Skin Patches Melt Fat

Researchers have devised a medicated skin patch that can turn energy-storing white fat into energy-burning brown fat locally while raising the body’s overall metabolism. The patch could be used to burn off pockets of unwanted fat such as “love handles” and treat metabolic disorders, such as obesity and diabetes, according to researchers at Columbia University Medical Center (CUMC) and the University of North Carolina. Humans have two types of fat. White fat stores excess energy in large triglyceride droplets. Brown fat has smaller droplets and a high number of mitochondria that burn fat to produce heat. Newborns have a relative abundance of brown fat, which protects against exposure to cold temperatures. But by adulthood, most brown fat is lost.

For years, researchers have been searching for therapies that can transform an adult’s white fat into brown fat—a process named browning—which can happen naturally when the body is exposed to cold temperatures—as a treatment for obesity and diabetes.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

There are several clinically available drugs that promote browning, but all must be given as pills or injections,” said study co-leader Li Qiang, PhD, assistant professor of pathology & cell biology at Columbia. “This exposes the whole body to the drugs, which can lead to side effects such as stomach upset, weight gain, and bone fractures. Our skin patch appears to alleviate these complications by delivering most drugs directly to fat tissue.

To apply the treatment, the drugs are first encased in nanoparticles, each roughly 250 nanometers (nm) in diameter—too small to be seen by the naked eye. (In comparison, a human hair is about 100,000 nm wide.) The nanoparticles are then loaded into a centimeter-square skin patch containing dozens of microscopic needles. When applied to skin, the needles painlessly pierce the skin and gradually release the drug from nanoparticles into underlying tissue.

The findings, from experiments in mice, were published online today in ACS Nano.

Source: http://newsroom.cumc.columbia.edu/

New Drug Reduces Osteoporosis dramatically

Felicia Cosman, MD, an endocrinologist at Helen Hayes Hospital Regional Bone Center in West Haverstraw, New York, and professor of medicine at Columbia University, and colleagues performed a prespecified subgroup analysis of data from 2,463 postmenopausal women with osteoporosis (aged 49-86 years; mean age, 69 years) enrolled in the phase 3 ACTIVE trial. Participants were randomly assigned 80 g subcutaneous abaloparatide (n = 824) or placebo (n = 821), or open-label 20 g subcutaneous teriparatide (n = 818).

osteoporosis
At 18 months, participants assigned abaloparatide had a 9.2% increase in Bone Mass Measurement (BMD) from baseline at the lumbar spine, 3.4 % at the total hip,  3.4% and 2.9% at the femoral neck compared with placebo. Morphometric vertebral fractures were reduced by 86%, nonvertebral fractures by 43% and major osteoporotic fractures by 70% in the abaloparatide group compared to placebo. Compared with teriparatide, major osteoporotic fractures were reduced by 55% in the aloparatide group.
Reductions in new morphometric vertebral and nonvertebral fractures were similar across subgroups, as were increases in BMD, and researchers observed no meaningful interactions between baseline risk factor subgroups and treatment effects. “Our findings suggest that abaloparatide-SC, if approved, has the potential to provide consistent protection against fractures and to increase BMD in a broad group of postmenopausal women with osteoporosis, regardless of baseline age, BMD or prior fracture history,” Cosman said.

http://www.healio.com/

How To Turn CO2 Into Rock

An international team of scientists have found a potentially viable way to remove anthropogenic (caused or influenced by humans) carbon dioxide emissions from the atmosphereturn it into rock.

The study, published today in Science, has shown for the first time that the greenhouse gas carbon dioxide (CO2) can be permanently and rapidly locked away from the atmosphere, by injecting it into volcanic bedrock. The CO2 reacts with the surrounding rock, forming environmentally benign minerals.

turn co2 into rockCLICK ON THE IMAGE TO ENJOY THE VIDEO

Measures to tackle the problem of increasing greenhouse gas emissions and resultant climate change are numerous. One approach is Carbon Capture and Storage (CCS), where CO2 is physically removed from the atmosphere and trapped underground. Geoengineers have long explored the possibility of sealing CO2 gas in voids underground, such as in abandoned oil and gas reservoirs, but these are susceptible to leakage. So attention has now turned to the mineralisation of carbon to permanently dispose of CO2.

Until now it was thought that this process would take several hundreds to thousands of years and is therefore not a practical option. But the current study – led by Columbia University, University of Iceland, University of Toulouse and Reykjavik Energy – has demonstrated that it can take as little as two years.

