries but it also establishes a value for carbon dioxide recovered from the atmosphere that is associated with the end-user battery cost unlike most efforts to reuse CO2 that are aimed at low-valued fuels, like methanol, that cannot justify the cost required to produce them,” said Pint. “Our climate-change solution is two fold: (1) to transform the greenhouse gas carbon dioxide into valuable products and (2) to provide greenhouse gas emission-free alternatives to today’s industrial and transportation fossil fuel processes,” adds Licht. “In addition to better batteries other applications for the carbon nanotubes include carbon composites for strong, lightweight construction materials, sports equipment and car, truck and airplane bodies.

The project builds upon a solar thermal electrochemical process (STEP) that can create carbon nanofibers from ambient carbon dioxide developed by the Licht group and described in the journal Nano Letters last August. STEP uses solar energy to provide both the electrical and thermal energy necessary to break down carbon dioxide into carbon and oxygen and to produce carbon nanotubes that are stable, flexible, conductive and stronger than steel.

The recipe for converting carbon dioxide gas into batteries is described in the paper titled “Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes” published online on Mar. 2 by the journal ACS Central Science.


Green: How To Clean Oil Sands Water Waste

Researchers have developed a process to remove contaminants from oil sands wastewater using only sunlight and nanoparticles that is more effective and inexpensive than conventional treatment methods.

Frank Gu, a professor in the Faculty of Engineering at the University of Waterloo and Canada Research Chair in Nanotechnology Engineering, is the senior researcher on the team that was the first to find that photocatalysis — a chemical reaction that involves the absorption of light by nanoparticles — can completely eliminate naphthenic acids in oil sands wastewater, and within hours. Naphthenic acids pose a threat to ecology and human health. Water in tailing ponds left to biodegrade naturally in the environment still contains these contaminants decades later.

oil sands pond

With about a billion tonnes of water stored in ponds in Alberta, removing naphthenic acids is one of the largest environmental challenges in Canada,” said Tim Leshuk, a PhD candidate in chemical engineering at Waterloo and the leader of the study . “Conventional treatments people have tried either haven’t worked, or if they have worked, they’ve been far too impractical or expensive to solve the size of the problem.  Waterloo’s technology is the first step of what looks like a very practical and green treatment method.


How To Remove Greenhouse Gas From the Air

Finding a technology to shift carbon dioxide (CO2), the most abundant anthropogenic greenhouse gas, from a climate change problem to a valuable commodity has long been a dream of many scientists and government officials. Now, a team of chemists says they have developed a technology to economically convert atmospheric CO2 directly into highly valued carbon nanofibers for industrial and consumer products.

carbon nanofibers

We have found a way to use atmospheric CO2 to produce high-yield carbon nanofibers,” says Stuart Licht, Ph.D., who leads a research team at George Washington University. “Such nanofibers are used to make strong carbon composites, such as those used in the Boeing Dreamliner, as well as in high-end sports equipment, wind turbine blades and a host of other products.

Previously, the researchers had made fertilizer and cement without emitting CO2, which they reported. Now, the team, which includes postdoctoral fellow Jiawen Ren, Ph.D., and graduate student Jessica Stuart, says their research could shift COfrom a global-warming problem to a feed stock for the manufacture of in-demand carbon nanofibers.

Licht calls his approach “diamonds from the sky.” That refers to carbon being the material that diamonds are made of, and also hints at the high value of the products, such as the carbon nanofibers that can be made from atmospheric carbon and oxygen.

A press conference on this topic will be held Wednesday, Aug. 19, at 9:30 a.m. Eastern time in the Boston Convention & Exhibition Center. Reporters may check-in at Room 153B in person, or watch live on YouTube. To ask questions online, sign in with a Google account.

A.I., Nanotechnology ‘threaten civilisation’

A report from the Global Challenges Foundation created the first list of global risks with impacts that for all practical purposes can be called infinite. It is also the first structured overview of key events related to such risks and has tried to provide initial rough quantifications for the probabilities of these impacts.
Besides the usual major risks such as extreme climate change, nuclear war, super volcanoes or asteroids impact there are 3 emerging new global risks: Synthetic Biology, Nanotechnology and Artificial Intelligence (A.I.).
The real focus is not on the almost unimaginable impacts of the risks the report outlines. Its fundamental purpose is to encourage global collaboration and to use this new category of risk as a driver for innovation.

In the case of AI, the report suggests that future machines and software with “human-level intelligence” could create new, dangerous challenges for humanity – although they could also help to combat many of the other risks cited in the report. “Such extreme intelligences could not easily be controlled (either by the groups creating them, or by some international regulatory regime), and would probably act to boost their own intelligence and acquire maximal resources for almost all initial AI motivations,” suggest authors Dennis Pamlin and Stuart Armstrong.
In the case of nanotechnology, the report notes that “atomically precise manufacturing” could have a range of benefits for humans. It could help to tackle challenges including depletion of natural resources, pollution and climate change. But it foresees risks too.
It could create new products – such as smart or extremely resilient materials – and would allow many different groups or even individuals to manufacture a wide range of things,” suggests the report. “This could lead to the easy construction of large arsenals of conventional or more novel weapons made possible by atomically precise manufacturing.”