Lead author Dr Juerg Matter, Associate Professor in Geoengineering at the University of Southampton, says: “Our results show that between 95 and 98 per cent of the injected CO2 was mineralised over the period of less than two years, which is amazingly fast.”

Carbonate minerals do not leak out of the ground, thus our newly developed method results in permanent and environmentally friendly storage of CO2 emissions,” adds Dr Matter, who is also a member of the University’s Southampton Marine and Maritime Institute and Adjunct Senior Scientist at Lamont-Doherty Earth Observatory Columbia University. “On the other hand, basalt is one of the most common rock type on Earth, potentially providing one of the largest CO2 storage capacity.

Storing CO2 as carbonate minerals significantly enhances storage security which should improve public acceptance of Carbon Capture and Storage as a climate change mitigation technology,” says Dr Matter. “The overall scale of our study was relatively small. So, the obvious next step for CarbFix is to upscale CO2 storage in basalt. This is currently happening at Reykjavik Energy’s Hellisheidi geothermal power plant, where up to 5,000 tonnes of CO2 per year are captured and stored in a basaltic reservoir.”

Source: http://www.southampton.ac.uk/

Restore Your Hair Growth

Inhibiting a family of enzymes inside hair follicles that are suspended in a resting state restores hair growth, a new study from researchers at Columbia University Medical Center has found.

In experiments with mouse and human hair follicles, Angela M. Christiano, PhD, and colleagues found that drugs that inhibit the Janus kinase (JAK) family of enzymes promote rapid and robust hair growth when applied to the skin.

The study raises the possibility that JAK inhibitors could be used to restore hair growth in forms of hair loss induced by male pattern baldness, and other types of hair loss that occur when hair follicles are trapped in a resting state.  Two JAK inhibitors have been approved by the U.S. Food and Drug Administration. One is approved for treatment of blood diseases (ruxolitinib) and the other for rheumatoid arthritis (tofacitinib). Both are being tested in clinical trials for the treatment of plaque psoriasis and alopecia areata, an autoimmune disease that causes hair loss.

long-hairstyles

What we’ve found is promising, though we haven’t yet shown it’s a cure for pattern baldness,” said Dr. Christiano. “More work needs to be done to test if JAK inhibitors can induce hair growth in humans using formulations specially made for the scalp.”
Christiano and her colleagues serendipitously discovered the effect of JAK inhibitors have on hair follicles when they were studying alopecia areata, a form of hair loss that’s caused by an autoimmune attack on the hair follicles. Christiano and colleagues reported last year that JAK inhibitors shut off the signal that provokes the autoimmune attack, and that oral forms of the drug restore hair growth in some people with the disorder.

The research was published today in the online edition of Science Advances.

Source: http://newsroom.cumc.columbia.edu/

Colon Cancer: 4 Coffees a Day Divide By 2 Death Rate

Colon cancer patients who were heavy coffee drinkers had a far lower risk of dying or having their cancer return than those who did not drink coffee, with significant benefits starting at two to three cups a day, a new study found. Patients who drank four cups of caffeinated coffee or more a day had half the rate of recurrence or death than noncoffee drinkers. But, the researchers caution, cancer patients should not start ordering extra tall coffees. The study, the first to report such findings, does not prove a cause-and-effect relationship between coffee drinking and a lower risk of colon cancer recurrence. As other experts note, there may be differences between heavy coffee drinkers and abstainers that the research was not able to account for.

In recent years, many studies have pointed to coffee’s health benefits, suggesting coffee may protect against Type 2 diabetes, reduce overall deaths and perhaps even help protect against dementia. Other studies have suggested coffee may reduce the risks of certain cancers, including colon cancer. The benefits are generally attributed to coffee’s antioxidant and anti-inflammatory properties. But as with many studies about diet, proving a link between coffee consumption and protection against cancer recurrence is difficult.

cup of coffee

Think about it: People who drink a lot of coffee tend to be high stress, high pressure, intense and compulsive,” said Dr. Alfred Neugut, a professor of cancer research, medicine and epidemiology at Columbia University and a director of NewYork-Presbyterian Hospital’s Cancer Prevention Center. “If they have cancer, they’re going to be more obsessive about following all the rules and doing all the things they’re supposed to do. So it may be that coffee itself is playing a physiological role, but it may also be a surrogate marker for you being a compulsive health-conscious good behaver.”

 

Source: http://jco.ascopubs.org/
AND
http://well.blogs.nytimes.com/

3D Printers For Food Manufacturing

The use of 3D printers has the potential to revolutionize the way food is manufactured within the next 10 to 20 years, impacting everything from how military personnel get food on the battlefield to how long it takes to get a meal from the computer to your table, according to a July 12th symposium at IFT15: Where Science Feeds Innovation hosted by the Institute of Food Technologists (IFT) in Chicago.

The price of 3D printers has been steadily declining, from more than $500,000 in the 1980s to less than $1,000 today for a personal-sized device, making them increasingly available to consumers and manufacturers Although they are not widely used in food manufacturing yet, that availability is fueling research into how they can be used to customize foods or speed delivery of food to consumers.
3D pinting for food
No matter what field you are in, this technology will worm its way in,” said Hod Lipson, Ph.D., a professor of engineering at Columbia University and a co-author of the book Fabricated: The New World of 3D Printing. ”The technology is getting faster, cheaper and better by the minute. Food printing could be the killer app for 3D printing.”

Lipson, addressing the conference by video, said 3D printing is a good fit for the food industry because it allows manufacturers to bring complexity and variety to consumers at a low cost. Traditional manufacturing is built on mass production of the same item, but with a 3D printer, it takes as much time and money to produce a complex, customized product that appeals to one person as it does to make a simple, routine product that would be appealing to a large group.

For example, Lipson said, users could choose from a large online database of recipes, put a cartridge with the ingredients into their 3D printer at home, and it would create the dish just for that person. The user could customize it to include extra nutrients or replace one ingredient with another.

Source: http://www.ift.org/

NanoDrones Destroy Fat In Arteries

Nanometer-sized “drones” will deliver a special type of healing molecule to fat deposits in arteries. This is new approach to prevent heart attacks caused by atherosclerosis, according to a study in pre-clinical models by scientists at Brigham and Women’s Hospital (BWH) and Columbia University Medical Center.

Although current treatments have reduced the number of deaths from atherosclerosis-related disease, atherosclerosis remains a dangerous health problem: Atherosclerosis of the coronary arteries is the #1 killer of women and men in the U.S., resulting in one out of every four deaths. In the study, targeted biodegradable nanodrones’ that delivered a special type of drug that promotes healing (‘resolution‘) successfully restructured atherosclerotic plaques in mice to make them more stable. This remodeling of the plaque environment would be predicted in humans to block plaque rupture and thrombosis and thereby prevent heart attacks and strokes.
nanodronesNanometer-sized ‘drones’ that deliver a special type of healing molecule to fat deposits in arteries could become a new way to prevent heart attacks caused by atherosclerosis
This is the first example of a targeted nanoparticle technology that reduces atherosclerosis in an animal model,” said co-senior author Omid Farokhzad, MD, associate professor and director of the Laboratory of Nanomedicine and Biomaterials at BWH and Harvard Medical School (HMS). “Years of research and collaboration have culminated in our ability to use nanotechnology to resolve inflammation, remodel and stabilize plaques in a model of advanced atherosclerosis.”

These findings are published in the February 18th online issue of Science Translational Medicine.
Source: http://www.brighamandwomens.org/

Doubling The Electrical Output Of Solar Cells

One challenge in improving the efficiency of solar cells is that some of the absorbed light energy is lost as heat. So scientists have been looking to design materials that can convert more of that energy into useful electricity. Now a team from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University has paired up polymers that recover some of that lost energy by producing two electrical charge carriers per unit of light instead of the usual one.

solar cell
Critically, we show how this multiplication process can be made efficient on a single molecular polymer chain,” said physicist Matthew Sfeir, who led the research at Brookhaven Lab’s Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility. Having the two charges on the same molecule means the light-absorbing, energy-producing materials don’t have to be arrayed as perfect crystals to produce extra electrical charges. Instead, the self-contained materials work efficiently when dissolved in liquids, which opens the way for a wide range of industrial scale manufacturing processes, including “printingsolar-energy-producing material like ink.

The research is published as an Advance Online Publication in Nature Materials, January 12, 2015.

Source: http://www.bnl.gov/

A Nanotechnology Corridor in New-York State

With the nanoscale programs at Columbia University and City University of New York , many see a “New York State Nanotechnology Corridor”. Anchored in New York City, traversing north along the Hudson River to Albany and heading west to Utica, Syracuse, Rochester and Buffalo, such a corridor would parallel one of the greatest commercial successes in the history of New York state — the Erie Canal. Fortuitously, Utica is located at the very center of this proposed corridor.


It would surely bring heightened awareness of New York state’s nanotechnology initiatives through comparison to other nationally renowned research regions such as North Carolina’s Research Triangle, California’s Silicon Valley, and Massachusetts’ Boston Route 128. Colleges and universities along this corridor could join a collective state-wide pursuit of excellence in the field of nanotechnology, potentially leading to local and statewide educational and commercial benefits.
Let’s remind that New York state has established the SUNY College of Nanoscale Science and Engineering (CNSE) at Albany. This college was pivotal in attracting multi-billion dollar investments from renowned nanotechnology-based companies around the globe for research and manufacturing in New York state.
Building on this remarkable success story, CNSE paved the way to establish “Nano Utica” and other sites with related missions at Canandaigua, Rochester and Buffalo. The remarkable multi-million state investment in “Nano Utica” was made possible by the cooperative leadership of SUNYIT and Mohawk EDGE. Clearly, this initiative has given great hope to this region when at the end of the last century, it faced an uncertain future.
Source: http://www.uticaod.com/

DNA Robots Mark Cells So Drugs Can Kill Them

Researchers at Columbia University Medical Center, working with their collaborators at the Hospital for Special Surgery, have created a fleet of molecularrobots” that can home in on specific human cells and mark them for drug therapy or destruction. The nanorobots — a collection of DNA molecules, some attached to antibodies— were designed to seek a specific set of human blood cells and attach a fluorescent tag to the cell surfaces. Details of the system were published in the online edition of Nature Nanotechnology.
dnarobotsThis opens up the possibility of using such molecules to target, treat, or kill specific cells without affecting similar healthy cells,” said the study’s senior investigator, Milan Stojanovic, PhD, associate professor of medicine and of biomedical engineering at Columbia University Medical Center.
In our experiment, we tagged the cells with a fluorescent marker; but we could replace that with a drug or with a toxin to kill the cell.”
Source: http://newsroom.cumc.columbia.edu/

APOE4 Gene Increases Up To Ten-Fold Risk To Develop Alzheimer’s

A research team from Columbia University Medical Center (CUMC) identified key molecular pathways that link genetic risk factors to Alzheimer’s disease. More specifically, the researchers first focused on the single most significant genetic factor that puts people at high risk for Alzheimer’s, called APOE4 (found in about a third of all individuals). People with one copy of this genetic variant have a three-fold increased risk of developing late-onset Alzheimer’s, while those with two copies have a ten-fold increased risk. “In this study,” said Dr. Abeliovich, “we initially asked: If we look at autopsy brain tissue from individuals at high risk for Alzheimer’s, is there a consistent pattern?” Surprisingly, even in the absence of Alzheimer’s disease, brain tissue from individuals at high risk (who carried APOE4 in their genes) harbored certain changes reminiscent of those seen in full-blown Alzheimer’s disease,” said Dr. Abeliovich. “We therefore focused on trying to understand these changes, which seem to put people at risk. The brain changes we considered were based on ‘transcriptomics’—a broad molecular survey of the expression levels of the thousands of genes expressed in brain.”
Human-neuronsThe researchers evaluated the role of SV2A, using human-induced neurons that carry the APOE4 genetic variant. (The neurons were generated by directed conversion of skin fibroblasts from individuals at high risk for Alzheimer’s, using a technology developed in the Abeliovich laboratory.) Treating neurons that harbor the APOE4 at-risk genetic variant with levetiracetam (which inhibits SV2A) led to reduced production of amyloid beta. The study also showed that RFN219 appears to play a role in APP-processing in cells with the APOE4 variant.
Source: http://newsroom.cumc.columbia.edu/

Nanomedicine Resolves Inflammation, Heals Tissue

A multicenter team of researchers has developed biodegradable nanoparticles that are capable of delivering inflammation-resolving drugs to sites of tissue injury. The nanoparticles, which were successfully tested in mice, have potential for the treatment of a wide array of diseases characterized by excessive inflammation, such as atherosclerosis. The study was published today in the online edition of the Proceedings of the National Academies of Science. Particpate scientists at Columbia University Medical Center (CUMC), Brigham and Women’s Hospital (BWH), Mount Sinai School of Medicine, and Massachusetts Institute of Technology.
polymeric nanoparticle
Collagen IV-targeted polymeric nanoparticles (shown in pink) are home to injured tissue, post-injection, in the blood.
A variety of medications can be used to control inflammation. Such treatments, however, usually have significant side effects and dampen the positive aspects of the inflammatory response,” said co-senior author Ira Tabas, MD, PhD,at CUMC.

Source: http://www.cumc.columbia.edu/
AND
http://www.eurekalert.org/